
SOLUTIONS OF VARIATIONS, PRACTICE TEST 4

52-1. Consider the following system of linear equations over the real

numbers, where x, y and z are variables and b is a real constant.

x + 2y + z = 0

2x + 4y + 3z = 0

x + 3y + bz = 0

Which of the following statements are true?

I. There exists a value of b for which the system has no solution.

II. There exists a value of b for which the system has exactly one

solution.

III. There exists a value of b for which the system has more than

one solution.

(A) II only

(B) I and II only

(C) I and III only

(D) II and III only

(E) I, II and III

Solution: Let

M :=

 1 2 1

2 4 3

1 3 b

 and v :=

 x

y

z

 and 0 :=

 0

0

0

 .
Then the given system can be written, in matrix form, as Mv = 0.

Since, for every b ∈ R, x = y = z = 0 is a solution to Mv = 0, it

follows that I is false. For every b ∈ R,

the solution x = y = z = 0 is the only solution of Mv = 0

iff

detM = 0.
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For every b ∈ R, by expanding detM along the third row of M , we get

detM = 1 · det

[
2 1

4 3

]
− 3 · det

[
1 1

2 3

]
+ b · det

[
1 2

2 4

]
= 1 · 2− 3 · 1 + b · 0 = −1.

Therefore, for all b ∈ R, the equation Mv = 0 has exactly one solution.

So II is true and III is false. Answer: (A) �

52-2. Consider the following system of linear equations over the real

numbers, where x, y and z are variables and b is a real constant.

x + 2y + z = 0

2x + 4y + 3z = 0

3x + 6y + bz = 0

Which of the following statements are true?

I. There exists a value of b for which the system has no solution.

II. There exists a value of b for which the system has exactly one

solution.

III. There exists a value of b for which the system has more than

one solution.

(A) II only

(B) I and II only

(C) I and III only

(D) II and III only

(E) III only

Solution: Let

M :=

 1 2 1

2 4 3

3 6 b

 and v :=

 x

y

z

 and 0 :=

 0

0

0

 .
Then the given system can be written, in matrix form, as Mv = 0.

Since, for every b ∈ R, x = y = z = 0 is a solution to Mv = 0, it

follows that I is false. For every b ∈ R,

the solution x = y = z = 0 is the only solution of Mv = 0

iff

detM = 0.
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For every b ∈ R, by expanding detM along the third row of M , we get

detM = 3 · det

[
2 1

4 3

]
− 6 · det

[
1 1

2 3

]
+ b · det

[
1 2

2 4

]
= 3 · 2− 6 · 1 + b · 0 = 0.

Therefore, for all b ∈ R, the equation Mv = 0 has more than one

solution. So II is false and III is true. Answer: (E) �

53-1. In the complex plane, let C be the circle |z+2| = 2 with negative

(clockwise) orientation. Compute

∫
C

dz

(z − 1)(z + 3)2
.

Solution: Define g : C\{1} → C by g(z) =
1

z − 1
. We wish to compute∫

C

g(z)

(z + 3)2
dz.

Let c0 := g(−3), c1 := g′(−3), c2 :=
g′′(−3)

2!
, . . . be the Taylor co-

efficients of g at −3. As g is holomorphic on C\{1}, it follows that

g is holomorphic at −3. So choose a neighborhood N in C of −3 such

that, for all z ∈ N , g(z) =
∞∑
k=0

ck(z + 3)k. Let C ′ be a circle in the

complex plane, centered at −3, contained in N , with negative orienta-

tion. By Cauchy’s Theorem,

∫
C

g(z)

(z + 3)2
dz =

∫
C′

g(z)

(z + 3)2
dz. Then∫

C

g(z)

(z + 3)2
dz =

∫
C′

[
∞∑
k=0

ck(z + 3)k−2

]
dz. Splitting off the first two

terms, we conclude that∫
C

g(z)

(z + 3)2
dz =

(∫
C′

c0
(z + 3)2

dz

)
+

(∫
C′

c1
z + 3

dz

)
+(∫

C′

[
∞∑
k=2

ck(z + 3)k−2

]
dz

)
.

By Cauchy’s Theorem,

∫
C′

[
∞∑
k=2

ck(z + 3)k−2

]
dz = 0; and note that

this sum starts with k = 2, not k = 0. Then∫
C

g(z)

(z + 3)2
dz =

(∫
C′

c0
(z + 3)2

dz

)
+

(∫
C′

c1
z + 3

dz

)
.
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Parametrization of C ′ and computation (remembering the negative ori-

entation of C ′) gives∫
C′

1

(z + 3)2
dz = 0 and

∫
C′

1

z + 3
dz = −2πi.

We have c1 = g′(−3) =
−1

(−3− 1)2
= − 1

16
. Then∫

C′

c0
(z + 3)2

dz = 0 and

∫
C′

c1
z + 3

dz = −2πic1 =
πi

8
.

Then ∫
C

g(z)

(z + 3)2
dz =

(∫
C′

c0
(z + 3)2

dz

)
+

(∫
C′

c1
z + 3

dz

)
= 0 +

πi

8
=
πi

8
. �

Alternate solution: The integrand is holomorphic inside C, except at

z = −3. The winding number of C around z = −3 is equal to −1. The

Taylor expansion of
1

z − 4
about z = 0 begins

−1

4
+
−1

16
z + · · ·. Chang-

ing z to z+ 3, we see that the Taylor expansion of
1

z − 1
about z = −3

begins
−1

4
+
−1

16
(z + 3) + · · ·. Then the residue of

1

(z − 1)(z + 3)2
at

z = −3 is
−1

16
. So, by the Residue Theorem, the integral is

[−1]

[
−1

16

]
[2πi] =

πi

8
. �

53-2. In the complex plane, let C be the circle |z| = 4 with negative

(clockwise) orientation. Compute

∫
C

dz

(z − 1)(z + 3)2
.

Solution: Define f : C\{−3, 1} → C by f(z) =
1

(z − 1)(z + 3)2
. We

wish to compute

∫
C

f(z) dz.

Let C ′ be a small circle in C about z = 1 on which and inside of

which the Taylor expansion of
1

(z + 3)2
converges absolutely. Let C ′′

be a small circle in C about z = −3 on which and inside of which
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the Taylor expansion of
1

z − 1
converges absolutely. Give C ′ and C ′′

negative orientations. By Cauchy’s Theorem,∫
C

f(z) dz =

[∫
C′
f(z) dz

]
+

[∫
C′′

f(z) dz

]
.

The Taylor expansion of
1

(z + 3)2
about z = 1 begins

1

(z + 3)2
=

1

16
+ · · · .

Then, on C ′, we have

f(z) =
1

16(z − 1)
+ · · · ,

where the remainder, denoted · · · , is holomorphic, and so, by Cauchy,

integrates to 0 around C ′. Remembering that C ′ is oriented negatively,∫
C′
f(z) dz =

∫
C′

dz

16(z − 1)
dz =

−2πi

16
= −πi

8
.

The Taylor expansion of
1

z − 4
about z = 0 begins

−1

4
+
−1

16
z + · · ·.

Changing z to z + 3, we see that the Taylor expansion of
1

z − 1
about

z = −3 begins
−1

4
+
−1

16
(z + 3) + · · ·. Then, on C ′′, we have

f(z) =
−1

4(z + 3)2
+

−1

16(z + 3)
+ · · · ,

where the remainder, denoted · · · , is holomorphic, and so, by Cauchy,

integrates to 0 around C ′′. Remembering that C ′′ is oriented negatively,∫
C′′

f(z) dz =

[∫
C′′

−dz
4(z + 3)2

dz

]
+

[∫
C′′

−dz
16(z + 3)

dz

]
= 0 +

[
2πi

16

]
=

πi

8
.

Then ∫
C

f(z) dz =

[
−πi

8

]
+

[
πi

8

]
= 0. �

Alternate solution: Let f(z) =
1

(z − 1)(z + 3)2
be the integrand, which

is holomorphic inside C, except at z = 1 and z = −3.
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The winding number of C around z = 1 is equal to −1. The residue

of f(z) at z = 1 is
1

(1 + 3)2
=

1

16
.

The winding number of C around z = −3 is equal to −1. The Tay-

lor expansion of
1

z − 4
about z = 0 begins

−1

4
+
−1

16
z + · · ·. Chang-

ing z to z + 3, the Taylor expansion of
1

z − 1
about z = −3 begins

−1

4
+
−1

16
(z + 3) + · · ·. Then the residue of f(z) at z = −3 is

−1

16
.

So, by the Residue Theorem, the integral is

[−1]

[
1

16

]
[2πi] + [−1]

[
−1

16

]
[2πi] = 0. �

Alternate solution: Let C0 be the circle |z| = 4 with positive (counter-

clockwise) orientation; it is the same circle as C, but positively oriented.

We will change the variable z to
16

w
in the integral

∫
C

dz

(z − 1)(z + 3)2
.

Then C changes to C0 and dz changes to
−16 dw

w2
. Then∫

C

dz

(z − 1)(z + 3)2
=

∫
C0

−16 dw

w2((16/w)− 1)((16/w) + 3)2

=

∫
C0

−16w dw

w((16/w)− 1)w2((16/w) + 3)2

=

∫
C0

−16w dw

(16− w)(16 + 3w)2
.

The integrand
−16w dw

(16− w)(16 + 3w)2
is holomorphic except at 16 and

−16/3 which are both outside of C. Thus, by Cauchy’s Theorem,∫
C0

−16w dw

(16− w)(16 + 3w)2
= 0. Then

∫
C

dz

(z − 1)(z + 3)2
= 0. �

NOTE: The idea of this last solution is that the original integrand

(in z) has poles inside the circle, but, if we add a point at infinity,

obtaining the Riemann sphere, then the poles are all on one side of the

circle. On a sphere, the northern hemisphere is indisinguishable from

the southern hemisphere, and the circles C and C0 can be thought of

as the equator. Geometrically, the change of variables (from z to w)

simply interchanges the two hemispheres. This trick works in many

situations, but we need to issue a . . .
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WARNING: If we try to use this trick to compute

∫
C

dz

z
, we do not

get 0, and, in fact,

∫
C

dz

z
= 2πi. Here’s . . .

THE POINT: Recall that dz changes to
−16 dw

w2
. Some care is required

to be sure that the transformed integrand (in w) does not have a pole

at w = 0, coming from the pole (of order two) at w = 0 in
−16

w2
.

In other words, if we simply transform the original integrand (in z),

ignoring the differential dz, then, in the resulting expression (in w), no

pole would appear. However, the differential dz itself transforms to a

new differential with a pole of order two at w = 0. If we’re lucky, then

that “resulting expression (in w)” will have a zero of order (at least)

two at w = 0. If so, then, by Cauchy, the transformed integral is 0,

and, consequently, so is the original integral.

54-1. Assume that, in a certain two-dimensional world, the wind ve-

locity at any point (x, y) is (−11x+ 10y,−10x+ 14y). A small particle

is simply pushed by the wind. Its position at any time t is given by

(f(t), g(t)). Assume that its velocity at time t is

( −11[f(t)] + 10[g(t)] , −10[f(t)] + 14[g(t)] ).

Because its velocity at time t is also given by (f ′(t), g′(t)), its motion

will satisfy the equations:

f ′(t) = −11[f(t)] + 10[g(t)], g′(t) = −10[f(t)] + 14[g(t)].

Assume that the initial position of the particle is (f(0), g(0)) = (0, 1).

We stand at the origin and watch the particle. Along what slope line

will we look, asymptotically, as t→∞? That is, compute lim
t→∞

g(t)

f(t)
.

Solution: Let M :=

[
−11 10

−10 14

]
, and let I :=

[
1 0

0 1

]
. Define the

function p : R → R2×1 by p(t) =

[
f(t)

g(t)

]
. The characteristic polyno-

mial of M is det (M − λI) = λ2 − 3λ − 54 = (λ − 9)(λ + 6), so the

eigenvalues of M are 9 and −6. We have M − 9I =

[
−20 10

−10 5

]
. The
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9-eigenspace of M is the kernel of M − 9I, which is spanned by

[
1

2

]
.

We have M + 6I =

[
−5 10

−10 20

]
. The (−6)-eigenspace of M is the

kernel of M + 6I, which is spanned by

[
2

1

]
. Let

v :=

[
1

2

]
and w :=

[
2

1

]
.

Then Mv = 9v and Mw = −6w. Then, for all t ∈ R, we have

etMv = e9tv and etMw = e−6tw.

At any time t, we have p′(t) = M · [p(t)]. Let u :=

[
0

1

]
. The initial

position of the particle is p(0) = u. Then the position of the particle, at

any time t, is given by p(t) = etMu. We calculate v− (1/2)w = (3/2)u,

so u = (2/3)v − (1/3)w. Then, at any time t, we have

p(t) = (2/3)e9tv − (1/3)e−6tw,

so [
f(t)

g(t)

]
= p(t) =

[
(2/3)e9t − (2/3)e−6t

(4/3)e9t − (1/3)e−6t

]
,

so
g(t)

f(t)
=

(4/3)e9t − (1/3)e−6t

(2/3)e9t − (2/3)e−6t
=

(4/3)− (1/3)e−15t

(2/3)− (2/3)e−15t
.

Then

lim
t→∞

g(t)

f(t)
=

4/3

2/3
= 2. �

54-2. Assume that, in a certain two-dimensional world, the wind ve-

locity at any point (x, y) is (−y, x). A small particle is simply pushed

by the wind. Its position at any time t is given by (f(t), g(t)). Assume

that its velocity at time t is (−[g(t)], f(t)). Because its velocity at time

t is also given by (f ′(t), g′(t)), its motion will satisfy the equations:

f ′(t) = −[g(t)], g′(t) = f(t).

Assume that the initial position of the particle is (f(0), g(0)) = (2, 0).

Find its position (f(t), g(t)) at any time t.
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Solution: Let M :=

[
0 −1

1 0

]
, and let I :=

[
1 0

0 1

]
. Define the func-

tion p : R → R2×1 by p(t) =

[
f(t)

g(t)

]
. The characteristic polynomial

of M is det (M−λI) = λ2+1 = (λ−i)(λ+i). Letting i denote a square

root of −1 in the complex numbers, the eigenvalues of M are i and −i.

We have M − iI =

[
−i −1

1 −i

]
. The i-eigenspace of M is the kernel of

M−iI, which is spanned by

[
i

1

]
. We have M + iI =

[
i −1

1 i

]
. The

(−i)-eigenspace of M is the kernel of M+iI, which is spanned by

[
1

i

]
.

Let v :=

[
i

1

]
and w :=

[
1

i

]
. Then Mv = iv and Mw = −iw. Then,

for all t ∈ R, we have: etMv = eitv and etMw = e−itw.

At any time t, we have p′(t) = M · [p(t)]. Let u :=

[
2

0

]
. The initial

position of the particle is p(0) = u. Then the position of the particle,

at any time t, is given by p(t) = etMu. We calculate iv − w = −u, so

u = −iv + w. Then, at any time t, we have

p(t) = −ieitv + e−itw,

so [
f(t)

g(t)

]
= p(t) =

[
eit + e−it

−ieit + ie−it

]
,

so f(t) = eit + e−it = 2 cos t and g(t) = −ieit + ie−it = 2 sin t, so

( f(t) , g(t) ) = ( 2 cos t , 2 sin t ). �

Alternate solution: At any point (x, y), the velocity of the wind is

(−y, x), and this is not hard to visualize, as follows: Pick a finite

collection of points (xi, yi) in the plane, and, for each of these, draw an

arrow that

• starts at (or “is footed at”) the point (xi, yi),

• has run −yi,
• has rise xi, and, therefore,

• ends at (xi − yi, yi + xi).
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We will draw this picture, using the following 16 points:

(1, 0), (0, 1), (−1, 0), (0,−1),

(3, 0), (0, 3), (−3, 0), (0,−3),

(2, 0), (0, 2), (−2, 0), (0,−2),

(
√

2,
√

2), (−
√

2,
√

2), (−
√

2,−
√

2), (
√

2,−
√

2).

Note that the last eight points are on the circle x2 + y2 = 4, which

is represented in blue in the picture below. The last arrow starts at

(
√

2,−
√

2), runs −(−
√

2) =
√

2, and rises
√

2. It therefore ends at

(
√

2 +
√

2,−
√

2 +
√

2) = (2
√

2, 0). Thus the last arrow starts on the

blue circle x2 + y2 = 4 and ends on the x-axis, slightly to the left

of (3, 0). This arrow, together with the other 15, results in the 16 red

arrows appearing in the picture below.

Note that each red arrow is perpendicular to

the line from its footpoint (i.e., starting point) to the origin.

Moreover, any radius from a point on a circle to the circle’s center is

perpendicular to the circle’s tangent at that same point. From these

observations we see that, if a particle, at a certain time t, is on

a circle centered at the origin,

then it must be travelling tangent to that circle, and so the instanta-

neous rate of change in

the distance from the particle to the origin
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is equal to zero. That is, the distance from the particle to the origin

has derivative 0 at any time. That is, the distance from the particle to

the origin is constant. The particle we wish to study in this question

starts at (2, 0), which is on the blue circle, and so it must travel around

that circle. Moreover, every arrow footed on the blue circle will have

length 2, and so our particle travels with speed 2 at all times. The

distance around the circle is 4π, so the particle revolves once around the

origin (i.e., covers 2π radians) every 2π units of time. Thus, between

time 0 and a time t, it has traveled through t radians. It also travels

counterclockwise. Therefore, by trigonometry, we see that its position

at any time t is given by (f(t), g(t)) = (2 cos t, 2 sin t). �

55-1. Let f : R→ R be differentiable. True or False: If f ′(0) = 0, then

f(x) has a local extremum at x = 0.

Solution: False. Counterexample: Define f : R → R by f(x) = x3.

Then f ′(0) = 0, but f is increasing on R, so f has no local extrema. �

55-2. Let f : R → R be differentiable. True or False: If f(x) has a

local extremum at x = 0, then f ′(0) = 0.

Solution: True. This is Fermat’s Theorem (a.k.a. the Interior Ex-

tremum Theorem). �

55-3. Let f : R → R be differentiable. True or False: If f ′(x) has a

local extremum at x = 0, then f(x) has a point of inflection at x = 0.

Solution: True. Proof: Assume that f ′(x) has a local extremum at

x = 0. We wish to show that f(x) has a point of inflection at x = 0.

We will assume that f ′(x) has a local maximum at x = 0; the proof

for local minimum is similar. Choose δ > 0 such that f ′(x) is increasing

on −δ < x < 0 and such that f ′(x) is decreasing on 0 < x < δ. Then

f(x) is concave up on −δ < x < 0 and concave down on 0 < x < δ.

Thus f(x) has a point of inflection at x = 0. �
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55-4. Let f : R → R be differentiable. True or False: If f(x) has a

point of inflection at x = 0, then f ′(x) has a local extremum at x = 0.

Solution: True. Proof: Assume that f(x) changes concavity at x = 0.

We wish to show that f ′(x) has a local extremum at x = 0.

We will assume that f(x) changes from concave up to concave down

at x = 0, when x moves from left to right; the proof for

changing from concave down to concave up

is similar. Choose δ > 0 such that f(x) is concave up on −δ < x < 0

and concave down on 0 < x < δ. It then follows that f ′(x) is increasing

on −δ < x < 0 and decreasing on 0 < x < δ. Then f ′(x) has a local

maximum at x = 0. Then f ′(x) has a local extremum at x = 0. �

55-5. Let f : R→ R be twice differentiable. True or False: If f ′′(0) = 0,

then f(x) has a point of inflection at x = 0.

Solution: False. Counterexample: Define f : R → R by f(x) = x4.

Then f ′′(0) = 0. On the other hand, f is concave up on R, so f has no

points of inflection. �

55-6. Let f : R→ R be twice differentiable. True or False: If f(x) has

a point of inflection at x = 0, then f ′′(0) = 0.

Solution: True. Proof: By Problem 55-2, f ′(x) has a local extremum

at x = 0. Then, by Fermat’s Theorem (a.k.a. the Interior Extremum

Theorem), f ′′(0) = 0. �
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56-1. True or false: For any metric d on R, there is a norm ‖ • ‖ on R
such that, for all x, y ∈ R, d(x, y) = ‖x− y‖.

Solution: False. Counterexample: Let | • | denote absolute value on R
and define a metric d on R by d(x, y) = min{|x − y|, 1}. Let ‖ • ‖ be

a norm on on R, and assume: for all x, y ∈ R, d(x, y) = ‖x − y‖. We

aim for a contradiction.

Let a := ‖1‖. Then a > 0. Let x := 2/a and let y := 0. Then, by

assumption, d(x, y) = ‖x − y‖. Since x > 0, we get |x| = x = 2/a.

Then |x| · ‖1‖ = xa = 2. We have d(x, y) = d(x, 0) = min{|x|, 1} ≤ 1.

Also, we have ‖x − y‖ = ‖x − 0‖ = ‖x‖ = |x| · ‖1‖ = 2. Then

d(x, y) ≤ 1 < 2 = ‖x− y‖. Contradiction.

NOTE: Every norm on R is a positive multiple of absolute value, so

the collection of norms on R is very restricted. (For n ≥ 2, norms

on Rn are much more plentiful.) On the other hand, there are lots of

metrics on R, and there are many ways to manipulate one metric to

get another. For example, if δ is a metric on a set S, then we can form

another metric δ′ on S by defining δ′(x, y) = min{δ(x, y), 1}. In fact,

if we define f : [0,∞) → [0,∞) by f(t) = min{t, 1}, then f is semi-

increasing and semi-concave down and, moreover, we have f(0) = 0.

It turns out that because of these three properties of f , we can prove

that f ◦ δ is a metric. Since δ′ = f ◦ δ, we get that δ′ is a metric. If

you are aware of all of these facts, then it’s easy to find a metric on R
that doesn’t come from a norm. �

56-2. True or false: For every norm ‖•‖ on R, there is an inner product

〈•, •〉 on R such that, for all x ∈ R, we have ‖x‖2 = 〈x, x〉.

Solution: True. Proof: Let ‖ • ‖ be a norm on R. We wish to show

that there is an inner product 〈•, •, 〉 on R such that, for all x ∈ R, we

have ‖x‖2 = 〈x, x〉.
Let a := ‖1‖. Then, for all x ∈ R, we have ‖x‖ = |x| · ‖1‖ = a · |x|.

Define an inner product 〈•, •〉 on R by 〈x, y〉 = a2xy. Given x ∈ R.

We wish to prove that ‖x‖2 = 〈x, x〉.
We have |x|2 = x2, so ‖x‖2 = (a · |x|)2 = a2x2 = 〈x, x〉. �

NOTE: Every norm on R is a positive multiple of absolute value, so the

collection of norms on R is very restricted. Every inner product on R is



14 SOLUTIONS OF VARIATIONS, PRACTICE TEST 4

a positive multiple of multiplication, so the collection of inner products

on R2 is similarly restricted. So, since the absolute value norm comes

from the multiplication inner product, it follows that every norm comes

from an inner product.

56-3. True or false: For every norm ‖ • ‖ on R2, there is an inner

product 〈•, •〉 on R2 such that, for all v ∈ R2, we have ‖v‖2 = 〈v, v〉.

Solution: False. Counterexample: Let | • | denote the absolute value

on R. Define a norm ‖ • ‖ on R2 by ‖(x, y)‖ = |x|+ |y|. Let 〈•, •〉 be a

metric on R2. Assume, for all v ∈ R2, that ‖v‖2 = 〈v, v〉. We aim for

a contradiction.

Let p := (1, 0) and q := (0, 1). We have

〈p, p〉 = ‖p‖2 = [|1|+ |0|]2 = 1

and

〈q, q〉 = ‖q‖2 = [|0|+ |1|]2 = 1

and

〈p+ q, p+ q〉 = ‖p+ q‖2 = [|1|+ |1|]2 = 4.

Then

4 = 〈p+ q, p+ q〉 = 〈p, p〉+ 2〈p, q〉+ 〈q, q〉 = 1 + 2〈p, q〉+ 1,

so 2 = 2〈p, q〉, so 1 = 〈p, q〉. Then

〈p− q, p− q〉 = 〈p, p〉 − 2〈p, q〉+ 〈q, q〉 = 1− 2 · 1 + 1 = 0,

so ‖p − q‖2 = 〈p − q, p − q〉 = 0. On the other hand, we calculate

‖p− q‖2 = [|1|+ | − 1|]2 = 4. Contradiction. �

NOTE: A norm is always determined by its unit level set. Thus ques-

tions about norms can be rephrased in geometric terms.

For a norm coming from an inner product on R2, the unit level set

of the norm will be an ellipse; it will have no corners. It’s easy to

make a norm on R2 whose unit level set has corners. One example

is ‖(x, y)‖ = |x| + |y|; the unit level set of this norm is a diamond

with corners at (1, 0), (0, 1), (−1, 0) and (0,−1). Once you realize that

this norm, for geometric reasons, cannot possibly come from an inner

product, you know that the answer is false.

The argument above is simply an effort to find an algebraic argument

to confirm that geometric reasoning. By polarization, when a norm

does come from an inner product, that inner product is determined
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from the norm. One may therefore calculate quantities like 〈p, q〉 by

using the polarization formula. If you accumulate enough calculated

inner product values, you can form the matrix of 〈•, •〉, and see that

it’s not positive definite, giving the contradiction.

57-1. Let R be the field of real numbers and R[x] the ring of polynomials

in x with coefficients in R. Which of the following subsets of R[x] is a

subring of R[x]?

I. All polynomials in R[x] whose coefficient of x2 is zero

II. All polynomials in R[x] all of whose terms have even degree,

including the zero polynomial.

III. All polynomials in R[x] whose coefficients are nonnegative real

numbers.

Solution: Let WI , WII and WIII be the three subsets of R[x] described

in I, II and III, respectively. Let U := {1, x, x2, x3, x4, x5, x6, . . .} be

the set of monomials in x. Then R[x] is the R-span of U .

Since x ∈ WI , and since x · x = x2 /∈ WI , it follows that WI is not

closed under multiplication, and so is not a subring of R[x].

Let UII := {1, x2, x4, x6, . . .}. Then WII is the R-span of UII . Since

UII is closed under multiplication, so is WII . Since WII is closed un-

der finite R-linear combinations, it follows that WII is closed under

subtraction. Then WII is a subring of R[x].

Since x, 2x ∈ WIII , but x− 2x = −x /∈ WIII , it follows that WIII is

not closed under subtraction, and so is not a subring of R[x]. �
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58-1. Let f : R → R be continuous and injective. Let U be an open

subset of R. True or false: f(U) is necessarily an open subset of R.

Solution: True. Proof: Any continuous injective function R → R is

either increasing or decreasing. We will assume that f is increasing;

the proof for decreasing f is similar.

Let V be a set of bounded open intervals such that ∪V = U . Then

f(U) = ∪{f(V ) |V ∈ V}, so it suffices to prove, for all V ∈ V , that

f(V ) is an open subset of R. Given V ∈ V . We wish to show that

f(V ) is open.

Let a := inf V and let b := supV . Then V = (a, b). So, since f is

increasing f(V ) = (f(a), f(b)). Then f(V ) is a bounded open interval,

and, in particular, is open. �

58-2. Let f : R → R be continuous. Let U be an open subset of R.

True or false: f(U) is necessarily an open subset of R.

Solution: False. Counterexample: Define f : R→ R by f(x) = x2, and

let U := (−1, 1). Then f(U) = [0, 1), so f(U) is not open. �

58-3. Let f : R → R be continuous. Let U be an open subset of R.

True or false: f−1(U) is necessarily an open subset of R.

Solution: True, because the preimage of an open set under a continuous

function is always open. �

58-4. Let f : R→ R be continuous. Let B be a bounded subset of R.

True or false: f(B) is necessarily a bounded subset of R.

Solution: True. Proof: Since B is bounded, choose a compact inteval

C in R such that B ⊆ C. Then f(B) ⊆ f(C). The image of a compact

set under a continuous map is compact, so f(C) is compact. Then f(C)

is bounded. So, since f(B) ⊆ f(C), we see that f(B) is bounded. �
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58-5. Let f : R→ R be continuous. Let B be a bounded subset of R.

True or false: f−1(B) is necessarily a bounded subset of R.

Solution: False. Counterexample: Define the function f : R → R by

f(x) = 1/(x2+1), and let B := (0, 1]. For all x ∈ R, we have x2+1 ≥ 1,

so f(x) ≤ 1. For all x ∈ R, we have x2 + 1 > 0, so f(x) > 0. Then,

for all x ∈ R, we have 0 < f(x) ≤ 1. Then f(R) ⊆ (0, 1] = B. Then

R ⊆ f−1(B). Thus f−1(B) is bounded. �

NOTE: The function f defined above is not injective, so leaves open

the question of whether an injective counterexample exists. It turns

out that it’s not possible to find an injective rational counterexample.

However, the agebraic function f : R→ R defined by f(x) =
x√
x2 + 1

is injective and continuous and satisfies f(R) = (−1, 1). So, setting

B := (−1, 1), we have f−1(B) = R, and so f−1(B) is bounded.

58-6. Let f : (0, 1) → R be continuous. Let B be a bounded subset

of R. Assume that B ⊆ (0, 1). True or false: f(B) is necessarily a

bounded subset of R.

Solution: False: Counterexample: Define f : (0, 1)→ R by f(x) = 1/x

and let B := (0, 1). For every integer n > 1, we have 1/n ∈ B, so

n = f(1/n) ∈ f(B). Thus {2, 3, 4, . . .} ⊆ f(B). So, since {2, 3, 4, . . .}
is unbounded, it follows that f(B) is unbounded. �


