
SOLUTIONS OF VARIATIONS, PRACTICE TEST 1

1-1. Let C be the part of the graph of y = ln(cosx) between x = 0 and

x = π/4. Find the length of C.

Solution: We parametrize the curve C by x = t and y = ln(cos t),

for 0 ≤ t ≤ π/4. The velocity is given by ẋ = 1 and ẏ = tan t. For

0 < t < π/4, the speed is given by [12 + (tan t)2]
1/2

= [sec2 t]
1/2

= sec t.

The length of C is then∫ π/4

0

sec t dt = [ln((tan t) + (sec t))]t:→π/4t:→0

=
[
ln
(

1 +
√

2
)]
− [ln(0 + 1)] = ln

(
1 +
√

2
)
. �

1-2. In xyz-space, let C be the curve with parametric equations x = 2t,

y = t2 and z = t3/3, 0 ≤ t ≤ 1. Find the length of C.

Solution: The velocity is given by ẋ = 2, ẏ = 2t and ż = t2. The speed

is given by [22 + (2t)2 + (t2)2]
1/2

= [4 + 4t2 + t4]
1/2

= 2+t2. The length

of C is then

∫ 1

0

(2 + t2) dt =

[
2t+

t3

3

]t:→1

t:→0

= 2 +
1

3
=

7

3
. �

2-1. Give an equation of the line tangent to the graph of y = 5x+sinx

at x = π.

Solution: The slope is

[(d/dx)(5x+ sinx)]x:→π = [5 + cosx]x:→π = 5 + (−1) = 4.

The y-coordinate of the point of tangency is

[5x+ sinx]x:→π = 5π + 0 = 5π.

so the point of tangency is (π, 5π). An equation of the line is therefore

y − 5π = 4(x− π), or, equivalently, y = 4x+ π. �
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3-1. If V is a 3-dimensional subspace of R7 and W is a 5-dimensional

subspace of R7, what are the possible dimensions of V ∩W?

Solution: The minimum possible dimension of V +W is

max{dimV, dimW} = max{3, 5} = 5.

The maximum possible dimension of V +W is

min{ (dimV ) + (dimW ) , dimR7 } = min{3 + 5, 7} = 7.

So the set of possible dimensions of V +W is {5, 6, 7}. As

(dimV ) + (dimW ) = (dim (V +W )) + (dim (V ∩W )),

we see that 8 = 3 + 5 = (dim (V +W )) + (dim (V ∩W )), so

dim (V ∩W ) = 8 − (dim (V +W )).

Then the set of possible dimensions of V ∩W is

{ 8− 5 , 8− 6 , 8− 7 } = {3, 2, 1}. �

4-1. Let k be the number of real solutions of the equation 7−x5−x = 0

in the interval [0, 1], and let n be the number of real solutions that are

not in [0, 1]. Which of the following is true?

(A) k = 0 and n = 1

(B) k = 1 and n = 0

(C) k = n = 1

(D) k > 1

(E) n > 1

Solution: Since [7− x5 − x]x:→−1000 > 0 and [7− x5 − x]x:→1000 < 0, it

follows that the equation 7− x5− x = 0 has at least one solution in R,

so k + n ≥ 1. For all x ∈ R, [d/dx][7 − x5 − x] = −5x4 − 1 < 0, so

7− x5 − x is decreasing in x. Thus the equation 7− x5 − x = 0 has at

most solution in R, so k + n ≤ 1. Then k + n = 1.

Since [7− x5− x]x:→0 = 7 > 0, since [7− x5− x]x:→1 = 7− 1− 1 > 0

and since 7 − x5 − x is decreasing in x, it follows that the equation

7− x5 − x = 0 has no solutions in [0, 1]. Then k = 0.

Then n = (k + n)− k = 1− 0 = 1. Answer: (A) �
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5-1. Suppose b is a real number and f(x) = 4x2 + bx + 9 defines a

function on the real line, part of which is graphed above. Compute

f(5).

Solution: We have f ′(x) = 8x + b, so f ′(2) = 16 + b. From the graph,

f ′(2) = 0. Thus 16 + b = 0, so b = −16. Then f(x) = 4x2 − 16x + 9,

so f(5) = 4 · 52 − 16 · 5 + 9 = 100− 80 + 9 = 29. �

6-1. For what values of b does the curve 4x2 +(y−b)2 = 1 have exactly

one intersection point with y = 2x?

Solution: Let b ∈ R. For all x, y ∈ R,

[ ( 4x2 + (y − b)2 = 1 ) and ( y = 2x ) ] iff

[ ( y2 + (y − b)2 = 1 ) and ( y = 2x ) ] iff

[ ( y2 + y2 − 2yb+ b2 = 1 ) and ( x = y/2 ) ] iff

[ ( 2y2 − 2by + (b2 − 1) = 0 ) and ( x = y/2 ) ] iff

The expression 2y2− 2by+ (b2− 1) is a quadratic in y with coefficients

2, −2b, b2 − 1.

The discriminant of this quadratic is

(−2b)2 − 4 · 2 · (b2 − 1) = 4b2 − 8(b2 − 1) = −4b2 + 8.

Thus

[ there is one intersection point ] iff

[ −4b2 + 8 = 0 ] iff [ b2 = 2 ] iff

[ ( b =
√

2 ) or ( b = −
√

2 ) ]. �
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7-1. Compute

∫ 3

−3
e|x+1| dx.

Solution: The integral is equal to[∫ −1
−3

e|x+1| dx

]
+

[∫ 3

−1
e|x+1| dx

]
=

[∫ −1
−3

e−x−1 dx

]
+

[∫ 3

−1
ex+1 dx

]
=

[
−e−x−1

]x:→−1
x:→−3 +

[
ex+1

]x:→3

x:→−1

=
[
−e0 −

(
−e2

)]
+
[
e4 − e0

]
= −1 + e2 + e4 − 1 = e4 + e2 − 2. �

8-1. Let R be a rectangle whose vertices are (x, y), (−x, y), (−x, 0) and

(x, 0). Assume that 0 < x < 3, that 0 < y < 3 and that x4 + y4 = 1.

What is the maximum possible area inside such a rectangle R?

Solution: The rectangle has width 2x and has height y. Therefore,

since y = (1− x4)1/4, the area is 2xy = 2x(1− x4)1/4. We have

f ′(x) =
[
2(1− x4)1/4

]
+
[
2x(1/4)(1− x4)−3/4(−4x3)

]
=

[
2(1− x4)

(1− x4)3/4

]
+

[
2x(1/4)(−4x3)

(1− x4)3/4

]
=

[2(1− x4)] + [−2x4]

(1− x4)3/4
=

2(1− 2x4)

(1− x4)3/4
.

Then f ′(x) > 0 on 0 < x < 2−1/4. Also, f ′(x) < 0 on 2−1/4 < x < 1.

Thus f(x) is increasing on 0 < x < 2−1/4. Also, f(x) is decreasing

on 2−1/4 < x < 1. Then f(x) attains a global maximum at x = 2−1/4.

So, since f(x) = 2x(1− x4)1/4, the maximum value is

f
(
2−1/4

)
= 2 · 2−1/4 ·

(
1− 2−1

)1/4
= 2 · 2−1/4 · (1/2)1/4

= 21−(1/4)−(1/4) = 21/2 =
√

2. �
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9-1. Define

J :=

∫ 2

1

√
256− x4 dx

K :=

∫ 2

1

√
256 + x4 dx

L :=

∫ 2

1

√
256− x8 dx

Order 16, J , K, L from smallest to largest.

Solution: On 1 < x < 2, we have:

−256 < −x8 < −x4 < 0 < x4,

which implies 0 < 256− x8 < 256− x4 < 256 < 256 + x4,

which implies
√

256− x8 <
√

256− x4 < 16 <
√

256 + x4.

Thus L < J < 16 < K. �

10-1. Let g be a function whose derivative g′ is continuous and has

the graph shown above. On 0 < x < 5, what are the maximal open

intervals of concavity for g(x)?

Solution: Since g′(x) is decreasing on 0 < x < 4, it follows that g(x) is

concave down on 0 < x < 4. Since g′(x) is increasing on 4 < x < 5, it

follows that g′(x) is concave up on 4 < x < 5.
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It follows, on 0 < x < 5, that the only maximal open interval of

concave down for g(x) is 0 < x < 4. It also follows, on 0 < x < 5, that

the only maximal open interval of concave up for g(x) is 4 < x < 5. �

11-1. Approximate [3.59]
[
(10)5/2

]
.

Solution: We have:[√
3.59

] [
(10)5/2

]
=

[√
3.59

] [√
(10)5

]
=

[√
3.59

] [√
10
] [√

(10)4
]

=
[√

(3.59)(10)
] [

102
]

=
[√

35.9
]

[100]

≈<
[√

36
]

[100]

= [6] [100]

= 600 �

NOTE: Two two decimals, the exact answer is 599.17.

12-1. Let A be a 5× 5 matrix such that the entries in each row add up

to 10. Let B := 6A3 + 4A2 + 7A. True or False: The entries any row

of B will add up to 6470.

Solution: True. Proof: Let v be the row vector
[

1 1 1 1 1
]
. Let

w := vt be the transpose of v, so that w is a 5× 1 column vector, with

all entries equal to 1. Since sum of the entries in each row of A is 10,

we get Aw = 10w. Then A2w = 100w and A3w = 1000w. Then

Bw = 6A3w + 4A2w + 7Aw = 6000w + 400w + 70w = 6470w.

Then the entries in any row of B add up to 6470. �
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13-1. We have available 75 square feet of material, and wish to use it to

form the sides and bottom of an open-topped rectangular box. What

is the maximum volume of the box?

Solution: Let x and y be the dimensions of the base of an open-topped

rectangular box constructed from 75 square feet of material. Let h

denote the height of the box. The total of the surface areas of the

bottom and the four sides is xy+xh+yh+xh+yh, or xy+(2x+2y)h.

Then xy + (2x + 2y)h = 75. Then h = (75 − xy)/(2x + 2y). Also,

because x, y, h > 0, it follows that xy < 75. Let

D := { (x, y) ∈ R2 | x, y > 0, xy < 75 }.

For all (x, y) ∈ D, let V (x, y) denote the volume of the box. Then

V (x, y) = xyh = xy(75−xy)/(2x+2y). We wish to maximize V on D.

For all s ∈ (0,∞), let Ds := (0,
√

75/s ) and define Vs : Ds → R by

Vs(x) = V (x, sx). Then, because D =
⋃
s>0

{(x, sx) |x ∈ Ds}, it follows

that V (D) =
⋃
s>0

{V (x, sx) |x ∈ Ds} =
⋃
s>0

[Vs(Ds)].

We will show, for all s > 0, that, on Ds, the function Vs attains

its global maximum at 5/
√
s. We will also show that the function

s 7→ Vs(5/
√
s) : (0,∞) → R attains its global maximum at s = 1. It

will then follow that the global maximum value of V is V1(5/
√

1).

We first show that the function s 7→ Vs(5/
√
s) : (0,∞)→ R attains

its global maximum at 1, as follows: For all s > 0, we have

Vs(5/
√
s) = V (5/

√
s, s · (5/

√
s)) = V (5/

√
s, 5 ·

√
s)

=
(5/
√
s)(5 ·

√
s)(75− (5/

√
s)(5 ·

√
s))

2 · (5/
√
s) + 2 · (5 ·

√
s)

=
25 · (75− 25)

(10/
√
s) + 10 ·

√
s

=
25 · 50

10 · [(1/
√
s) +

√
s]
·
√
s√
s

= 125

√
s

1 + s
.

Differentiating with respect to s, we find, on s > 0, that

d

ds
[V (5/

√
s)] = 125

(1 + s)((1/2)s−1/2)−
√
s

(1 + s)2
· 2
√
s

2
√
s

=
125

2

(1 + s)− 2s

(1 + s)2
√
s

=
125

2

1− s
(1 + s)2

√
s
.
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Thus Vs(5/
√
s) is increasing on 0 < s ≤ 1 and decreasing on 1 ≤ s.

It follows that the function s 7→ Vs(5/
√
s) : (0,∞) → R attains its

global maximum at 1. It remains to show, for all s > 0, that, on Ds,

the function Vs attains its global maximum at 5/
√
s. Given s > 0. We

wish show, on Ds, that Vs attains its global maximum at 5/
√
s.

By definition, for all x ∈ Ds, we have

Vs(x) = V (x, sx) =
x · (sx) · (75− x · (sx))

2x+ 2 · (sx)
,

so

Vs(x) =
sx2(75− sx2)

(2 + 2s)x
=

[
s

2 + 2s

] [
x2(75− sx2)

x

]
,

so Vs(x) =

[
s

2 + 2s

]
[75x− sx3]. Differentiating with respect to x, we

find, on 0 < x <
√

75/s, that

d

dx
[Vs(x)] =

[
s

2 + 2s

]
[75− 3sx2] =

[
3s

2 + 2s

]
[25− sx2].

Thus Vs(x) is increasing on the interval 0 < x < 5/
√
s and Vs(x) is

decreasing on the interval 5/
√
s < x <

√
75/s. Thus Vs attains its

global maximum at 5/
√
s.

Thus the global maximum value of V is V1(5/
√

1), which is equal to

V1(5) = V (5, 5) =
5 · 5 · (75− 5 · 5)

2 · 5 + 2 · 5
=

25 · 50

20
=

125

2
. �

NOTE: To simplify the problem we could specify, in advance, that

the rectangular box is to have a square base. That would result in a

problem in one-variable calculus, instead of multi-variable calculus.

14-1. What is the hundreds digit in the standard decimal expansion of

the number 726?

Solution: In this solution, congruences (≡) are all mod 100. We have

72 = 7 · 7 = 49, so

73 = 7 · 72 ≡ 7 · 49 = 343 ≡ 43, so

74 = 7 · 73 ≡ 7 · 43 = 301 ≡ 1.

Then 726 = 72 · (74)6 ≡ 49 · 16 = 49. Thus the hundreds digit of 725 is

the same as that of 49, namely 4. �
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15-1. True or False: Let f be a continuous real-valued function defined

on the open interval (−2, 3). Then f is bounded.

Solution: False. Counterexample: Let f : (−2, 3) → R be defined by

f(x) = 1/(x+ 2). Then lim
x→−2+

(f(x)) =∞, so f is not bounded above,

so f is not bounded. �

15-2. True or False: Let f be a continuous real-valued function defined

on the closed interval [−2, 3]. There exists c ∈ (−2, 3) such that f is

differentiable at c and such that 5 · [f ′(c)] = [f(3)]− [f(−2)].

Solution: False. Counterexample: Let f : [−2, 3] → R be defined by

f(x) = |x|. Then [f(3)]− [f(−2)] = |3| − | − 2| = 1.

On the other hand,

• for all c ∈ (−2, 0), 5 · [f ′(c)] = 5 · [−1] = −5,

• f is not differentiable at 0, and

• for all c ∈ (0, 3), 5 · [f ′(c)] = 5 · 1 = 5.

Thus there is no c ∈ (−2, 3) such that f is differentiable at c and such

that 5 · [f ′(c)] = 1. �

15-3. True or False: Let f be a continuous real-valued function defined

on the closed interval [−2, 3]. Assume that f is differentiable at 0 and

that f ′(0) = 0. Then f has a local extremum at 0.

Solution: False. Counterexample: Let f : [−2, 3] → R be defined by

f(x) = x3. Then f is differentiable at 0 and f ′(0) = 3 · 02 = 0, but f is

increasing on [−2, 3], so f has no local extremum at 0. �

15-4. True or False: Let f be a continuous real-valued function defined

on the closed interval [−2, 3]. Assume that all of the following are true:

• f is twice-differentiable at 0,

• f ′(0) = 0 and

• f ′′(0) 6= 0.

Then f has a local extremum at 0.

Solution: True. Proof: By the Second Derivative Test, if f ′′(0) > 0,

then f has a local minimum at 0. Also, by the Second Derivative Test,

if f ′′(0) < 0, then f has a local maximum at 0. In either case, f has a

local extremum at 0. �
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16-1. What is the volume of the solid formed by revolving, about the

x-axis, the region in the first quadrant of the xy-plane bounded by: the

coordinate axes and the graph of the equation y =

√
x

1 + x4
?

Solution: By the disk method, with u = x2, du = 2x dx, the volume is∫ ∞
0

π

[√
x

1 + x4

]2
dx = π

∫ ∞
0

x dx

1 + x4

= π

∫ ∞
0

du/2

1 + u2

=
π

2
[arctanu]u:→∞u:→0

=
π

2

[π
2
− 0
]

=
π2

4
. �

16-2. What is the volume of the solid formed by revolving, about the

y-axis, the region in the first quadrant of the xy-plane bounded by: the

coordinate axes and the graph of the equation y =
x2

(1 + x4)3/2
?

Solution: By the shell method, with u = 1 + x4, du = 3x2 dx, the

volume is∫ ∞
0

2πx

[
x2

(1 + x4)3/2

]
dx = 2π

∫ ∞
0

x3 dx

(1 + x4)3/2

= 2π

∫ ∞
1

du/3

u3/2

=
2π

3

∫ ∞
1

u−3/2 du

=
2π

3

[
u−1/2

−1/2

]u:→∞
u:→1

=
2π

3

[
0−

(
1

−1/2

)]
=

4π

3
. �
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17-1. How many real roots does the polynomial x5 − 5x+ 3 have?

Solution: Define f : R→ R by f(x) = x5 − 5x + 3. We want to know

how many real roots f has.

For all x ∈ R, we have f ′(x) = 5x4 − 5 = 5(x − 1)(x + 1)(x2 + 1).

Thus f ′ is positive on (1,∞), is negative on (−1, 1) and is positive

on (−∞,−1). Thus, by the Increasing Test and the Decreasing Test,

f is increasing on (1,∞), is decreasing on (−1, 1) and is increasing on

(−∞,−1). Thus f has at most one root on (1,∞), has at most one

root on (−1, 1) and has at most one root on (−∞,−1).

We have lim
x→−∞

[f(x)] = lim
x→−∞

x5 = −∞ and f(−1) = −1+5+3 > 0

and f(1) = 1− 5 + 3 < 0 and lim
x→∞

[f(x)] = lim
x→∞

x5 =∞.

Because lim
x→−∞

[f(x)] = −∞ and f(−1) > 0, it follows, from the

Intermediate Value Theorem, that f has at least one root on (−∞,−1).

So, since f has at most one root on (−∞,−1), we conclude that f has

exactly one root on (−∞,−1).

Because f(−1) > 0 and f(1) < 0, it follows, from the Intermediate

Value Theorem, that f has at least one root on (−1, 1). So, since f

has at most one root on (−1, 1), we conclude that f has exactly one

root on (−1, 1).

Because f(1) = 1−5+3 < 0 and lim
x→∞

[f(x)] =∞, it follows, from the

Intermediate Value Theorem, that f has at least one root on (1,∞).

So, since f has at most one root on (1,∞), we conclude that f has

exactly one root on (1,∞).

Because f has exactly one root on (−∞,−1) and on (−1, 1) and on

(1,∞), and because f(−1) 6= 0 and f(1) 6= 0, we conclude that f has

exactly three real roots. �
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18-1. Let V be the real vector space of all real homogeneous polynomi-

als in x and y of degree 7 (together with the zero polynomial). Let W

be the real vector space of all real polynomials in x of degree ≤ 3 (to-

gether with the zero polynomial). If T is a linear transformation from

V onto W , what is the dimension of the subspace {v ∈ V |T (v) = 0}
of V ?

Solution: By definition of kernel, we have

ker[T ] = {v ∈ V |T (v) = 0}.

We therefore wish to calculate dim (ker[T ]). A basis for V is

{x7, x6y, x5y2, x4y3, x3y4, x2y5, xy6, y7 },

so dim (V ) = 8. A basis for W is {1, x, x2, x3}, so dim (W ) = 4. Then

• dim (dom [T ]) = dimV = 8 and

• dim (im [T ]) = dimW = 4.

So, since

dim (ker[T ]) + dim (im [T ]) = dim (dom [T ]),

we conclude that dim (ker[T ]) + 4 = 8, and so dim (ker[T ]) = 4. �
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18-2. Let V be the real vector space of all real polynomials in x and y

of degree ≤ 7 (together with the zero polynomial). Let W be the real

vector space of all real polynomials in x of degree ≤ 3 (together with

the zero polynomial). If T is a linear transformation from V onto W ,

what is the dimension of the subspace {v ∈ V |T (v) = 0} of V ?

Solution: By definition of kernel, we have

ker[T ] = {v ∈ V |T (v) = 0}.

We therefore wish to calculate dim (ker[T ]). A basis for V is

{ x7, x6y, x5y2, x4y3, x3y4, x2y5, xy6, y7,

x6, x5y, x4y2, x3y3, x2y4, xy5, y6,

x5, x4y, x3y2, x2y3, xy4, y5,

x4, x3y, x2y2, xy3, y4,

x3, x2y, xy2, y3,

x2, xy, y2,

x, y,

1 },

so dim (V ) = 8+7+· · ·+1 = 8·9/2 = 36. A basis for W is {1, x, x2, x3},
so dim (W ) = 4. Then

• dim (dom [T ]) = dimV = 36 and

• dim (im [T ]) = dimW = 4.

So, since

dim (ker[T ]) + dim (im [T ]) = dim (dom [T ]),

we conclude that dim (ker[T ]) + 4 = 36, and so dim (ker[T ]) = 32. �
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19-1. True or False: Let f : R → R be a differentiable function such

that, for all x ∈ R, we have −x2 ≤ f(x) ≤ x2. Then, for all x ∈ R, we

have −2x ≤ f ′(x) ≤ 2x.

Solution: False. Counterexample: Define f : R→ R by

f(x) =

{
x2 · (sin(1/x)), if x 6= 0;

0, if x = 0.

Then, for all x ∈ R, we have −x2 ≤ f(x) ≤ x2. Also, f is differentiable,

and, for all x ∈ R\{0}, we have

f ′(x) = 2x · (sin(1/x)) + x2 · (cos(1/x)) · (−1/x2)

= 2x · (sin(1/x))− (cos(1/x)).

In particular, f ′(1/π) = (2/π) ·0− (−1) = 1 > 2/π. So it is NOT true,

for all x ∈ R, that f ′(x) ≤ 2x. �

19-2. True or False: Let f : R → R be a differentiable function such

that, for all x ∈ R, we have −x2 ≤ f(x) ≤ x2. Then f ′(0) = 0.

Solution: True. Proof: We have −02 ≤ f(0) ≤ 02, so f(0) = 0. Then,

for all h ∈ R\{0}, we have

[f(0 + h)]− [f(0)]

h
=

f(h)

h
.

We therefore wish to show that lim
h→0

[
f(h)

h

]
= 0. It therefore suffices

to show both that lim
h→0+

[
f(h)

h

]
= 0 and that lim

h→0−

[
f(h)

h

]
= 0.

For all h > 0, we have

−h =
−h2

h
≤ f(h)

h
≤ h2

h
= h.

It follows, from the Squeeze Theorem, that lim
h→0+

[
f(h)

h

]
= 0. It re-

mains to show that lim
h→0−

[
f(h)

h

]
= 0.

For all h < 0, we have

−h =
−h2

h
≥ f(h)

h
≥ h2

h
= h.
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It follows, from the Squeeze Theorem, that lim
h→0−

[
f(h)

h

]
= 0. �

19-3. True or False: Let f : R → R be a differentiable function such

that f ′(1) = 5 and f ′(3) = 9. Then ∃c ∈ (1, 3) such that f ′(c) = 7.

Solution: For every h ∈ R\{0}, define gh : R→ R by

gh(x) =
[f(x+ h)]− [f(x)]

h
.

We have

lim
h→0

[gh(1)] = f ′(1) = 5 and lim
h→0

[g−h(3)] = f ′(3) = 9.

Choose b > 0 so small that gb(1) < 6 and g−b(3) > 8. Then

gb(3− b) =
[f((3− b) + b)]− [f(3− b)]

b

=
[f(3)]− [f(3− b)]

b
=

[f(3− b)]− [f(3)]

−b

=
[f(3 + (−b))]− [f(3)]

−b
= g−b(3) > 8.

Since gb(1) < 6, since gb(3− b) > 8 and since gb : R→ R is continuous,

by the Intermediate Value Theorem, we choose a ∈ (1, 3− b) such that

gb(a) = 7. Then
[f(a+ b)]− [f(a)]

b
= gb(a) = 7. Then, by the Mean

Value Theorem, we choose c ∈ (a, a+b) such that f ′(c) = 7. It remains

to show that c ∈ (1, 3).

Since a ∈ (1, 3− b), it follows that 1 ≤ a and that a + b ≤ 3. Then

c ∈ (a, a+ b) ⊆ (1, 3), as desired. �

NOTE: It is a general fact that if a real-valued function is differen-

tiable on R, then the function satisfies the Intermediate Value The-

orem. Problem 19-3 simply asks whether this is true in a particular

case, using the interval [1, 3]. The solution given above is based on a

proof of that general fact.
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19-4. True or False: Let f : R→ R be a differentiable function. Then

there exists c ∈ R such that f ′ is continuous at c.

NOTE: Let’s talk about measure theory . . .

In measure theory, one thinks of a property as holding “almost ev-

erywhere” (or, sometimes, “generically”) if it holds except on a set of

measure zero. An old joke has it that doing measure theory is torture

because you have to say “almost everywhere” almost everywhere.

A set is null if it has measure zero. A set is conull if its complement

is null. Then a generic property is one that holds on a conull set.

Now we move from measure theory to topology . . .

For any A,B ⊆ R, “B is dense in A” means that A is a subset

of the closure in R of B. A subset of R is somewhere dense, or

somewhere dense in R, if it is dense in a nonempty open subset

of R. So, for example, Q ∩ (0, 1) is not dense in R, but it is dense

in (0, 1), and, consequently, is somewhere dense in R. A subset of R is

• nowhere dense if it is not somewhere dense,

• meager if it is a countable union of nowhere dense sets and

• comeager if its complement in R is meager.

Warning: In older books, instead of “meager” you’ll see “of first cate-

gory”, and, instead of “comeager”, you’ll see “residual”.

Next, let’s compare topology and measure theory . . .

We use Lebesgue measure on R, and so a subset of R is null iff it has

Lebesgue measure zero. While

• meager does not imply null, and

• null does not imply meager,

it’s work to actually find a meager set that isn’t null, or a null set that

isn’t meager. More importantly, the intuition for meager sets is about

the same as for null sets, and, in some sense, “meager” is a topological

analogue of “null”. So, for example, topologists typically say that a

property is “generic” if it happens on a comeager set.

Finally, let’s talk about Problem 19-4 . . .

If a real-valued function is differentiable on R, then its derivative is a

pointwise limit of its difference quotients, each of which is continuous.

While a limit of continuous functions need not be continuous on all

of R, it is a general fact that it must be “generically continuous”, i.e.,

continuous on a comeager subset of R. By the Baire Category Theorem,
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any comeager subset of R is nonempty, and it follows that the answer

to Problem 19-4 is “true”. The solution given below simply follows a

detailed proof of that general fact, where g := f ′ is the pointwise limit

of continuous difference quotients g1, g2, . . . of f .

Solution: True. Proof: Let g := f ′. For all h > 0, let γh : R → R be

defined by γh(x) =
[f(x+ h)]− [f(x)]

h
. Then, for all x ∈ R, we have

γh(x) → g(x), as h → 0. Since f is differentiable, f is continuous.

Then, for all h > 0, the function γh is continuous. For all integers

j ≥ 1, let gj := γ1/j; then gj is continuous. Also, for all x ∈ R, we have

gj(x)→ g(x), as j →∞.

Let D be the set of x ∈ R such that g is discontinuous at x. We

wish to show that D 6= R. By the Baire Category Theorem, it suffices

to show that D is meager. Assume that D is nonmeager. We aim for

a contradiction.

For all ε > 0, let Dε denote the set of all x ∈ R such that

• for all δ > 0, g((x− δ, x+ δ)) 6⊆ ([g(x)]− ε, [g(x)] + ε).

Then D = D1∪D1/2∪D1/3∪· · · . Fix an integer m ≥ 1 such that D1/m

is nonmeager. Let ε := 1/m. Then Dε is nonmeager.

We define η := ε/5 and S := {`η | ` ∈ Z}. For all s ∈ S, we define

Is := [s− η, s+ η]. Then
⋃
s∈S

Is = R, so
⋃
s∈S

[
g−1(Is)

]
= g−1(R). Then⋃

s∈S

[(g−1(Is)) ∩Dε] = [g−1(R)] ∩Dε = R ∩Dε = Dε. As S is countable

and Dε is nonmeager, fix s ∈ S such that (g−1(Is))∩Dε is nonmeager.

Let A := (g−1(Is)) ∩Dε. Then A is nonmeager.

For all integers k ≥ 1, let Lk be the set of all x ∈ R such that

• for all integers j ≥ k, | [gj(x)] − [g(x)] | < η.

Recall, for all x ∈ R, that gj(x) → g(x), as j → ∞. It follows that
∞⋃
k=1

Lk = R. Then
∞⋃
k=1

[Lk ∩ A] = R ∩ A = A. Choose an integer k ≥ 1

such that Lk ∩ A is nonmeager.

For any function φ : R → R, for any Ω ⊆ R, for any ρ ≥ 0, let’s

agree that “φ is ρ-constant on Ω” means:

• for all µ, ν ∈ Ω, | (φ(µ)) − (φ(ν)) | ≤ ρ.

Because Is = [s − η, s + η], we see that g is (2η)-constant on g−1(Is).

Since A = (g−1(Is)) ∩ Dε, we get A ⊆ Dε. Then g is (2η)-constant
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on A. Then, by construction of Lk, we see, for all integers j ≥ k, that

gj is (4η)-constant on Lk ∩ A.

Every nowhere dense set is meager, while Lk∩A is nonmeager. Thus

Lk ∩A somewhere dense. Let C denote the closure in R of Lk ∩A. Let

U be a open subset of R s.t. ∅ 6= U ⊆ C. For all integers j ≥ k, gj is

continuous and (4η)-constant on Lk ∩ A, and so gj is (4η)-constant

on C, and so gj is (4η)-constant on U . So, as gj → g pointwise, as

j →∞, we conclude that g is (4η)-constant on U . On the other hand,

since 4η < ε, by definition of Dε, we see that g is not (4η)-constant on

any open neighborhood of any point of Dε. Then U ∩Dε = ∅. So, since

Lk ∩A ⊆ A = (g−1(Is))∩Dε ⊆ Dε, we conclude that U ∩ (Lk ∩A) = ∅.
That is, Lk ∩ A ⊆ R\U . So, since R\U is closed in R, it follows that

C ⊆ R\U , and so U ∩C = ∅. Because U ⊆ C, we see that U = U ∩C.

Then ∅ 6= U = U ∩ C = ∅, contradiction. �

20-1. Let f be the function defined on the real line by

f(x) =

{
x2, if x is rational;

2x, if x is irrational.

Compute the set of points of discontinuity of f .

Solution: Because the rationals and irrationals are both dense in R, we

see, for all c > 2, that lim inf
x→c

[f(x)] = 2c and that lim sup
x→c

[f(x)] = c2,

and, therefore, that f is not continuous at c. Because the ratio-

nals and irrationals are both dense in R, we see, for all c < 0, that

lim inf
x→c

[f(x)] = 2c and that lim sup
x→c

[f(x)] = c2, and, therefore, that f

is not continuous at c. Because the rationals and irrationals are both

dense in R, we see, for all c ∈ (0, 2), that lim inf
x→c

[f(x)] = c2 and that

lim sup
x→c

[f(x)] = 2c, and, therefore, that f is not continuous at c.

We have lim inf
x→0

[f(x)] ≥ 0 and lim sup
x→0

[f(x)] ≤ 0 and f(0) = 0, and

so f is continuous at 0. Finally, lim inf
x→2

[f(x)] ≥ 4 and lim sup
x→2

[f(x)] ≤ 4

and f(2) = 4, and so f is continuous at 2.

Thus the set of points of discontinuity of f is R\{0, 2}. �
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21-1. Let p := 7919, which is a prime number. Let Q := {p, 2p, 3p, . . .}
be the set of multiples of p. Let K := {0, 1, . . . , p} denote the set of

integers from 0 to p. For all k ∈ K, let Cp
k be the binomial coefficient

“p choose k”. Let S := {k ∈ K |Cp
1 , . . . , C

p
k ∈ Q}. So, for example,

because Cp
1 = p ∈ Q and Cp

2 = [(p−1)/2]p = 3959p ∈ Q, we get 2 ∈ S.

Compute the maximum element of S.

Solution: Claim: ∀k ∈ {1, . . . , p− 1}, we have Cp
k ∈ Q. Proof of claim:

Given k ∈ {1, . . . , p}. Let c := Cp
k . We wish to show that c ∈ Q.

Let ` := p−k. Then c = [p!]/[(k!)(`!)]. Since p is a prime, it follows,

for all integers m,n ≥ 1, that:

(∗) [mn ∈ Q]⇒ [(m ∈ Q) or (n ∈ Q)].

Taking the contrapositive, for any positive integers m and n, we have:

(∗∗) [(m /∈ Q) and (n /∈ Q)]⇒ [mn /∈ Q].

Since 1, . . . , k < p, it follows that 1, . . . , k /∈ Q. Repeatedly apply-

ing (∗∗), we see that (1)(2) · · · (k) /∈ Q, i.e., that k! /∈ Q. Since

1, . . . , ` < p, it follows that 1, . . . , ` /∈ Q. Repeatedly applying (∗∗), we

see that (1)(2) · · · (`) /∈ Q, i.e., that `! /∈ Q.

We have c(k!)(`!) = p! ∈ Q. Then either c ∈ Q or (k!)(`!) ∈ Q. Since

both k! /∈ Q and `! /∈ Q, it follows, from (∗∗), that (k!)(`!) /∈ Q. Then

c ∈ Q, as desired. End of proof of claim.

By the claim, Cp
1 , C

p
2 , . . . , C

p
p−1 ∈ Q. Then p− 1 ∈ S. On the other

hand, Cp
p = 1 /∈ Q, so p /∈ S. So, since S ⊆ K = {0, . . . , p}, it follows

that maxS = p− 1 = 7918. �

22-1. Let C(R) be the collection of all continuous functions from R
to R. Then C(R) is a real vector space with vector addition defined by

∀f, g ∈ C(R), ∀x ∈ R, (f + g)(x) = [f(x)] + [g(x)],

and with scalar multiplication defined by

∀f ∈ C(R), ∀r, x ∈ R, (rf)(x) = r · [f(x)].

Let S denote the set of f ∈ C(R) such that all of the following hold:

• f is twice differentiable,

• for all x ∈ R, f(x+ 2π) = f(x).

• f ′′ = −f .

True or False: S is a subspace of C(R).
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Solution: True. Proof: Let V denote the set of all φ ∈ C(R) such that

φ is twice differentiable. Then V is a subspace of C(R).

For all f ∈ C(R), let f+ ∈ C(R) be defined by f+(x) = f(x + 2π).

Define Γ : C(R) → C(R) by Γ(f) = f − f+. Then Γ is a linear map.

Then ker[Γ] is a subspace of C(R). Define ∆ : V → C(R) by Γ(f) =

f ′′ + f . Then ∆ is a linear map. Then ker[∆] is a subspace of V , and,

therefore, is a subspace of C(R). Then, because S = (ker[Γ])∩(ker[∆]),

we see that S is a subspace of C(R). �

23-1. True or False: There exists a real number b such that the line

y = 10x tangent to the curve y = bx2 + 10x + 1 at some point in the

xy-plane.

Solution: False. Proof: Let b ∈ R, and assume that the line y = 10x is

tangent to the curve y = bx2 + 10x+ 1. We aim for a contradiction.

Let x ∈ R be the first coordinate of the point of tangency. Then

10x = bx2 + 10x+ 1 and 10 = 2bx+ 10.

By the second equation, we see that bx = 0. By the first equation, we

see that x 6= 0. Since bx = 0 and x 6= 0, we get b = 0. Then the first

equation says 10x = 10x+ 1, and so 0 = 1, contradiction �

24-1. Let h be the function defined by h(x) =

∫ x2

0

e(x+t)
2

dt, for all

real numbers x. Compute h′(1).

Solution: Claim: For all x ∈ R, we have h(x) =

∫ x2+x

x

es
2

ds. Proof of

claim: Given x ∈ R. We wish to prove that h(x) =

∫ x2+x

x

es
2

ds.

Make the change of variables s = x+ t and ds = dt, in the definition

of h(x). This yields h(x) =

∫ x2+x

x

es
2

ds. End of proof of claim.

Define F : R→ R by F (x) =

∫ x

0

es
2

ds. By the claim, for all x ∈ R,

we have f(x) = [F (x2 + x)] − [F (x)]. Differentiating, for all x ∈ R,

we have f ′(x) = [F ′(x2 + x)][2x + 1] − [F ′(x)]. Evaluating this at

x :→ 1 yields f ′(1) = [F ′(2)][3]−[F ′(1)]. By the Fundamental Theorem

of Calculus, for all x ∈ R, F ′(x) = ex
2
. Then F ′(2) = e4 and F ′(1) = e.

Then f ′(1) = [F ′(2)][3]− [F ′(1)] = 3e4 − e. �
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25-1. Let {an}∞n=1 be defined recursively by a1 = 7 and

for all integers n ≥ 1, an+1 =

(
n

n+ 3

)
an.

Compute a25.

Solution: We have

a25 =

(
24

27

)
a24

=

(
24

27

)(
23

26

)
a23

=

(
24

27

)(
23

26

)(
22

25

)
a22

= · · ·

=

(
24

27

)(
23

26

)(
22

25

)
· · ·
(

1

4

)
a1

=
24!

(27!)/(3!)
=

(3)(2)(1)

(27)(26)(25)

=
1

(9)(13)(25)
=

1

2925
. �

26-1. Let f : R2 → R be defined by f(x, y) = 2x2 − 4xy + y4. Find all

the absolute extreme values of f , and where they occur.

Solution: For all x, y ∈ R,

f(x, y) = 2(x− y)2 + y4 − 2y2 = 2(x− y)2 + (y2 − 1)2 − 1,

so −1 is an absolute minimum value for f . Also, for all x, y ∈ R, we

have: [ f(x, y) = −1 ] iff [ (x−y = 0) and (y2−1 = 0) ]. Thus f attains

its absolute minimum value at, and only at, (1, 1) and (−1,−1).

Since lim
x→∞

[f(x, 0)] =∞, f has no absolute maximum value. �

27-1. Find the dimension of the solution space, in R4, of

3w + 4x − 2y − 3z = 1

2w + x − y = 2

− w + 7x − y − 9z = −7.
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Solution: Multiply the first equation by −3 and add to the last:

3w + 4x − 2y − 3z = 1

2w + x − y = 2

− 10w − 5x + 5y = −10.

The third equation is −5 times the second equation; we eliminate it:

3w + 4x − 2y − 3z = 1

2w + x − y = 2.

For any w, x ∈ R, there is a unique solution of this system, and all

solutions are obtained this way.

So the dimension of the solution space is 2. �

27-2. Find the dimension of the solution space, in R4, of

3w + 4x − 2y − 3z = 1

2w + 2x − y = 2

− w + 7x − y − 9z = −7.

Solution: Multiply the first equation by −3 and add to the last:

3w + 4x − 2y − 3z = 1

2w + 2x − y = 2

− 10w − 5x + 5y = −10.

Multiply the second equation by 5 and add to the last:

3w + 4x − 2y − 3z = 1

2w + 2x − y = 2

5x = 0.

Divide the last equation by 5:

3w + 4x − 2y − 3z = 1

2w + 2x − y = 2

x = 0.

Multiply the last equation by −4 and add to the first:

3w − 2y − 3z = 1

2w + 2x − y = 2

x = 0.
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Multiply the last equation by −2 and add to the second:

3w − 2y − 3z = 1

2w − y = 2

x = 0.

For any w ∈ R, there is a unique solution of this system, and all

solutions are obtained this way.

So the dimension of the solution space is 1. �

27-3. Find the solution space, in R4, of

3w + 4x − 2y − 3z = 1

2w + x − y = 2

− w + 7x − y − 9z = 5.

Solution: Multiply the first equation by −3 and add to the last:

3w + 4x − 2y − 3z = 1

2w + x − y = 2

− 10w − 5x + 5y = 2.

Multiply the second equation by 5 and add to the last:

3w + 4x − 2y − 3z = 1

2w + x − y = 2

0 = 12.

Because of the inconsistency of the last equation (0 = 12), we see that

the solution space is the empty set, ∅. �

28-1. Let T be a graph with 378 vertices. Assume T is a tree, which is

a connected graph with no cycles. How many edges does T have?

Solution: Let V be the set of vertices of T and let E be the set of edges

of T . We know that #V = 378, and we wish to compute #E.

An induction proof shows that any tree has one more vertex than it

has edges. Then #V = 1 + (#E).

Then #E = (#V )− 1 = 378− 1 = 377. �
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29-1. For all positive functions f and g of the real variable x, let ∼ be

a relation defined by

f ∼ g if and only if lim
x→∞

[
f(x)

g(x)

]
= 1.

True or False: Let f, g, φ, ψ be positive functions of x. Assume that

f ∼ g and that φ ∼ ψ. Then f + φ ∼ g + ψ.

Solution: True. Proof: Given ε > 0. We wish to show that there

exists M ∈ R such that, for all x > M , we have∣∣∣∣ [f(x)] + [φ(x)]

[g(x)] + [ψ(x)]
− 1

∣∣∣∣ < ε.

Choose L > 0 such that, for all x > A, we have

∣∣∣∣f(x)

g(x)
− 1

∣∣∣∣ < ε.

Choose Λ > 0 such that, for all x > Λ, we have

∣∣∣∣φ(x)

ψ(x)
− 1

∣∣∣∣ < ε.

Let M := max{L,Λ}. Given x > M . We wish to prove that∣∣∣∣ [f(x)] + [φ(x)]

[g(x)] + [ψ(x)]
− 1

∣∣∣∣ < ε.

Let s := f(x), t := g(x), σ := φ(x), τ := ψ(x). We wish to prove that∣∣∣∣s+ σ

t+ τ
− 1

∣∣∣∣ < ε.

Since x > M ≥ Λ, it follows that
∣∣∣σ
τ
− 1
∣∣∣ < ε, and so

1− ε <
σ

τ
< 1 + ε.

Multiplying by the positive number τ , we get (1− ε)τ < σ < (1 + ε)τ .

Since x > M ≥ L, it follows that
∣∣∣s
t
− 1
∣∣∣ < ε, and so

1− ε <
s

t
< 1 + ε.

Multiplying by the positive number t, we get (1 − ε)t < s < (1 + ε)t.

Adding this to (1− ε)τ < σ < (1 + ε)τ yields

(1− ε)(t+ τ) < s+ σ < (1 + ε)(t+ τ).

Dividing by the positive number t+ τ , we get

1− ε <
s+ σ

t+ τ
< 1 + ε,
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and so

∣∣∣∣s+ σ

t+ τ
− 1

∣∣∣∣ < ε, as desired. �

30-1. Let S and T be sets and assume that there exists a function

f : S → T such that f is onto T . True or False: There must exist a

function g : T → S such that g is one-to-one.

Solution: True. Proof: By the Axiom of Choice, for all y ∈ T , choose

xy ∈ S such that f(xy) = y. Define g : T → S by g(y) = xy. We wish

to show that g is one-to-one. Given t, τ ∈ T . Assume g(t) = g(τ). We

wish to prove that t = τ .

We have xt = g(t) = g(τ) = xτ , and so f(xt) = f(xτ ). So, since

f(xt) = t and f(xτ ) = τ , we get t = f(xt) = f(xτ ) = τ , as desired. �

30-2. Let S and T be sets. Assume that there does NOT exist a

function f : S → T such that f is one-to-one. True or False: There

must exist a function g : T → S such that g is one-to-one.

Solution: True. Proof: Let I denote the set of functions f : S0 → T

such that S0 ⊆ S and such that f is one-to-one. We define a partial

ordering ≤ on I by [ f ≤ g ] ⇔ [∃A ⊆ dom [g] s.t. g|A = f ]. Then

every ≤-chain has an upper bound, so, by Zorn, let f ∈ I be a maximal

element with respect to ≤.

Let S0 ⊆ S be the domain of f and let T0 be the image of f . By

assumption, S0 6= S. Then T0 = T ; otherwise, we could extend f ,

contradicting maximality of f . Then f is a bijection from S0 onto T .

Let g be the inverse of f . Then g is an bijection from T onto S0, so

g : T → S is one-to-one. �

31-1. True or False: There exists a solution y : R→ R to the differential

equation y′ = x4 + 2x2y2 + y4 with the property that, for every x ∈ R,

we have −1000 < y(x) < 1000.

Solution: False. Proof: Following the notation given in the prob-

lem, y and y(x) are used interchangeably. Also, y′ and y′(x) are

used interchangeably. Let y : R → R be a solution to the ODE

y′ = x4 + 2x2y2 + y4. We will show that there exists x ∈ R such

that y(x) ≥ 1000.

For all x ≥ 1, we have y′(x) = x4 + 2x2y2 + y4 ≥ x4 ≥ 1. So, by the

Mean Value Theorem, for all x ≥ 1, we have [y(x)] − [y(1)] ≥ x − 1.
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Let x := max{1, 1001 − [y(1)]}. Then [y(x)] − [y(1)] ≥ x − 1. Then

y(x) ≥ [y(1)] + x− 1 ≥ [y(1)] + 1001− [y(1)]− 1 = 1000. �

32-1. True or False: Let G be a group. Assume, for all a, b ∈ G, for all

integers n ≥ 1, that (ab)n = anbn. Then G is Abelian.

Solution: True. Proof: Given a, b ∈ G. We wish to show that ab = ba.

For all integers n ≥ 1, (ab)n = anbn. In particular, (ab)2 = a2b2.

Then abab = aabb, so a−1[abab]b−1 = a−1[aabb]b−1, so ba = ab. �

33-1. True or False: Let p and q be prime numbers, and let n be an

integer. Assume that p 6= q. Then there exist integers k and ` such

that
n

p2q
=

k

p2
+
`

q
.

Solution: True. Proof: By the Euclidean algorithm, choose a, b ∈ Z
such that ap2 + bq = 1. Let k := nb and let ` := na. We wish to prove

that
n

p2q
=

k

p2
+
`

q
. Equivalently, we wish to prove that n = kq + `p2.

We have n = n · 1 = n(ap2 + bq) = (na)p2 + (nb)q = `p2 + kq. �

33-2. True or False: Let p and q be prime numbers, and let n be an

integer. Assume that p 6= q. Then there exist integers r, s, t, u such that

0 ≤ s < p and 0 ≤ t < p and 0 ≤ u < q and
n

p2q
= r +

s

p
+

t

p2
+
u

q
.

Solution: True. Proof: By 33-1, choose integers k and ` such that

n

p2q
=

k

p2
+

`

q
.

By the Division Algorithm, choose integers a and t ∈ [0, p) such that

k = ap + t, then choose integers b and s ∈ [0, p) such that a = bp + s,

then choose integers c and u ∈ [0, q) such that ` = cq + u. We then

define r := b+ c. We wish to prove that
n

p2q
= r +

s

p
+

t

p2
+
u

q
.
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We have
n

p2q
=

k

p2
+
`

q
=
ap+ t

p2
+
cq + u

q
, and so

n

p2q
=

a

p
+

t

p2
+ c +

u

q

=
bp+ s

p
+

t

p2
+ c +

u

q

= b +
s

p
+

t

p2
+ c +

u

q

= r +
s

p
+

t

p2
+

u

q
. �

33-3. True or False: Let R[x] denote the ring of polynomials, with

real coefficients, in the indeterminate x. Let p, q ∈ R[x] be irreducible

polynomials, and let f ∈ R[x]. Assume that p 6= q. Then there exist

r, s, t, u ∈ R[x] such that deg[s] < deg[p] and deg[t] < deg[p] and

deg[u] < deg[q] and
f

p2q
= r +

s

p
+

t

p2
+
u

q
.

Solution: True. The proof is the same as for 33-2, except: We are using

“f” instead of “n”, and we must follow the Euclidean Algorithm and

the Division Algorithm in R[x], rather than in Z. �

NOTE: This is an example of a partial fractions decomposition, often

taught as a technique of integration in first year Calculus.

34-1. Define N : R2 → [0,∞) by N(x, y) = [x4 + y4]1/4. (This is

sometimes called the L4-norm on R2.) Let C := (1, 2) ∈ R2 and let

D := (3, 5) ∈ R2. Let

S := {A ∈ R2 |N(A− C) = 1}
T := {B ∈ R2 |N(B −D) = 2}

(These are two L4-spheres in R2.) Minimize N(A− B) subject to the

constraints A ∈ S and B ∈ T . (That is, compute how close the one

L4-sphere gets to the other.)

Solution: In this problem dist denotes L4-distance, so, for all P,Q ∈ R2,

we define dist(P,Q) := N(P −Q). The L4-triangle inequality asserts:

For all P,Q,R ∈ R2, dist(P,R) ≤ [dist(P,Q)] + [dist(Q,R)]. Also,

note: For all P,Q,R ∈ R2, if Q is on the line segment from P to R,

then dist(P,R) = [dist(P,Q)] + [dist(Q,R)]. (These facts hold for any
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norm on R2, and, in particular, for the L4-norm.) We define the length

of a line segment in R2 to be the L4-distance between its endpoints.

We define the length of a polygonal path in R2 to be the sum of the

lengths of its line segments.

Let L be the line segment from C to D. Let A be the point of

intersection of S and L. Let B be the point of intersection of T and L.

By the L4-triangle inequality (and mathematical induction), there is

no polygonal path from C to D whose total L4-length is < dist(C,D).

If ∃A1 ∈ S,B1 ∈ T s.t. dist(A1, B1) < dist(A,B), then, concatenating

• the line segment from C to A1 (which has length 1),

• the line segment from A1 to B1,

• the line segment from B1 to D (which has length 2),

we would arrive at a polygonal path from C to D whose total length

is < 1 + [dist(A,B)] + 2 = dist(C,D), which, as we just pointed out,

is impossible. Thus the minimal distance between any point on S and

any point on T is dist(A,B), and this is the number we seek. Because

A and B are points on L, we have

dist(A,B) = [length(L)] − [dist(C,A)] − [dist(D,B)].

We have C = (1, 2) and D = (3, 5), so the L4-length of L is

dist(C,D) = N(C −D) = [(1− 3)4 + (2− 5)4]1/4

= [(−2)4 + (−3)4]1/4 = [16 + 81]1/4 =
4
√

97.

The distance from C to A is the radius of S, which is 1. The distance

from D to B is the radius of T , which is 2.

Thus dist(A,B) = 4
√

97− 1− 2 = 4
√

97− 3. �

Alternate Solution: The gradient of (p− s)4 + (q− t)4 w.r.t. p, q, s, t is

( 4(p− s)3 , 4(q − t)3 , −4(p− s)3 , −4(q − t)3 ).

The gradients of (p−1)4+(q−2)4 and (s−3)4+(t−5)4, w.r.t. p, q, s, t are

( 4(p− 1)3 , 4(q − 2)3 , 0 , 0 ) and

( 0 , 0 , 4(s− 3)3 , 4(t− 5)3 )

Choose p, q, s, t so as to minimize

(p− s)4 + (q − t)4
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subject to

(p− 1)4 + (q − 2)4 = 1 and

(s− 3)4 + (t− 5)4 = 16

We wish to compute

4
√

(p− s)4 + (q − t)4.

By Lagrange Multipliers, choose λ1, µ1 ∈ R such that

( 4(p− s)3 , 4(q − t)3 , −4(p− s)3 , −4(q − t)3 ).

is equal to the λ1, µ1 linear combination of

( 4(p− 1)3 , 4(q − 2)3 , 0 , 0 ) and

( 0 , 0 , 4(s− 3)3 , 4(t− 5)3 )

Let λ := 3
√
λ1 and let µ := 3

√
µ1. Then

( p− s , q − t ) = λ · ( p− 1 , q − 2 ) and

( s− p , t− q ) = µ · ( s− 3 , t− 5 ).

Throughout this problem dist is L4-distance, so, for all V,W ∈ R2,

we define dist(V,W ) := N(V −W ). Let A := (p, q) and let B := (s, t).

Let C := (1, 2) and let D := (3, 5). Then A − B = λ(A − C) and

B−A = µ(B−D). Let L be the line in R2 through C and D. Because

(p− 1)4 + (q − 2)4 = 1 and

(s− 3)4 + (t− 5)4 = 16,

it follows that dist(A,C) = 1 and dist(B,D) = 2. Then

dist(C,D) = 4
√

(1− 3)4 + (2− 5)4 =
4
√

97

> 3 = [dist(A,C)] + [dist(B,D)],

Thus

dist(C,D) > dist(C,A) + dist(B,D).

On the other hand, by the L4-triangle inequality, we have

dist(C,D) ≤ dist(C,A) + dist(A,D).

Therefore A 6= B. Let L be the line through A and B.

Because A−B = λ(A−C), it follows that B = λC + (1− λ)A, and

so B is on the line in R3 through C and A. This line, which passes

through A and B, must be L. Then C ∈ L.
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Because B−A = µ(B−D), it follows that A = µD+ (1−µ)B, and

so A is on the line in R3 through D and B. This line, which passes

through A and B, must be L. Then D ∈ L.

Since C,D ∈ L, we conclude that L is the line through C and D. So,

since A ∈ L, choose v ∈ (0, 1) such that A = (1− v)C + vD. Similarly,

since B ∈ L, choose w ∈ (0, 1) such that B = wC + (1− w)D.

Then A− C = v(D − C) and B −D = w(C −D). That is,

(p− 1, q − 2) = v(−2,−3) and

(s− 3, t− 5) = w(2, 3).

Recall that

(p− 1)4 + (q − 2)4 = 1 and

(s− 3)4 + (t− 5)4 = 16.

Then

v4((−2)4 + (−3)4) = 1 and

w4(24 + 34) = 16.

Then v = ± 4
√

1/97 and w = ± 4
√

16/97. Let z := 1/ 4
√

97. Then v = ±z
and w = ±2z. Since A = (1− v)C + vD, we see that

(p, q) = A ∈ { (1− z)C + zD, (1 + z)C − zD }.

Since B = wC + (1− w)D, we see that

(s, t) = B ∈ { 2zC + (1− 2z)D, −2zC + (1 + 2z)D }.

Thus there are two possibilities for (p, q) and there are two possibili-

ties for (s, t). This gives four possibilities for (p, q, s, t), each of which

satisfies the constraints.

We evaluate the objective (p−s)4 +(q− t)4 = [N(A−B)]4 assuming

(p, q) = A = (1 − z)C + zD and (s, t) = B = 2zC + (1 − 2z)D, and

obtain [ N( [(1− z)C + zD]− [2zC + (1− 2z)D] ) ]4, which equals

[ N( (1− 3z)C + (3z − 1)D ) ]4 = [ N( (1− 3z)(C −D) ) ]4,

which equals

(1− 3z)4[N(C −D)]4 = (1− 3z)4[N((−2,−3))]4 = 97(1− 3z)4.

Evaluating the objective assuming the other three possibilities yields

97(1 + z)4 and 97(1− z)4 and 97(1 + 3z)4.
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Recall: z = 1/ 4
√

97. Among these four possibilities, the smallest value

of the objective occurs at the first, so (p, q) = A = (1− z)C + zD and

(s, t) = B = 2zC + (1− 2z)D. Then [N(A−B)]4 = 97(1− 3z)4.

Recall that we wish to compute

4
√

(p− s)4 + (q − t)4,

which equals N(A−B). Thus our final answer is

N(A−B) = 4
√

[N(A−B)]4 = 4
√

97(1− 3z)4 =
4
√

97(1− 3z),

which equals

(1/z)(1− 3z) = (1/z)− 3 =
4
√

97− 3. �

42-1. Let p : R → R be defined by p(x) = [e−x
2/2 ]/[

√
2π ]. Let

X and Y be independent random variables. Assume that X and Y

are both standard normal, i.e., that both X and Y have probability

density function p. Compute the probability that X < 9Y .

Solution: Let Z := (X, Y ), which is an R2-valued random variable. Let

v := (−1, 9) ∈ R2. Then v · Z = (−1, 9) · (X, Y ) = −X + 9Y . We

therefore wish to calculate Pr [v · Z > 0]

Let v0 := (
√

82, 0). Then v and v0 have the same length. Denote by

R : R2 → R2 the rotation such that R(v) = v0. Let Z0 := R(Z). Then

v · Z = v0 · Z0. We therefore wish to calculate Pr [v0 · Z0 > 0].

Define P : R2 → R by P (x, y) = [p(x)][p(y)]. Then P is the proba-

bility density function of Z, and so P ◦ R−1 is the probability density

function of Z0. For all x, y ∈ R, we have P (x, y) = [e(−x
2−y2)/2]/[2π].

Because (x, y) 7→ x2 + y2 : R2 → R is rotationally invariant, it follows

that P ◦ R = P . Thus Z and Z0 have the same distribution. We

therefore wish to calculate Pr [v0 · Z > 0].

We have v0 · Z = (
√

82, 0) · (X, Y ) =
√

82X. Then

[ v0 · Z > 0 ] ⇔ [ X > 0 ].

We therefore wish to calculate Pr [X > 0].
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Because p is the PDF of X, it follows both that

∫ ∞
−∞

p = 1 and that

Pr [X > 0] =

∫ ∞
0

p. Since p is even, we have

∫ ∞
0

p =

∫ 0

−∞
p. Then

2

[∫ ∞
0

p

]
=

[∫ 0

−∞
p

]
+

[∫ ∞
0

p

]
=

∫ ∞
−∞

p = 1,

and so

∫ ∞
0

p =
1

2
. Then Pr [X > 0] =

∫ ∞
0

p =
1

2
. �

46-1. TRUE OR FALSE: For any cyclic group G, for any homomor-

phism f : G → G, there exists an integer n such that, for all x ∈ G,

we have f(x) = xn.

Solution: True. Proof: Given a cyclic group G and a homomorphism

f : G→ G. We wish to show that there exists an integer n such that,

for all x ∈ G, we have f(x) = xn.

Since G is cyclic, choose a generator a of G. Then, for all g ∈ G,

there exists an integer k such that g = ak. Choose an integer n such

that f(a) = an. Given x ∈ G. We wish to show that f(x) = xn.

Choose an integer m such that x = am. Then

f(x) = f(am) = [f(a)]m = [an]m = [am]n = xn,

as desired. �

46-2. TRUE OR FALSE: For any Abelian group G, for any homomor-

phism f : G → G, there exists an integer n such that, for all x ∈ G,

we have f(x) = xn.

Solution: False. Counterexample: Let C denote the multiplicative

group {−1, 1}. Let G := C ⊕ C. Then G is Abelian. Let e := (1, 1),

a := (1,−1), b := (−1, 1), c := (−1,−1). Then G = {e, a, b, c}. Also,

ab = c, bc = a and ca = b. Let f : G→ G be the function defined by:

f(e) = e, f(a) = b, f(b) = c f(c) = a.

Let n be an integer, and assume, for all x ∈ G, that f(x) = xn. We

aim for a contradiction.



SOLUTIONS OF VARIATIONS, PRACTICE TEST 1 33

We have f(a) = an. Then

b = f(a) = an

∈ {ak | k is an even integer} ∪ {ak | k is an odd integer}
= {e} ∪ {a} = {e, a}.

However, b /∈ {e, a}, contradiction. �

49-1. Up to isomorphism, how many additive Abelian groups are there

of order 12?

Solution: For any integer n ≥ 1, let Cn := Z/(nZ) be the finite additive

cyclic group of order n. By the Structure Theorem for Finite Abelian

Groups, any additive Abelian group is isomorphic to a direct sum of

additive cyclic groups of prime power order. The prime powers that

divide 12 are 1, 2, 3 and 4. Consequently, up to isomorphism, the only

additive Abelian groups of order 12 are

C4 ⊕ C3, C2 ⊕ C2 ⊕ C3.

Thus the answer is: two. �

49-2. Up to isomorphism, how many additive Abelian groups G of

order 12 have the property that, for all x ∈ G, x+x+x+x+x+x = 0?

Solution: For all x ∈ G, the condition [ x + x + x + x + x + x = 0 ]

is equivalent to [ the order of x is a divisor of 6 ], and this, in turn, is

equivalent to [ the order of x is 1 or 2 or 3 or 6 ]. By 49-1, we need

only check C4 ⊕ C3 and C2 ⊕ C2 ⊕ C3. In C4 ⊕ C3, the element (1, 1)

has order 12, so G cannot be isomorphic to C4 ⊕C3. In C2 ⊕C2 ⊕C3,

every element has order 1 or 2 or 3 or 6. Thus G can be isomorphic

to C2 ⊕ C2 ⊕ C3. Thus the answer is: one. �

49-3. Up to isomorphism, how many additive Abelian groups are there

of order 24?

Solution: For any integer n ≥ 1, let Cn := Z/(nZ) be the finite additive

cyclic group of order n. By the Structure Theorem for Finite Abelian

Groups, any additive Abelian group is isomorphic to a direct sum of

additive cyclic groups of prime power order. The prime powers that

divide 24 are 1, 2, 3, 4 and 8. Consequently, up to isomorphism, the
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only additive Abelian groups of order 12 are

C8 ⊕ C3, C4 ⊕ C2 ⊕ C3, C2 ⊕ C2 ⊕ C2 ⊕ C3.

Thus the answer is: three. �

49-4. Up to isomorphism, how many additive Abelian groups G of

order 24 have the property that, for all x ∈ G, x+ x+ x+ x+ x = 0?

Solution: We claim that no such group G exists. Let G be a group of

order 24 such that, for all x ∈ G, x+ x+ x+ x+ x = 0. We aim for a

contradiction.

Choose x ∈ G\{0}. Let n denote the order of x. Because

x + x + x + x + x = 0,

it follows that n is a divisor of 5, so n ∈ {1, 5}. Because #G = 24, it

follows that n is a divisor of 24, so n ∈ {1, 2, 3, 4, 6, 8, 12, 24}. Then

n ∈ {1, 5} ∩ {1, 2, 3, 4, 6, 8, 12, 24} = {1}, so n = 1. That is, the order

of x is 1, and it follows that x = 0. However, x ∈ G\{0}, so x 6= 0,

contradiction, completing the proof of the claim.

Since no such group G exists, the answer is: zero. �

49-5. Up to isomorphism, how many additive Abelian groups G of

order 24 have the property that, for all x ∈ G, x+ x+ x+ x = 0?

Solution: For all x ∈ G, the condition [ x+x+x+x = 0 ] is equivalent

to [ the order of x is a divisor of 4 ], and this, in turn, is equivalent to

[ the order of x is 1 or 2 or 4 ]. By 49-3, we need only check C8⊕C3 and

C4⊕C2⊕C3 and C2⊕C2⊕C2⊕C3. In C8⊕C3, the element (1, 1) has

order 24, so G cannot be isomorphic to C8 ⊕C3. In C4 ⊕C2 ⊕C3, the

element (1, 1, 1) has order 12, soG cannot be isomorphic to C4⊕C2⊕C3.

In C2 ⊕ C2 ⊕ C2 ⊕ C3, the element (1, 1, 1, 1) has order 6, so G cannot

be isomorphic to C2 ⊕ C2 ⊕ C2 ⊕ C3. Thus the answer is: zero. �
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59-1. Let f be an analytic function of a complex variable z = x + iy

given by

f(z) = (3x+ 5y) + i · (g(x, y)),

where g(x, y) is a real-valued function of the real variables x and y. If

g(0, 0) = 1, then g(7, 3) =

Solution: We will compute [g(7, 3)] − [g(7, 0)] and [g(7, 0)] − [g(0, 0)]

separately, and then add the results to get [g(7, 3)]− [g(0, 0)]. We will

then add g(0, 0), which is given in the problem as 1, and obtain g(7, 3).

Define Z : R2 → C by Z(x, y) = x + iy. Define h : R2 → R2 by

h(x, y) = 3x+ 5y. Then f ◦ Z = h+ ig.

According to the Cauchy-Riemann equations, a counterclockwise 90◦

rotation of (∂1h, ∂1g) gives (∂2h, ∂2g). That is,[
0 −1

1 0

] [
∂1h

∂1g

]
=

[
∂2h

∂2g

]
.

That is, −∂1g = ∂2h and ∂1h = ∂2g.

For all x, y ∈ R, h(x, y) = 3x + 5y. Computing partial derivatives,

for all x, y ∈ R, we get (∂1h)(x, y) = 3 and (∂2h)(x, y) = 5, and so

−(∂1g)(x, y) = 5 and (∂2g)(x, y) = 3.

Multiplying the first equation by −1, and substituting y :→ 0, we see,

for all x ∈ R, that (∂1g)(x, 0) = −5. Integrating this equation from

x = 0 to x = 7, we see that [g(7, 0)]− [g(0, 0)] =

∫ 7

0

(−5) dx. Then

[g(7, 0)] − [g(0, 0)] = (−5)(7) = −35. Recall that, for all x, y ∈ R,

(∂2g)(x, y) = 3. Substituting x :→ 7, we see, for all y ∈ R, that

(∂2g)(7, y) = 3. Integrating this equation from y = 0 to y = 3 yields

[g(7, 3)]− [g(7, 0)] =

∫ 3

0

3 dx = (3)(3) = 9. Then

[g(7, 3)]− [g(0, 0)] = ([g(7, 3)]− [g(7, 0)]) + ([g(7, 0)]− [g(0, 0)])

= 9 + (−35) = −26.

Then g(7, 3) = [g(0, 0)] + (−26) = 1 + (−26) = −25. �


