SOLUTIONS OF VARIATIONS, PRACTICE TEST 3

1. If S is a plane in Euclidean 3 -space containing $(0,0,0),(2,0,0)$ and $(3,1,1)$, then S is the
(A) $x y$-plane
(B) $x z$-plane
(C) $y z$-plane
(D) plane $y-z=0$
(E) plane $x+2 y-2 z=0$

Solution: The $x y$-plane is $z=0$ which does not contain $(0,0,1)$, so (A) is not correct. The $x z$-plane is $y=0$ which does not contain $(3,1,1)$, so (B) is not correct. The $y z$-plane is $x=0$ which does not contain $(2,0,0)$, so (C) is not correct.

The plane $x+2 y-2 z=0$ is $(1,2,-2) \cdot(x, y, z)=0$, and we have

$$
(1,2,-2) \cdot(3,1,1)=3 \neq 0
$$

so (E) is not correct.
The plane $y-z=0$ is $(0,1,-1) \cdot(x, y, z)=0$, and this contains all three of the points $(0,0,0),(2,0,0)$ and $(3,1,1)$. Answer: (D)

[^0]2. If a and b are real numbers, which of the following are necessarily true?
I. If $a<b$ and $a b>0$, then $\frac{1}{a}>\frac{1}{b}$.
II. If $a<b$, then $a c<b c$, for all real numbers $c>0$.
III. If $a<b$, then $a+c<b+c$, for all real numbers c.
IV. If $a<b$, then $-a>-b$.

Choose one of these answers:
(A) I only
(B) I and III only
(C) III and IV only
(D) II, III and IV only
(E) I,II,III and IV

Solution: If $a<b$ and $a b>0$, then $\frac{a}{a b}<\frac{b}{a b}$, i.e., $\frac{1}{b}<\frac{1}{a}$, or, equivalently, $\frac{1}{a}>\frac{1}{b}$. Thus I is true.

Also, II, III and IV are all basic facts about the real number system; they are all true. Answer: (E)
3. Compute $\int_{0}^{1} \int_{0}^{y} x^{3} y^{4} d x d y$.

Solution: We compute

$$
\int_{0}^{y} x^{3} y^{4} d x=\left[\left(\frac{x^{4}}{4}\right) y^{4}\right]_{x: \rightarrow 0}^{x: \rightarrow y}=\left[\left(\frac{y^{4}}{4}\right) y^{4}\right]-0=\frac{y^{8}}{4} .
$$

Then

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{y} x^{3} y^{4} d x d y & =\int_{0}^{1} \frac{y^{8}}{4} d y \\
& =\left[\frac{y^{9}}{36}\right]_{x: \rightarrow 0}^{x: \rightarrow 1}=\left[\frac{1}{36}\right]-0=\frac{1}{36} .
\end{aligned}
$$

4. For $x \geq 0$, compute $\frac{d}{d x}\left(x^{\pi} \cdot \pi^{x}\right)$.

Solution: By Logarithmic Differentiation,

$$
(d / d x)\left(\pi^{x}\right)=\left[\pi^{x}\right][(d / d x)(x \ln \pi)]=\left[\pi^{x}\right][\ln \pi] .
$$

Then, using the Product Rule,

$$
\begin{aligned}
\frac{d}{d x}\left(x^{\pi} \cdot \pi^{x}\right) & =\left(\pi x^{\pi-1}\right)\left(\pi^{x}\right)+\left(x^{\pi}\right)\left(\left[\pi^{x}\right][\ln \pi]\right) \\
& =x^{\pi-1} \cdot \pi^{x+1}+x^{\pi} \cdot \pi^{x} \cdot(\ln \pi)
\end{aligned}
$$

5. Find all functions f defined on the $x y$-plane such that

$$
\frac{\partial}{\partial x}[f(x, y)]=2 x-y \quad \text { and } \quad \frac{\partial}{\partial y}[f(x, y)]=x+2 y
$$

Solution: If such a function f were to exist, then we would have

$$
\frac{\partial}{\partial y} \frac{\partial}{\partial x}[f(x, y)]=\frac{\partial}{\partial x} \frac{\partial}{\partial y}[f(x, y)]
$$

yielding $-1=1$, a contradiction. Thus no such functions exist.

6. Sketch the graph of an antiderivative of the function f whose graph is shown in the figure above.

Solution: The graph of f consists, piecewise, of

- a very negatively sloped half-line on the left, intersecting the horizontal axis,
- a horizontal line segment in the middle located a bit below the horizontal axis and
- a somewhat positively sloped half-line on the right, intersecting the horizontal axis.
Any antiderivative of f will be, piecewise,
- a very concave down parabolic arc on the left, with a local maximum,
- a line segment in the middle, a bit negatively sloped and
- a somewhat concave up parabolic arc on the right, with a local minimum.
The graph of an antiderivative appears in red in the figure below.

7. Compute the shaded area shown above.

Solution: The line through $(1,2)$ and $(6,3)$ is $y-2=(1 / 5)(x-1)$, or $y=(1 / 5) x+(9 / 5)$. The two line segments

- from $(1,2)$ to $(3,0)$ and
- from $(3,0)$ to $(6,3)$
are both on the graph of $y=|x-3|$. Thus we need to compute the area of the region

$$
\text { between } \quad y=(1 / 5) x+(9 / 5) \quad \text { and } \quad y=|x-3|
$$

from $x=1$ to $x=6$. This is $\int_{1}^{6}((1 / 5) x+(9 / 5)-|x-3|) d x$, or

$$
\begin{aligned}
& {\left[\int_{1}^{3}\left(\frac{x}{5}+\frac{9}{5}-|x-3|\right) d x\right]+\left[\int_{3}^{6}\left(\frac{x}{5}+\frac{9}{5}-|x-3|\right) d x\right] } \\
= & {\left[\int_{1}^{3}\left(\frac{x}{5}+\frac{9}{5}-(3-x)\right) d x\right]+\left[\int_{3}^{6}\left(\frac{x}{5}+\frac{9}{5}-(x-3)\right) d x\right] } \\
= & {\left[\int_{1}^{3}\left(\frac{6 x}{5}+\frac{-6}{5}\right) d x\right]+\left[\int_{3}^{6}\left(\frac{-4 x}{5}+\frac{24}{5}\right) d x\right] } \\
= & {\left[\frac{3 x^{2}}{5}+\frac{-6 x}{5}\right]_{x: \rightarrow 1}^{x: \rightarrow 3} } \\
= & {\left.\left[\frac{3 \cdot 8}{5}+\frac{-6 \cdot 2}{5}\right]+\left[\frac{-2 \cdot 27}{5}+\frac{24 \cdot 3}{5}\right]=\frac{-2 x^{2}}{5}+\frac{24 x}{5}\right]_{x: \rightarrow 3}^{x: \rightarrow 6} } \\
= & =6
\end{aligned}
$$

8. Compute $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$.

Solution: For all integers $n \geq 1$, we have $1 \leq n^{2}$, so

$$
\frac{n}{n^{2}+1} \geq \frac{n}{n^{2}+n^{2}}=\frac{n}{2 n^{2}}=\frac{1}{2 n}
$$

From the integral test for convergence, $\sum_{n=1}^{\infty} \frac{1}{n}=+\infty$. Multiplying this by $\frac{1}{2}$, we get $\sum_{n=1}^{\infty} \frac{1}{2 n}=+\infty$. We conclude that $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}=+\infty$.

[^0]: Date: Printout date: September 19, 2015.

