## VARIATIONS ON PRACTICE TEST 3

1. If $S$ is a plane in Euclidean 3 -space containing $(0,0,0),(2,0,0)$ and $(3,1,1)$, then $S$ is the
(A) $x y$-plane
(B) $x z$-plane
(C) $y z$-plane
(D) plane $y-z=0$
(E) plane $x+2 y-2 z=0$
2. If $a$ and $b$ are real numbers, which of the following are necessarily true?
I. If $a<b$ and $a b>0$, then $\frac{1}{a}>\frac{1}{b}$.
II. If $a<b$, then $a c<b c$, for all real numbers $c>0$.
III. If $a<b$, then $a+c<b+c$, for all real numbers $c$.
IV. If $a<b$, then $-a>-b$.

Choose one of these answers:
(A) I only
(B) I and III only
(C) III and IV only
(D) II, III and IV only
(E) I,II,III and IV
3. Compute $\int_{0}^{1} \int_{0}^{y} x^{3} y^{4} d x d y$.
4. For $x \geq 0$, compute $\frac{d}{d x}\left(x^{\pi} \cdot \pi^{x}\right)$.
5. Find all functions $f$ defined on the $x y$-plane such that

$$
\frac{\partial}{\partial x}[f(x, y)]=2 x-y \quad \text { and } \quad \frac{\partial}{\partial y}[f(x, y)]=x+2 y
$$

Date: Printout date: September 19, 2015.

6. Sketch the graph of an antiderivative of the function $f$ whose graph is shown in the figure above.

7. Compute the shaded area shown above.
8. Compute $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$.

