SOLUTIONS OF VARIATIONS, PRACTICE TEST 2

$$
\begin{aligned}
y^{\prime}+x y(y+2) & =0 \\
y(0) & =-1
\end{aligned}
$$

44-1. Let y be a real-valued function defined on the real line satisfying the initial value problem above. Compute $\lim _{x \rightarrow-\infty}[y(x)]$.
Solution: Following the notation given in the problem, y and $y(x)$ are used interchangeably. Also, y^{\prime} and $y^{\prime}(x)$ are used interchangeably. For all $x \in \mathbb{R}, y^{\prime}(x)=-x y(y+2)$, and so $[y(x) \in\{0,-2\}] \Rightarrow\left[y^{\prime}(x)=0\right]$. So, by Picard-Lindelöf, exactly one of the following five possibilities holds:

$$
\begin{array}{ll}
\forall x \in \mathbb{R}, y(x)<-2 & \text { or } \\
\\
\forall x \in \mathbb{R}, y(x)=-2 & \text { or } \\
& \\
\forall x \in \mathbb{R},-2<y(x)<0 & \\
& \text { or } \\
\forall x \in \mathbb{R}, y(x)=0 & \text { or } \\
& \\
\forall x \in \mathbb{R}, 0<y(x) . &
\end{array}
$$

So, as $y(0)=-1$, we get $\forall x \in \mathbb{R},-2<y(x)<0$. Then, for all $x \in \mathbb{R}$,

$$
\frac{d}{d x}\left[\frac{y^{\prime}}{y+2}-\frac{y^{\prime}}{y}\right]=\frac{-2 y^{\prime}}{y(y+2)}=2 x=\frac{d}{d x}\left[x^{2}\right]
$$

Then

$$
\left.\frac{d}{d x}[(\ln (y+2))-(\ln y))\right]=\frac{d}{d x}\left[\frac{y^{\prime}}{y+2}-\frac{y^{\prime}}{y}\right]=\frac{d}{d x}\left[x^{2}\right]
$$

Choose $C \in \mathbb{R}$ such that, for all $x \in \mathbb{R}$,

$$
[\ln (y+2))]-[\ln y]=x^{2}+C .
$$

Let $K:=e^{C}$. Then, for all $x \in \mathbb{R}$, we have $1+(2 / y)=(y+2) / y=K e^{x^{2}}$, so $y(x)=y=2 /\left(K e^{x^{2}}-1\right)$. Then, because $K=e^{C} \neq 0$ and because we have $\lim _{x \rightarrow-\infty}\left[e^{x^{2} / 2}\right]=\infty$, we conclude that $\lim _{x \rightarrow-\infty}[y(x)]=0$.

[^0]54-1. Choose a real number x uniformly at random in the interval $[0,3]$. Choose a real number y independently of x, and uniformly at random in the interval $[0,4]$. Find the probability that $y<x^{2}$.

Solution: Viewing this as a problem in measure theory, the answer is

$$
\frac{\text { area of }\left\{(x, y) \in[0,3] \times[0,4] \mid y<x^{2}\right\}}{\text { area of }[0,3] \times[0,4]},
$$

Let $Q:=\left\{(x, y) \in[0,3] \times[0,4] \mid y<x^{2}\right\}$. Then the answer is

$$
\frac{\text { area of } Q}{12} .
$$

Let

$$
\begin{aligned}
A & :=\left\{(x, y) \in[0,3] \times[0,4] \mid y<x^{2} \text { and } x \leq 2\right\} \\
B & :=\left\{(x, y) \in[0,3] \times[0,4] \mid y<x^{2} \text { and } x>2\right\}
\end{aligned}
$$

Then $A \cap B=\emptyset$ and $Q=A \cup B$, so the area of Q is the sum of the areas of A and B. We have $\left.A=\{x, y) \in[0,2] \times[0, \infty) \mid y<x^{2}\right\}$, so the area of A is $\int_{0}^{2} x^{2} d x$. We compute $\int_{0}^{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{x:=0}^{x:=2}=\frac{8}{3}$. Thus the area of A is $8 / 3$. We have $B=(2,4] \times[0,4]$, so the area of B is 8 . Then the area of Q is $(8 / 3)+8=32 / 3$.

Then the answer is: $\frac{\text { area of } Q}{12}=\frac{32 / 3}{12}=\frac{8}{9}$.
61-1. A tank initially contains a salt solution of 35 ounces of salt dissolved in 50 gallons of water. Pure water is sprayed into the tank at a rate of 6 gallons per minute. The sprayed water is continually mixed with the salt solution in the tank, and the mixture flows out of the tank at a rate of 2 gallons per minute. If the mixing is instantaneous, how many ounces of salt are in the tank after 12 minutes have elapsed?

Solution: For all $t \geq 0$, let $s(t)$ denote the number ounces of salt in the tank at the t minute mark, and let $L(t)$ denote the number of gallons of liquid in the tank at the t minute mark. Then $s(0)=35$ and $L(0)=50$. We add 6 gallons per minute and remove 2 gallons per minute, so the net is 4 gallons per minute. Thus, for all $t \geq 0$, we have $L(t)=50+4 t$.

We use s and $s(t)$ interchangeably. We also use s^{\prime} and $s^{\prime}(t)$ interchangeably. We also use L and $L(t)$ interchangeably. The water sprayed into the tank adds no salt. At any time $t \geq 0$, there are L gallons of liquid in the tank, containing s ounces of salt. So the density
of salt in the tank is s / L ounces per gallon. The flow of water out of the tank therefore subtracts $2(s / L)$ ounces of salt per minute. Then, for all $t>0$, we have $s^{\prime}(t)=-2 s / L=-2 s /(50+4 t)=-s /(25+2 t)$. Then, for all $t>0$, we have

$$
\frac{d}{d t}[\ln s]=\frac{s^{\prime}}{s}=\frac{-1}{25+2 t}=\frac{d}{d t}\left[-\frac{\ln (25+2 t)}{2}\right] .
$$

Choose $C \in \mathbb{R}$ such that, for all $t \geq 0, \ln (s(t))=[-1 / 2][\ln (25+2 t)]+C$. Let $K:=e^{C}$. Then, for all $t \geq 0$, we have $s(t)=K(25+2 t)^{-1 / 2}$. Then $35=s(0)=K(25)^{-1 / 2}=K / 5$, so $K=35 \cdot 5$.

Then $s(12)=35 \cdot 5 \cdot(25+2 \cdot 12)^{-1 / 2}=35 \cdot 5 \cdot(49)^{-1 / 2}=5 \cdot 5=25$.
65-1. Let g be a differentiable function of two real variables, and let f be the function of a complex variable z defined by

$$
f(z)=e^{x y}+i \cdot(g(x, y)),
$$

where x and y are the real and imaginary parts of z, respectively. If f is an analytic function on the complex plane, then $(g(4,2))-(g(0,1))=$ Solution: We will compute $[g(4,2)]-[g(4,1)]$ and $[g(4,1)]-[g(0,1)]$ separately, and then add the results to get $(g(4,2))-(g(0,1))$.

Define $Z: \mathbb{R}^{2} \rightarrow \mathbb{C}$ by $Z(x, y)=x+i y$. Define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $h(x, y)=e^{x y}$. Then $f \circ Z=h+i g$.

According to the Cauchy-Riemann equations, a counterclockwise 90° rotation of $\left(\partial_{1} h, \partial_{1} g\right)$ gives $\left(\partial_{2} h, \partial_{2} g\right)$. That is,

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\partial_{1} h \\
\partial_{1} g
\end{array}\right]=\left[\begin{array}{c}
\partial_{2} h \\
\partial_{2} g
\end{array}\right]
$$

That is, $-\partial_{1} g=\partial_{2} h$ and $\partial_{1} h=\partial_{2} g$.
For all $x, y \in \mathbb{R}, h(x, y)=e^{x y}$. Computing partial derivatives, for all $x, y \in \mathbb{R}$, we get $\left(\partial_{1} h\right)(x, y)=y e^{x y}$ and $\left(\partial_{2} h\right)(x, y)=x e^{x y}$, and so

$$
-\left(\partial_{1} g\right)(x, y)=x e^{x y} \quad \text { and } \quad\left(\partial_{2} g\right)(x, y)=y e^{x y}
$$

Multiplying the first equation by -1 , and substituting $y: \rightarrow 1$, we see, for all $x \in \mathbb{R}$, that $\left(\partial_{1} g\right)(x, 1)=-x e^{x}$. So, integrating this equation from $x=0$ to $x=4$, we get $[g(4,1)]-[g(0,1)]=\int_{0}^{4}\left(-x e^{x}\right) d x$. We
compute the integral on the RHS by integration by parts (differentiating $-x$ w.r.t. x, and antidifferentiating e^{x} w.r.t. x), and get

$$
\begin{aligned}
\int_{0}^{4}\left(-x e^{x}\right) d x & =\left[\left[-x e^{x}\right]_{\substack{x: \rightarrow 4 \\
x: \rightarrow 0}}\right]-\left[\int_{0}^{4}\left(-e^{x}\right) d x\right] \\
& =\left[\left[-x e^{x}\right]_{\substack{x: \rightarrow 4 \\
x: \rightarrow 0}}\right]+\left[\int_{0}^{4}\left(e^{x}\right) d x\right] \\
& =\left[-4 e^{4}-(-0)\right]+\left[\left[e^{x}\right]_{x: \rightarrow 0}^{x: \rightarrow 4}\right] \\
& =\left[-4 e^{4}\right]+\left[e^{4}-1\right]=-3 e^{4}-1 .
\end{aligned}
$$

Then $[g(4,1)]-[g(0,1)]=-3 e^{4}-1$.
Recall that, for all $x, y \in \mathbb{R}$, we have $\left(\partial_{2} g\right)(x, y)=y e^{x y}$. Substituting $x: \rightarrow 4$, we see, for all $y \in \mathbb{R}$, that $\left(\partial_{2} g\right)(4, y)=y e^{4 y}$. So, integrating this equation from $y=1$ to $y=2$, we see that

$$
[g(4,2)]-[g(4,1)]=\int_{1}^{2}\left(y e^{4 y}\right) d x
$$

We compute the integral on the RHS by integration by parts (differentiating y w.r.t. y, and antidifferentiating $e^{4 y}$ w.r.t. y), and get

$$
\begin{aligned}
\int_{1}^{2}\left(y e^{4 y}\right) d x & =\left[\left[\frac{y e^{4 y}}{4}\right]_{y: \rightarrow 1}^{y: \rightarrow 2}\right]-\left[\int_{1}^{2}\left(\frac{e^{4 y}}{4}\right) d y\right] \\
& =\left[\frac{2 e^{8}}{4}-\frac{e^{4}}{4}\right]-\left[\left[\frac{e^{4 y}}{16}\right]_{y: \rightarrow 1}^{y: \rightarrow 2}\right] \\
& =\left[\frac{2 e^{8}-e^{4}}{4}\right]-\left[\frac{e^{8}}{16}-\frac{e^{4}}{16}\right] \\
& =\left[\frac{8 e^{8}-4 e^{4}}{16}\right]-\left[\frac{e^{8}-e^{4}}{16}\right]=\frac{7 e^{8}-3 e^{4}}{16}
\end{aligned}
$$

Then, as $[g(4,2)]-[g(0,1)]=([g(4,2)]-[g(4,1)])+([g(4,1)]-[g(0,1)])$,

$$
\begin{aligned}
{[g(4,2)]-[g(0,1)] } & =\left(\frac{7 e^{8}-3 e^{4}}{16}\right)+\left(-3 e^{4}-1\right) \\
& =\frac{7 e^{8}-3 e^{4}}{16}+\frac{-48 e^{4}-16}{16} \\
& =\frac{7 e^{8}-51 e^{4}-16}{16} .
\end{aligned}
$$

[^0]: Date: Printout date: November 10, 2015.

