SOLUTIONS TO PRACTICE TEST 3

1. If S is a plane in Euclidean 3-space containing (0,0,0), (2,0,0) and (0,0,1), then S is the

- (A) xy-plane
- (B) xz-plane
- (C) yz-plane
- (D) plane y z = 0
- (E) plane x + 2y 2z = 0

Solution: The xy-plane is z = 0 which does not contain (0, 0, 1), so (A) is not correct. The yz-plane is x = 0 which does not contain (2, 0, 0), so (C) is not correct.

The plane y - z = 0 is $(0, 1, -1) \cdot (x, y, z) = 0$, and we have

 $(0,1,-1) \ \cdot \ (0,0,1) \quad = \quad -1 \quad \neq \quad 0,$

so (D) is not correct. The plane x+2y-2z = 0 is $(1, 2, -2) \cdot (x, y, z) = 0$, and we have

$$(1,2,-2) \cdot (0,0,1) = -2 \neq 0,$$

so (E) is not correct.

The *xz*-plane is y = 0 and this contains all three of the points (0, 0, 0), (2, 0, 0) and (0, 0, 1). Answer: (B)

Date: Printout date: September 19, 2015.

2. If a and b are real numbers, which of the following are necessarily true?

I. If a < b and $ab \neq 0$, then $\frac{1}{a} > \frac{1}{b}$. II. If a < b, then ac < bc, for all real numbers c.

III. If a < b, then a + c < b + c, for all real numbers c.

IV. If a < b, then -a > -b.

Choose one of these answers:

- (A) I only
- (B) I and III only
- (C) III and IV only
- (D) II, III and IV only
- (E) I,II,III and IV

Solution: We see that I is false using a = -3 and b = 2.

We see that II is false using a = 2, b = 3 and c = -1.

On the other hand, III and IV are both basic facts about the real number system; they are both true. Answer: (C)

3.
$$\int_{0}^{1} \int_{0}^{x} xy \, dy \, dx =$$
(A) 0
(B) 1/8
(C) 1/3
(D) 1
(E) 3
Solution: We compute
$$\int_{0}^{x} xy \, dy = [x(y^{2}/2)]_{y:\to 0}^{y:\to x} = [x(x^{2}/2)] - 0 = x^{3}/2.$$
Then
$$\int_{0}^{1} \int_{0}^{x} xy \, dy \, dx = \int_{0}^{1} (x^{3}/2) \, dx = [x^{4}/8]_{x:\to 0}^{x:\to 1} = [1/8] - 0 = 1/8.$$
Answer: (B)

4. For $x \ge 0$, $\frac{d}{dx}(x^e \cdot e^x) =$ (A) $x^e \cdot e^x + x^{e-1} \cdot e^{x+1}$ (B) $x^e \cdot e^x + x^{e+1} \cdot e^{x-1}$ (C) $x^e \cdot e^x$ (D) $x^{e-1} \cdot e^{x+1}$ (E) $x^{e+1} \cdot e^{x-1}$

Solution: Using the Product Rule,

$$\frac{d}{dx} \left(x^e \cdot e^x \right) = \left(ex^{e-1} \right) \left(e^x \right) + \left(x^e \right) \left(e^x \right) = x^{e-1} \cdot e^{x+1} + x^e \cdot e^x,$$

so
$$\frac{d}{dx} \left(x^e \cdot e^x \right) = x^e \cdot e^x + x^{e-1} \cdot e^{x+1}.$$
 Answer: (A)

5. All functions f defined on the xy-plane such that

$$\frac{\partial}{\partial x}[f(x,y)] = 2x + y$$
 and $\frac{\partial}{\partial y}[f(x,y)] = x + 2y$

are given by f(x, y) =

(A) $x^{2} + xy + y^{2} + C$ (B) $x^{2} - xy + y^{2} + C$ (C) $x^{2} - xy - y^{2} + C$ (D) $x^{2} + 2xy + y^{2} + C$ (E) $x^{2} - 2xy + y^{2} + C$

Solution: As $\frac{\partial}{\partial x}[f(x,y)] = 2x + y$ and $\frac{\partial}{\partial y}[f(x,y)] = x + 2y$, we see that there are functions $g, h : \mathbb{R} \to \mathbb{R}$ such that

$$f(x,y) = x^2 + xy + [g(y)]$$
 and
 $f(x,y) = xy + y^2 + [h(x)].$

Subtracting, we see that

$$0 = [f(x,y)] - [f(x,y)] = x^{2} + [g(y)] - y^{2} - [h(x)],$$

so $[h(x)] - x^2 = [g(y)] - y^2$. Setting $x :\to 0$, we see that

$$[h(0)] - 0^2 = [g(y)] - y^2.$$

Let C := h(0). Then $C = [h(0)] - 0^2 = [g(y)] - y^2$, so $g(y) = y^2 + C$, so $f(x, y) = x^2 + xy + [g(y)] = x^2 + xy + y^2 + C$. Answer: (A) \Box *Alternate solution:* Simply computing $\partial/\partial x$ and $\partial/\partial y$ of each of the answers (A)-(E) shows that only (A) works. Answer: (A) \Box

Solution: The graph consists, piecewise, of

- a negatively sloped half-line on the left,
- a horizontal line segment in the middle and
- a positively sloped half-line on the right.

The derivative will be, piecewise,

- a negative constant on the left,
- a zero constant in the middle and
- a positive constant on the right.

Answer: (C)

7. Which of the following integrals represents the area of the shaded portion of the rectangle shown in the figure above?

(A) $\int_{-1}^{1} (x + 2 - x) dx$	(B) $\int_{-1}^{1} (x + x + 2) dx$	(C) $\int_{-1}^{1} (x+2) dx$
(D) $\int_{-1}^{1} x dx$	(E) $\int_{-1}^{1} 2 dx$	·

Solution: The line through (-1,1) and (1,3) is y = x + 2. The two line segments

- from (-1, 1) to the origin and
- from the origin to (1, 1)

are both on the graph of y = |x|. Thus we need to compute the area of the region

between
$$y = x + 2$$
 and $y = |x|$
from $x = -1$ to $x = 1$. This is $\int_{-1}^{1} (x + 2 - |x|) dx$. Answer: (A)

8.
$$\sum_{n=1}^{\infty} \frac{n}{n+1} =$$
(A) $\frac{1}{e}$
(B) $\log 2$
(C) 1
(D) e
(E) $+\infty$

Solution: We have $\frac{n}{n+1} = \frac{n/n}{(n+1)/n} = \frac{1}{1+(1/n)} \rightarrow \frac{1}{1+0} = 1 > 0$, as $n \rightarrow \infty$. Thus the terms of the series tend toward a positive number, and it follows that the series tends toward $+\infty$. Answer: (E)