VARIATIONS ON PRACTICE TEST 4

52-1. Consider the following system of linear equations over the real numbers, where x, y and z are variables and b is a real constant.

$$
\begin{array}{r}
x+2 y+z=0 \\
2 x+4 y+3 z=0 \\
x+3 y+b z=0
\end{array}
$$

Which of the following statements are true?
I. There exists a value of b for which the system has no solution.
II. There exists a value of b for which the system has exactly one solution.
III. There exists a value of b for which the system has more than one solution.
(A) II only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II and III

[^0]52-2. Consider the following system of linear equations over the real numbers, where x, y and z are variables and b is a real constant.

$$
\begin{array}{r}
x+2 y+z=0 \\
2 x+4 y+3 z=0 \\
3 x+6 y+b z=0
\end{array}
$$

Which of the following statements are true?
I. There exists a value of b for which the system has no solution.
II. There exists a value of b for which the system has exactly one solution.
III. There exists a value of b for which the system has more than one solution.
(A) II only
(B) I and II only
(C) I and III only
(D) II and III only
(E) III only

53-1. In the complex plane, let C be the circle $|z+2|=2$ with negative (clockwise) orientation. Compute $\int_{C} \frac{d z}{(z-1)(z+3)^{2}}$.

53-2. In the complex plane, let C be the circle $|z|=4$ with negative (clockwise) orientation. Compute $\int_{C} \frac{d z}{(z-1)(z+3)^{2}}$.

54-1. Assume that, in a certain two-dimensional world, the wind velocity at any point (x, y) is $(-11 x+10 y,-10 x+14 y)$. A small particle is simply pushed by the wind. Its position at any time t is given by $(f(t), g(t))$. Assume that its velocity at time t is

$$
(-11[f(t)]+10[g(t)] \quad, \quad-10[f(t)]+14[g(t)] \quad)
$$

Because its velocity at time t is also given by $\left(f^{\prime}(t), g^{\prime}(t)\right)$, its motion will satisfy the equations:

$$
f^{\prime}(t)=-11[f(t)]+10[g(t)], \quad \quad g^{\prime}(t)=-10[f(t)]+14[g(t)]
$$

Assume that the initial position of the particle is $(f(0), g(0))=(0,1)$. We stand at the origin and watch the particle. Along what slope line will we look, asymptotically, as $t \rightarrow \infty$? That is, compute $\lim _{t \rightarrow \infty} \frac{g(t)}{f(t)}$.

54-2. Assume that, in a certain two-dimensional world, the wind velocity at any point (x, y) is $(-y, x)$. A small particle is simply pushed by the wind. Its position at any time t is given by $(f(t), g(t))$. Assume that its velocity at time t is $(-[g(t)], f(t))$. Because its velocity at time t is also given by $\left(f^{\prime}(t), g^{\prime}(t)\right)$, its motion will satisfy the equations:

$$
f^{\prime}(t)=-[g(t)], \quad \quad g^{\prime}(t)=f(t)
$$

Assume that the initial position of the particle is $(f(0), g(0))=(2,0)$. Find its position $(f(t), g(t))$ at any time t.

55-1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. True or False: If $f^{\prime}(0)=0$, then $f(x)$ has a local extremum at $x=0$.

55-2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. True or False: If $f(x)$ has a local extremum at $x=0$, then $f^{\prime}(0)=0$.

55-3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. True or False: If $f^{\prime}(x)$ has a local extremum at $x=0$, then $f(x)$ has a point of inflection at $x=0$.

55-4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. True or False: If $f(x)$ has a point of inflection at $x=0$, then $f^{\prime}(x)$ has a local extremum at $x=0$.
$55-5$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable. True or False: If $f^{\prime \prime}(0)=0$, then $f(x)$ has a point of inflection at $x=0$.

55-6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable. True or False: If $f(x)$ has a point of inflection at $x=0$, then $f^{\prime \prime}(0)=0$.

56-1. True or false: For any metric d on \mathbb{R}, there is a norm $\|\bullet\|$ on \mathbb{R} such that, for all $x, y \in \mathbb{R}, d(x, y)=\|x-y\|$.

56-2. True or false: For every norm $\|\bullet\|$ on \mathbb{R}, there is an inner product $\langle\bullet, \bullet\rangle$ on \mathbb{R} such that, for all $x \in \mathbb{R}$, we have $\|x\|^{2}=\langle x, x\rangle$.

56-3. True or false: For every norm $\|\bullet\|$ on \mathbb{R}^{2}, there is an inner product $\langle\bullet, \bullet\rangle$ on \mathbb{R}^{2} such that, for all $v \in \mathbb{R}^{2}$, we have $\|v\|^{2}=\langle v, v\rangle$.
$57-1$. Let \mathbb{R} be the field of real numbers and $\mathbb{R}[x]$ the ring of polynomials in x with coefficients in \mathbb{R}. Which of the following subsets of $\mathbb{R}[x]$ is a subring of $\mathbb{R}[x]$?
I. All polynomials in $\mathbb{R}[x]$ whose coefficient of x^{2} is zero
II. All polynomials in $\mathbb{R}[x]$ all of whose terms have even degree, including the zero polynomial.
III. All polynomials in $\mathbb{R}[x]$ whose coefficients are nonnegative real numbers.

58-1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and injective. Let U be an open subset of \mathbb{R}. True or false: $f(U)$ is necessarily an open subset of \mathbb{R}.

58-2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Let U be an open subset of \mathbb{R}. True or false: $f(U)$ is necessarily an open subset of \mathbb{R}.

58-3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Let U be an open subset of \mathbb{R}. True or false: $f^{-1}(U)$ is necessarily an open subset of \mathbb{R}.

58-4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Let B be a bounded subset of \mathbb{R}. True or false: $f(B)$ is necessarily a bounded subset of \mathbb{R}.

58-5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Let B be a bounded subset of \mathbb{R}.
True or false: $f^{-1}(B)$ is necessarily a bounded subset of \mathbb{R}.
58-6. Let $f:(0,1) \rightarrow \mathbb{R}$ be continuous. Let B be a bounded subset of \mathbb{R}. Assume that $B \subseteq(0,1)$. True or false: $f(B)$ is necessarily a bounded subset of \mathbb{R}.

[^0]: Date: Printout date: September 6, 2015.

