PROBLEMS IN PRACTICE TEST 4

52. Consider the following system of linear equations over the real numbers, where x, y and z are variables and b is a real constant.

$$
\begin{aligned}
& x+y+z=0 \\
& x+2 y+3 z=0 \\
& x+3 y+b z=0
\end{aligned}
$$

Which of the following statements are true?
I. There exists a value of b for which the system has no solution.
II. There exists a value of b for which the system has exactly one solution.
III. There exists a value of b for which the system has more than one solution.
(A) II only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II and III
53. In the complex plane, let C be the circle $|z|=2$ with positive (counterclockwise) orientation. Then $\int_{C} \frac{d z}{(z-1)(z+3)^{2}}=$
(A) 0
(B) $2 \pi i$
(C) $\frac{\pi i}{2}$
(D) $\frac{\pi i}{8}$
(E) $\frac{\pi i}{16}$
54. The inside of a certain water tank is a cube measuring 10 feet on each edge and having vertical sides and no top. Let $h(t)$ denote the water level, in feet, above the floor of the tank at time t seconds. Starting at time $t=0$, water pours into the tank at a constant rate of 1 cubic foot per second, and, simultaneously, water is removed from the tank at $0.25[h(t)]$ cubic feet per second. As $t \rightarrow \infty$, what is the limit of the volume of the water in the tank?
(A) 400 cubic feet
(B) 600 cubic feet
(C) 1,000 cubic feet
(D) The limit does not exist.
(E) The limit exists, but it cannot be determined without knowing $h(0)$.
55. Suppose that f is a twice-differentiable function on the set of real numbers and that $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$ are all negative. Suppose $f^{\prime \prime}$ has all three of the following properties:
I. It is increasing on the interval $[0, \infty)$.
II. It has a unique zero in the interval $[0, \infty)$.
III. It is unbounded on the interval $[0, \infty)$.

Which of the same three properties does f necessarily have?
(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II and III
56. For every nonempty set S and every metric d on S, which of the following is a metric on S ?
(A) $4+d$
(B) $e^{d}-1$
(C) $d-|d|$
(D) d^{2}
(E) \sqrt{d}

57 . Let \mathbb{R} be the field of real numbers and $\mathbb{R}[x]$ the ring of polynomials in x with coefficients in \mathbb{R}. Which of the following subsets of $\mathbb{R}[x]$ is a subring of $\mathbb{R}[x]$?
I. All polynomials in $\mathbb{R}[x]$ whose coefficient of x is zero
II. All polynomials in $\mathbb{R}[x]$ whose degree is an even integer, together with the zero polynomial
III. All polynomials in $\mathbb{R}[x]$ whose coefficients are rational numbers
(A) I only
(B) II only
(C) I and III only
(D) II and III only
(E) I, II and III
58. Let f be a real-valued function defined and continuous on the set \mathbb{R} of real numbers. Which of the following must be true of the set $S:=\{f(c) \mid 0<c<1\} ?$
I. S is a connected subset of \mathbb{R}.
II. S is an open subset of \mathbb{R}.
III. S is a bounded subset of \mathbb{R}.
(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II and III

