VARIATIONS ON PRACTICE TEST 1

1-1. Let C be the part of the graph of $y=\ln (\cos x)$ between $x=0$ and $x=\pi / 4$. Find the length of C.

1-2. In $x y z$-space, let C be the curve with parametric equations $x=2 t$, $y=t^{2}$ and $z=t^{3} / 3,0 \leq t \leq 1$. Find the length of C.

2-1. Give an equation of the line tangent to the graph of $y=5 x+\sin x$ at $x=\pi$.

3-1. If V is a 3-dimensional subspace of \mathbb{R}^{7} and W is a 5 -dimensional subspace of \mathbb{R}^{7}, what are the possible dimensions of $V \cap W$?
$4-1$. Let k be the number of real solutions of the equation $7-x^{5}-x=0$ in the interval $[0,1]$, and let n be the number of real solutions that are not in $[0,1]$. Which of the following is true?
(A) $k=0$ and $n=1$
(B) $k=1$ and $n=0$
(C) $k=n=1$
(D) $k>1$
(E) $n>1$

Date: Printout date: November 18, 2015.

5 -1. Suppose b is a real number and $f(x)=4 x^{2}+b x+9$ defines a function on the real line, part of which is graphed above. Compute $f(5)$.

6-1. For what values of b does the curve $4 x^{2}+(y-b)^{2}=1$ have exactly one intersection point with $y=2 x$?

7-1. Compute $\int_{-3}^{3} e^{|x+1|} d x$.
8-1. Let R be a rectangle whose vertices are $(x, y),(-x, y),(-x, 0)$ and $(x, 0)$. Assume that $0<x<3$, that $0<y<3$ and that $x^{2}+y^{2}=9$. What is the maximum possible area inside such a rectangle R ?

9-1. Define

$$
\begin{aligned}
J & :=\int_{1}^{2} \sqrt{256-x^{4}} d x \\
K & :=\int_{1}^{2} \sqrt{256+x^{4}} d x \\
L & :=\int_{1}^{2} \sqrt{256-x^{8}} d x
\end{aligned}
$$

Order $16, J, K, L$ from smallest to largest.

10-1. Let g be a function whose derivative g^{\prime} is continuous and has the graph shown above. On $0<x<5$, what are the maximal open intervals of concavity for $g(x)$?

11-1. Approximate $[3.59]\left[(10)^{5 / 2}\right]$.
12-1. Let A be a 5×5 matrix such that the entries in each row add up to 10 . Let $B:=6 A^{3}+4 A^{2}+7 A$. True or False: The entries any row of B will add up to 6470 .

13-1. We have available 75 square feet of material, and wish to use it to form the sides and bottom of an open-topped rectangular box. What is the maximum volume of the box?

14-1. What is the hundreds digit in the standard decimal expansion of the number 7^{26} ?

15-1. True or False: Let f be a continuous real-valued function defined on the open interval $(-2,3)$. Then f is bounded.
$15-2$. True or False: Let f be a continuous real-valued function defined on the closed interval $[-2,3]$. There exists $c \in(-2,3)$ such that f is differentiable at c and such that $5 \cdot\left[f^{\prime}(c)\right]=[f(3)]-[f(-2)]$.
$15-3$. True or False: Let f be a continuous real-valued function defined on the closed interval $[-2,3]$. Assume that f is differentiable at 0 and that $f^{\prime}(0)=0$. Then f has a local extremum at 0 .

15-4. True or False: Let f be a continuous real-valued function defined on the closed interval $[-2,3]$. Assume that all of the following are true:

- f is twice-differentiable at 0 ,
- $f^{\prime}(0)=0 \quad$ and
- $f^{\prime \prime}(0) \neq 0$.

Then f has a local extremum at 0 .
16-1. What is the volume of the solid formed by revolving, about the x-axis, the region in the first quadrant of the $x y$-plane bounded by: the coordinate axes and the graph of the equation $y=\sqrt{\frac{x}{1+x^{4}}}$?

16-2. What is the volume of the solid formed by revolving, about the y-axis, the region in the first quadrant of the $x y$-plane bounded by: the coordinate axes and the graph of the equation $y=\frac{x^{2}}{\left(1+x^{4}\right)^{3 / 2}}$?

17-1. How many real roots does the polynomial $x^{5}-5 x+3$ have?
18-1. Let V be the real vector space of all real homogeneous polynomials in x and y of degree 7 (together with the zero polynomial). Let W be the real vector space of all real polynomials in x of degree ≤ 3 (together with the zero polynomial). If T is a linear transformation from V onto W, what is the dimension of the subspace $\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}\}$ of V ?

18-2. Let V be the real vector space of all real polynomials in x and y of degree ≤ 7 (together with the zero polynomial). Let W be the real vector space of all real polynomials in x of degree ≤ 3 (together with the zero polynomial). If T is a linear transformation from V onto W, what is the dimension of the subspace $\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}\}$ of V ?

19-1. True or False: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that, for all $x \in \mathbb{R}$, we have $-x^{2} \leq f(x) \leq x^{2}$. Then, for all $x \in \mathbb{R}$, we have $-2 x \leq f^{\prime}(x) \leq 2 x$.

19-2. True or False: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that, for all $x \in \mathbb{R}$, we have $-x^{2} \leq f(x) \leq x^{2}$. Then $f^{\prime}(0)=0$.

19-3. True or False: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(1)=5$ and $f^{\prime}(3)=9$. Then $\exists c \in(1,3)$ such that $f^{\prime}(c)=7$.

19-4. True or False: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Then there exists $c \in \mathbb{R}$ such that f^{\prime} is continuous at c.

20-1. Let f be the function defined on the real line by

$$
f(x)= \begin{cases}x^{2}, & \text { if } x \text { is rational } \\ 2 x, & \text { if } x \text { is irrational }\end{cases}
$$

Compute the set of points of discontinuity of f.
21-1. Let $p:=7919$, which is a prime number. Let $Q:=\{p, 2 p, 3 p, \ldots\}$ be the set of multiples of p. Let $K:=\{0,1, \ldots, p\}$ denote the set of integers from 0 to p. For all $k \in K$, let C_{k}^{p} be the binomial coefficient " p choose k ". Let $S:=\left\{k \in K \mid C_{1}^{p}, \ldots, C_{k}^{p} \in Q\right\}$. So, for example, because $C_{1}^{p}=p \in Q$ and $C_{2}^{p}=[(p-1) / 2] p=3959 p \in Q$, we get $2 \in S$. Compute the maximum element of S.

22-1. Let $C(\mathbb{R})$ be the collection of all continuous functions from \mathbb{R} to \mathbb{R}. Then $C(\mathbb{R})$ is a real vector space with vector addition defined by

$$
\forall f, g \in C(\mathbb{R}), \forall x \in \mathbb{R}, \quad(f+g)(x)=[f(x)]+[g(x)]
$$

and with scalar multiplication defined by

$$
\forall f \in C(\mathbb{R}), \forall r, x \in \mathbb{R}, \quad(r f)(x)=r \cdot[f(x)]
$$

Let S denote the set of $f \in C(\mathbb{R})$ such that all of the following hold:

- f is twice differentiable,
- for all $x \in \mathbb{R}, f(x+2 \pi)=f(x)$.
- $f^{\prime \prime}=-f$.

True or False: S is a subspace of $C(\mathbb{R})$.
23-1. True or False: There exists a real number b such that the line $y=10 x$ tangent to the curve $y=b x^{2}+10 x+1$ at some point in the $x y$-plane.

24-1. Let h be the function defined by $h(x)=\int_{0}^{x^{2}} e^{(x+t)^{2}} d t$, for all real numbers x. Compute $h^{\prime}(1)$.

25-1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be defined recursively by $a_{1}=7$ and

$$
\text { for all integers } n \geq 1, \quad a_{n+1}=\left(\frac{n}{n+3}\right) a_{n}
$$

Compute a_{25}.
26-1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=2 x^{2}-4 x y+y^{4}$. Find all the absolute extreme values of f, and where they occur.
$27-1$. Find the dimension of the solution space, in \mathbb{R}^{4}, of

$$
\begin{aligned}
3 w+4 x-2 y-3 z & =1 \\
2 w+x-y & =2 \\
-w+7 x-y-9 z & =-7 .
\end{aligned}
$$

$27-2$. Find the dimension of the solution space, in \mathbb{R}^{4}, of

$$
\begin{aligned}
3 w+4 x-2 y-3 z & =1 \\
2 w+2 x-y & =2 \\
-w+7 x-y-9 z & =-7
\end{aligned}
$$

27-3. Find the solution space, in \mathbb{R}^{4}, of

$$
\begin{aligned}
3 w+4 x-2 y-3 z & =1 \\
2 w+x-y & =2 \\
-w+7 x-y-9 z & =5
\end{aligned}
$$

28-1. Let T be a graph with 378 vertices. Assume T is a tree, which is a connected graph with no cycles. How many edges does T have?

29-1. For all positive functions f and g of the real variable x, let \sim be a relation defined by

$$
f \sim g \quad \text { if and only if } \quad \lim _{x \rightarrow \infty}\left[\frac{f(x)}{g(x)}\right]=1
$$

True or False: Let f, g, ϕ, ψ be positive functions of x. Assume that $f \sim g$ and that $\phi \sim \psi$. Then $f+\phi \sim g+\psi$.

30-1. Let S and T be sets and assume that there exists a function $f: S \rightarrow T$ such that f is onto T. True or False: There must exist a function $g: T \rightarrow S$ such that g is one-to-one.

30-2. Let S and T be sets. Assume that there does NOT exist a function $f: S \rightarrow T$ such that f is one-to-one. True or False: There must exist a function $g: T \rightarrow S$ such that g is one-to-one.

31-1. True or False: There exists a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ to the differential equation $y^{\prime}=x^{4}+2 x^{2} y^{2}+y^{4}$ with the property that, for every $x \in \mathbb{R}$, we have $-1000<y(x)<1000$.

32-1. True or False: Let G be a group. Assume, for all $a, b \in G$, for all integers $n \geq 1$, that $(a b)^{n}=a^{n} b^{n}$. Then G is Abelian.

33-1. True or False: Let p and q be prime numbers, and let n be an integer. Assume that $p \neq q$. Then there exist integers k and ℓ such that $\frac{n}{p^{2} q}=\frac{k}{p^{2}}+\frac{\ell}{q}$.

33-2. True or False: Let p and q be prime numbers, and let n be an integer. Assume that $p \neq q$. Then there exist integers r, s, t, u such that $0 \leq s<p$ and $0 \leq t<p$ and $0 \leq u<q$ and $\frac{n}{p^{2} q}=r+\frac{s}{p}+\frac{t}{p^{2}}+\frac{u}{q}$.

33-3. True or False: Let $\mathbb{R}[x]$ denote the ring of polynomials, with real coefficients, in the indeterminate x. Let $p, q \in \mathbb{R}[x]$ be irreducible polynomials, and let $f \in \mathbb{R}[x]$. Assume that $p \neq q$. Then there exist $r, s, t, u \in \mathbb{R}[x]$ such that $\operatorname{deg}[s]<\operatorname{deg}[p]$ and $\operatorname{deg}[t]<\operatorname{deg}[p]$ and $\operatorname{deg}[u]<\operatorname{deg}[q]$ and $\frac{f}{p^{2} q}=r+\frac{s}{p}+\frac{t}{p^{2}}+\frac{u}{q}$.

34-1. Define $N: \mathbb{R}^{2} \rightarrow[0, \infty)$ by $N(x, y)=\left[x^{4}+y^{4}\right]^{1 / 4}$. (This is sometimes called the L^{4}-norm on \mathbb{R}^{2}.) Let $C:=(1,2) \in \mathbb{R}^{2}$ and let $D:=(3,5) \in \mathbb{R}^{2}$. Let

$$
\begin{aligned}
S & :=\left\{A \in \mathbb{R}^{2} \mid N(A-C)=1\right\} \\
T & :=\left\{B \in \mathbb{R}^{2} \mid N(B-D)=2\right\}
\end{aligned}
$$

(These are two L^{4}-spheres in \mathbb{R}^{2}.) Minimize $N(A-B)$ subject to the constraints $A \in S$ and $B \in T$. (That is, compute how close the one L^{4}-sphere gets to the other.)

42-1. Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $p(x)=\left[e^{-x^{2} / 2}\right] /[\sqrt{2 \pi}]$. Let X and Y be independent random variables. Assume that X and Y are both standard normal, i.e., that both X and Y have probability density function p. Compute the probability that $X<9 Y$.

46-1. TRUE OR FALSE: For any cyclic group G, for any homomorphism $f: G \rightarrow G$, there exists an integer n such that, for all $x \in G$, we have $f(x)=x^{n}$.

46-2. TRUE OR FALSE: For any Abelian group G, for any homomorphism $f: G \rightarrow G$, there exists an integer n such that, for all $x \in G$, we have $f(x)=x^{n}$.

49-1. Up to isomorphism, how many additive Abelian groups are there of order 12 ?

49-2. Up to isomorphism, how many additive Abelian groups G of order 12 have the property that, for all $x \in G, x+x+x+x+x+x=0$?

49-3. Up to isomorphism, how many additive Abelian groups are there of order 24 ?

49-4. Up to isomorphism, how many additive Abelian groups G of order 24 have the property that, for all $x \in G, x+x+x+x+x=0$?

49-5. Up to isomorphism, how many additive Abelian groups G of order 24 have the property that, for all $x \in G, x+x+x+x=0$?

59-1. Let f be an analytic function of a complex variable $z=x+i y$ given by

$$
f(z)=(3 x+5 y)+i \cdot(g(x, y))
$$

where $g(x, y)$ is a real-valued function of the real variables x and y. If $g(0,0)=1$, then $g(7,3)=$

