
SOLUTIONS OF VARIATIONS, PRACTICE TEST 3

1. If S is a plane in Euclidean 3-space containing (0, 0, 0), (2, 0, 0) and

(3, 1, 1), then S is the

(A) xy-plane

(B) xz-plane

(C) yz-plane

(D) plane y − z = 0

(E) plane x+ 2y − 2z = 0

Solution: The xy-plane is z = 0 which does not contain (0, 0, 1), so (A)

is not correct. The xz-plane is y = 0 which does not contain (3, 1, 1),

so (B) is not correct. The yz-plane is x = 0 which does not contain

(2, 0, 0), so (C) is not correct.

The plane x+ 2y − 2z = 0 is (1, 2,−2) · (x, y, z) = 0, and we have

(1, 2,−2) · (3, 1, 1) = 3 6= 0,

so (E) is not correct.

The plane y − z = 0 is (0, 1,−1) · (x, y, z) = 0, and this contains all

three of the points (0, 0, 0), (2, 0, 0) and (3, 1, 1). Answer: (D) �
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2. If a and b are real numbers, which of the following are necessarily

true?

I. If a < b and ab > 0, then
1

a
>

1

b
.

II. If a < b, then ac < bc, for all real numbers c > 0.

III. If a < b, then a+ c < b+ c, for all real numbers c.

IV. If a < b, then −a > −b.
Choose one of these answers:

(A) I only

(B) I and III only

(C) III and IV only

(D) II, III and IV only

(E) I,II,III and IV

Solution: If a < b and ab > 0, then
a

ab
<

b

ab
, i.e.,

1

b
<

1

a
, or, equiva-

lently,
1

a
>

1

b
. Thus I is true.

Also, II, III and IV are all basic facts about the real number system;

they are all true. Answer: (E) �

3. Compute

∫ 1

0

∫ y

0

x3y4 dx dy.

Solution: We compute∫ y

0

x3y4 dx =

[(
x4

4

)
y4
]x:→y
x:→0

=

[(
y4

4

)
y4
]
− 0 =

y8

4
.

Then∫ 1

0

∫ y

0

x3y4 dx dy =

∫ 1

0

y8

4
dy

=

[
y9

36

]x:→1

x:→0

=

[
1

36

]
− 0 =

1

36
. �
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4. For x ≥ 0, compute
d

dx
(xπ · πx).

Solution: By Logarithmic Differentiation,

(d/dx)(πx) = [πx][(d/dx)(x lnπ)] = [πx][lnπ].

Then, using the Product Rule,

d

dx
(xπ · πx) =

(
πxπ−1

)
(πx) + (xπ) ([πx][lnπ])

= xπ−1 · πx+1 + xπ · πx · (ln π). �

5. Find all functions f defined on the xy-plane such that

∂

∂x
[f(x, y)] = 2x− y and

∂

∂y
[f(x, y)] = x+ 2y.

Solution: If such a function f were to exist, then we would have

∂

∂y

∂

∂x
[f(x, y)] =

∂

∂x

∂

∂y
[f(x, y)],

yielding −1 = 1, a contradiction. Thus no such functions exist. �
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6. Sketch the graph of an antiderivative of the function f whose graph

is shown in the figure above.

Solution: The graph of f consists, piecewise, of

• a very negatively sloped half-line on the left, intersecting the

horizontal axis,

• a horizontal line segment in the middle located a bit below the

horizontal axis and

• a somewhat positively sloped half-line on the right, intersecting

the horizontal axis.

Any antiderivative of f will be, piecewise,

• a very concave down parabolic arc on the left, with a local

maximum,

• a line segment in the middle, a bit negatively sloped and

• a somewhat concave up parabolic arc on the right, with a local

minimum.

The graph of an antiderivative appears in red in the figure below.
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7. Compute the shaded area shown above.

Solution: The line through (1, 2) and (6, 3) is y − 2 = (1/5)(x− 1), or

y = (1/5)x+ (9/5). The two line segments

• from (1, 2) to (3, 0) and

• from (3, 0) to (6, 3)

are both on the graph of y = |x− 3|. Thus we need to compute the

area of the region

between y = (1/5)x+ (9/5) and y = |x− 3|

from x = 1 to x = 6. This is

∫ 6

1

((1/5)x+ (9/5)− |x− 3|) dx, or[∫ 3

1

(
x

5
+

9

5
− |x− 3|

)
dx

]
+

[∫ 6

3

(
x

5
+

9

5
− |x− 3|

)
dx

]
=

[∫ 3

1

(
x

5
+

9

5
− (3− x)

)
dx

]
+

[∫ 6

3

(
x

5
+

9

5
− (x− 3)

)
dx

]
=

[∫ 3

1

(
6x

5
+
−6

5

)
dx

]
+

[∫ 6

3

(
−4x

5
+

24

5

)
dx

]
=

[
3x2

5
+
−6x

5

]x:→3

x:→1

+

[
−2x2

5
+

24x

5

]x:→6

x:→3

=

[
3 · 8

5
+
−6 · 2

5

]
+

[
−2 · 27

5
+

24 · 3
5

]
=

30

5
= 6. �
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8. Compute
∞∑
n=1

n

n2 + 1
.

Solution: For all integers n ≥ 1, we have 1 ≤ n2, so

n

n2 + 1
≥ n

n2 + n2
=

n

2n2
=

1

2n
.

From the integral test for convergence,
∞∑
n=1

1

n
= +∞. Multiplying this

by
1

2
, we get

∞∑
n=1

1

2n
= +∞. We conclude that

∞∑
n=1

n

n2 + 1
= +∞. �


