SOLUTIONS TO PRACTICE TEST 2

$$
\begin{aligned}
y^{\prime}+x y & =x \\
y(0) & =-1
\end{aligned}
$$

44. If y is a real-valued function defined on the real line satisfying the initial value problem above, then $\lim _{x \rightarrow-\infty}[y(x)]=$
(A) 0
(B) 1
(C) -1
(D) ∞
(E) $-\infty$

Solution: Following the notation given in the problem, y and $y(x)$ are used interchangeably. Also, y^{\prime} and $y^{\prime}(x)$ are used interchangeably. For all $x \in \mathbb{R}, y^{\prime}(x)=x(1-y)$, and so $[y(x)=1] \Rightarrow\left[y^{\prime}(x)=0\right]$. So, by Picard-Lindelöf, exactly one of the following three possibilities holds:

$$
[\forall x \in \mathbb{R}, y(x)>1] \text { or }[\forall x \in \mathbb{R}, y(x)=1] \text { or }[\forall x \in \mathbb{R}, y(x)<1]
$$

So, as $y(0)=-1$, we get $\forall x \in \mathbb{R}, y(x)<1$. Then, for all $x \in \mathbb{R}$,

$$
\frac{d}{d x}[\ln (1-y)]=\frac{-y^{\prime}}{1-y}=-x=\frac{d}{d x}\left[-\frac{x^{2}}{2}\right]
$$

Choose $C \in \mathbb{R}$ such that, for all $x \in \mathbb{R}, \ln (1-(y(x)))=-\left[x^{2} / 2\right]+C$. Let $K:=e^{C}$. Then, for all $x \in \mathbb{R}$, we have $1-(y(x))=K e^{-x^{2} / 2}$, and so $y(x)=1-K e^{-x^{2} / 2}$. Then, because $\lim _{x \rightarrow-\infty}\left[e^{-x^{2} / 2}\right]=0$, we conclude that $\lim _{x \rightarrow-\infty}[y(x)]=1-K \cdot 0=1$. Answer: (B)

[^0]54. Choose a real number x uniformly at random in the interval $[0,3]$. Choose a real number y independently of x, and uniformly at random in the interval $[0,4]$. Find the probability that $x<y$.
(A) $1 / 2$
(B) $7 / 12$
(C) $5 / 8$
(D) $2 / 3$
(E) $3 / 4$

Solution: Viewing this as a problem in measure theory, the answer is

$$
\frac{\text { area of }\{(x, y) \in[0,3] \times[0,4] \mid x<y\}}{\text { area of }[0,3] \times[0,4]}
$$

Let $T:=\{(x, y) \in[0,3] \times[0,4] \mid x>y\}$. Then the answer is

$$
\frac{12-(\text { area of } T)}{12}
$$

Since T is a right isosceles triangle of leg length 3, it follows that the area of T is $(1 / 2)(3)(3)=9 / 2$. Then the answer is

$$
\frac{12-(9 / 2)}{12}=\frac{24-9}{24}=\frac{15}{24}=\frac{5}{8}
$$

Answer: (C)
61. A tank initially contains a salt solution of 3 grams of salt dissolved in 100 liters of water. A salt solution containing 0.02 grams of salt per liter of water is sprayed into the tank at a rate of 4 liters per minute. The sprayed solution is continually mixed with the salt solution in the tank, and the mixture flows out of the tank at a rate of 4 liters per minute. If the mixing is instantaneous, how many grams of salt are in the tank after 100 minutes have elapsed?
(A) 2
(B) $2-e^{-2}$
(C) $2+e^{-2}$
(D) $2-e^{-4}$
(E) $2+e^{-4}$

Solution: For all $t \in \mathbb{R}$, let $s(t)$ denote the number grams of salt in the tank at the t minute mark. Then $s(0)=3$.

We use s and $s(t)$ interchangeably. We also use s^{\prime} and $s^{\prime}(t)$ interchangeably. The solution sprayed into the tank adds (0.02)4 $=2 / 25$ grams of salt per minute. There are always 100 liters of liquid in the tank, containing s grams of salt. So the density of salt in the tank is $s / 100$ grams per liter. The flow of water out of the tank therefore subtracts $4(s / 100)=s / 25$ grams of salt per minute. Then, for all $t \in \mathbb{R}$, we have $s^{\prime}(t)=(2 / 25)-(s / 25)=(2-s) / 25$, and so $[s(t)=2] \Rightarrow\left[s^{\prime}(t)=0\right]$. So, by Picard-Lindelöf, exactly one of the following three possibilities holds:

$$
[\forall t \in \mathbb{R}, s(t)>2] \text { or }[\forall t \in \mathbb{R}, s(t)=2] \text { or }[\forall t \in \mathbb{R}, s(t)<2] \text {. }
$$

So, as $s(0)=3$, we get $\forall t \in \mathbb{R}, s(t)>2$. Then, for all $t \in \mathbb{R}$,

$$
\frac{d}{d t}[\ln (s-2)]=\frac{s^{\prime}}{s-2}=\frac{-1}{25}=\frac{d}{d t}\left[-\frac{t}{25}\right] .
$$

Choose $C \in \mathbb{R}$ such that, for all $t \in \mathbb{R}, \ln ((s(t)-2))=-[t / 25]+C$. Let $K:=e^{C}$. Then, for all $t \in \mathbb{R}$, we have $(s(t))-2=K e^{-t / 25}$, and so $s(t)=2+K e^{-t / 25}$. Then $3=s(0)=2+K e^{0}=2+K$, so $K=1$. Then $s(100)=2+K e^{-100 / 25}=2+1 \cdot e^{-4}=2+e^{-4}$. Answer: (E)
65. Let g be a differentiable function of two real variables, and let f be the function of a complex variable z defined by

$$
f(z)=e^{x}(\sin y)+i \cdot(g(x, y)),
$$

where x and y are the real and imaginary parts of z, respectively. If f is an analytic function on the complex plane, then $(g(4,2))-(g(0,1))=$

Solution: Define $Z: \mathbb{R}^{2} \rightarrow \mathbb{C}$ by $Z(x, y)=x+i y$. Define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $h(x, y)=e^{x}(\sin y)$. Then $f \circ Z=h+i g$.

According to the Cauchy-Riemann equations, a counterclockwise 90° rotation of $\left(\partial_{1} h, \partial_{1} g\right)$ gives $\left(\partial_{2} h, \partial_{2} g\right)$. That is,

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\partial_{1} h \\
\partial_{1} g
\end{array}\right]=\left[\begin{array}{c}
\partial_{2} h \\
\partial_{2} g
\end{array}\right] .
$$

That is, $-\partial_{1} g=\partial_{2} h$ and $\partial_{1} h=\partial_{2} g$.
For all $x, y \in \mathbb{R}$, we have $h(x, y)=e^{x}(\sin y)$. Computing partial derivatives, for all $x, y \in \mathbb{R}$, we get $\left(\partial_{1} h\right)(x, y)=e^{x}(\sin y)$ and $\left(\partial_{2} h\right)(x, y)=e^{x}(\cos y)$.

Then, for all $x, y \in \mathbb{R}$, we have

$$
-\left(\partial_{1} g\right)(x, y)=e^{x}(\cos y) \quad \text { and } \quad\left(\partial_{2} g\right)(x, y)=e^{x}(\sin y)
$$

Multiplying the first equation by -1 , and substituting $y: \rightarrow 2$, we see, for all $x \in \mathbb{R}$, that $\left(\partial_{1} g\right)(x, 2)=-e^{x}(\cos 2)$. So, integrating this equation from $x=1$ to $x=3$, we see that

$$
[g(3,2)]-[g(1,2)]=\int_{1}^{3}\left(-e^{x}(\cos 2)\right) d x
$$

So, as $\int_{1}^{3}\left(-e^{x}(\cos 2)\right) d x=-\left(\int_{1}^{3} e^{x} d x\right)(\cos 2)+=-\left(e^{3}-e^{1}\right)(\cos 2)$, we get

$$
[g(3,2)]-[g(1,2)]=-\left(e^{3}-e^{1}\right)(\cos 2) .
$$

That is, $(g(3,2))-(g(1,2))=\left(e-e^{3}\right)(\cos 2)$. Answer: (E)

[^0]: Date: Printout date: November 10, 2015.

