SOLUTIONS TO PRACTICE TEST 3

1. If S is a plane in Euclidean 3 -space containing $(0,0,0),(2,0,0)$ and $(0,0,1)$, then S is the
(A) $x y$-plane
(B) $x z$-plane
(C) $y z$-plane
(D) plane $y-z=0$
(E) plane $x+2 y-2 z=0$

Solution: The $x y$-plane is $z=0$ which does not contain $(0,0,1)$, so (A) is not correct. The $y z$-plane is $x=0$ which does not contain $(2,0,0)$, so (C) is not correct.

The plane $y-z=0$ is $(0,1,-1) \cdot(x, y, z)=0$, and we have

$$
(0,1,-1) \cdot(0,0,1)=-1 \neq 0,
$$

so (D) is not correct. The plane $x+2 y-2 z=0$ is $(1,2,-2) \cdot(x, y, z)=0$, and we have

$$
(1,2,-2) \cdot(0,0,1)=-2 \neq 0,
$$

so (E) is not correct.
The $x z$-plane is $y=0$ and this contains all three of the points $(0,0,0)$, $(2,0,0)$ and $(0,0,1)$. Answer: (B)

Date: Printout date: September 19, 2015.
2. If a and b are real numbers, which of the following are necessarily true?
I. If $a<b$ and $a b \neq 0$, then $\frac{1}{a}>\frac{1}{b}$.
II. If $a<b$, then $a c<b c$, for all real numbers c.
III. If $a<b$, then $a+c<b+c$, for all real numbers c.
IV. If $a<b$, then $-a>-b$.

Choose one of these answers:
(A) I only
(B) I and III only
(C) III and IV only
(D) II, III and IV only
(E) I,II,III and IV

Solution: We see that I is false using $a=-3$ and $b=2$.
We see that II is false using $a=2, b=3$ and $c=-1$.
On the other hand, III and IV are both basic facts about the real number system; they are both true. Answer: (C)
3. $\int_{0}^{1} \int_{0}^{x} x y d y d x=$
(A) 0
(B) $1 / 8$
(C) $1 / 3$
(D) 1
(E) 3

Solution: We compute $\int_{0}^{x} x y d y=\left[x\left(y^{2} / 2\right)\right]_{\substack{y: \rightarrow 0}}^{\substack{y \rightarrow 0}}=\left[x\left(x^{2} / 2\right)\right]-0=x^{3} / 2$.
Then $\int_{0}^{1} \int_{0}^{x} x y d y d x=\int_{0}^{1}\left(x^{3} / 2\right) d x=\left[x^{4} / 8\right]_{\substack{x: \rightarrow 0}}^{\substack{x \rightarrow 1}}=[1 / 8]-0=1 / 8$.
Answer: (B)
4. For $x \geq 0, \frac{d}{d x}\left(x^{e} \cdot e^{x}\right)=$
(A) $x^{e} \cdot e^{x}+x^{e-1} \cdot e^{x+1}$
(B) $x^{e} \cdot e^{x}+x^{e+1} \cdot e^{x-1}$
(C) $x^{e} \cdot e^{x}$
(D) $x^{e-1} \cdot e^{x+1}$
(E) $x^{e+1} \cdot e^{x-1}$

Solution: Using the Product Rule,

$$
\begin{aligned}
& \quad \frac{d}{d x}\left(x^{e} \cdot e^{x}\right)=\left(e x^{e-1}\right)\left(e^{x}\right)+\left(x^{e}\right)\left(e^{x}\right)=x^{e-1} \cdot e^{x+1}+x^{e} \cdot e^{x} \\
& \text { so } \frac{d}{d x}\left(x^{e} \cdot e^{x}\right)=x^{e} \cdot e^{x}+x^{e-1} \cdot e^{x+1} \text {. Answer: (A) }
\end{aligned}
$$

5. All functions f defined on the $x y$-plane such that

$$
\frac{\partial}{\partial x}[f(x, y)]=2 x+y \quad \text { and } \quad \frac{\partial}{\partial y}[f(x, y)]=x+2 y
$$

are given by $f(x, y)=$
(A) $x^{2}+x y+y^{2}+C$
(B) $x^{2}-x y+y^{2}+C$
(C) $x^{2}-x y-y^{2}+C$
(D) $x^{2}+2 x y+y^{2}+C$
(E) $x^{2}-2 x y+y^{2}+C$

Solution: As $\frac{\partial}{\partial x}[f(x, y)]=2 x+y$ and $\frac{\partial}{\partial y}[f(x, y)]=x+2 y$, we see that there are functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& f(x, y)=x^{2}+x y+[g(y)] \quad \text { and } \\
& f(x, y)=x y+y^{2}+[h(x)] .
\end{aligned}
$$

Subtracting, we see that

$$
0=[f(x, y)]-[f(x, y)]=x^{2}+[g(y)]-y^{2}-[h(x)]
$$

so $[h(x)]-x^{2}=[g(y)]-y^{2}$. Setting $x: \rightarrow 0$, we see that

$$
[h(0)]-0^{2}=[g(y)]-y^{2}
$$

Let $C:=h(0)$. Then $C=[h(0)]-0^{2}=[g(y)]-y^{2}$, so $g(y)=y^{2}+C$, so $f(x, y)=x^{2}+x y+[g(y)]=x^{2}+x y+y^{2}+C$. Answer: (A)

Alternate solution: Simply computing $\partial / \partial x$ and $\partial / \partial y$ of each of the answers (A)-(E) shows that only (A) works. Answer: (A)

6. Which of the following could be the graph of the derivative of the function whose graph is shown in the figure above?
(A)

(B)

(C)

(D)

(E)

Solution: The graph consists, piecewise, of

- a negatively sloped half-line on the left,
- a horizontal line segment in the middle and
- a positively sloped half-line on the right.

The derivative will be, piecewise,

- a negative constant on the left,
- a zero constant in the middle and
- a positive constant on the right.

Answer: (C)

7. Which of the following integrals represents the area of the shaded portion of the rectangle shown in the figure above?
(A) $\int_{-1}^{1}(x+2-|x|) d x$
(B) $\int_{-1}^{1}(|x|+x+2) d x$
(C) $\int_{-1}^{1}(x+2) d x$
(D) $\int_{-1}^{1}|x| d x$
(E) $\int_{-1}^{1} 2 d x$

Solution: The line through $(-1,1)$ and $(1,3)$ is $y=x+2$. The two line segments

- from $(-1,1)$ to the origin and
- from the origin to $(1,1)$
are both on the graph of $y=|x|$. Thus we need to compute the area of the region

$$
\text { between } \quad y=x+2 \quad \text { and } \quad y=|x|
$$

from $x=-1$ to $x=1$. This is $\int_{-1}^{1}(x+2-|x|) d x$. Answer: (A)
8. $\sum_{n=1}^{\infty} \frac{n}{n+1}=$
(A) $\frac{1}{e}$
(B) $\log 2$
(C) 1
(D) e
(E) $+\infty$

Solution: We have $\frac{n}{n+1}=\frac{n / n}{(n+1) / n}=\frac{1}{1+(1 / n)} \rightarrow \frac{1}{1+0}=1>0$, as $n \rightarrow \infty$. Thus the terms of the series tend toward a positive number, and it follows that the series tends toward $+\infty$. Answer: (E)

