VERSION D

MATH 1271 Fall 2011, Midterm #2 Handout date: Thursday 10 November 2011

PRINT YOUR NAME:

SOLUTIONS

PRINT YOUR TA'S NAME:

WHAT SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

I. Multiple choice

A. (5 pts) (no partial credit) Find the logarithmic derivative of $(2 + \sin x)^x$ w.r.t. x.

- (a) $\cos x$
- (b) $\ln(\cos x)$

$$(c) (\ln(2+\sin x)) + \left(\frac{x\cos x}{2+\sin x}\right)$$

$$\frac{d}{dx} \left[x \left(\ln (2 + \sin x) \right) \right]$$

(d)
$$[(2 + \sin x)^x] \left[(\ln(2 + \sin x)) + \left(\frac{x \cos x}{2 + \sin x} \right) \right]$$

(e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Find the derivative of $(2 + \sin x)^x$ w.r.t. x.

- (a) $\cos x$
- (b) $\ln(\cos x)$

(c)
$$(\ln(2+\sin x)) + \left(\frac{x\cos x}{2+\sin x}\right)$$

$$(d) [(2+\sin x)^x] \left[(\ln(2+\sin x)) + \left(\frac{x\cos x}{2+\sin x} \right) \right]$$

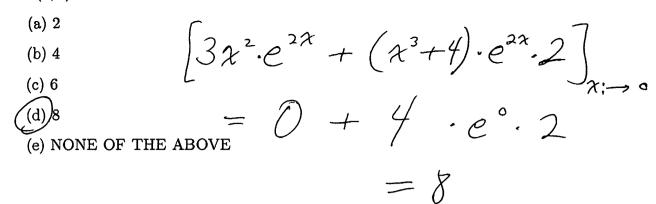
(e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Compute $\lim_{x\to 0} \left[\frac{\sin^2 x}{4x^3 + 2x^2} \right]$.

- (a) 2
- (b) 1
- (c)1/2
 - (d) 1/4
 - (e) NONE OF THE ABOVE

$$\frac{x^2}{2x^2} = \frac{1}{2} \longrightarrow \frac{1}{2}$$

D. (5 pts) (no partial credit) Find the slope of the tangent line to $y = (x^3 + 4)e^{2x}$ at the point (0,4).



E. (5 pts) (no partial credit) Find the logarithmic derivative of $x^2 + 3x - 8$ w.r.t. x.

$$\underbrace{\text{(a)}}_{x^2 + 3x - 8}$$

(b)
$$\frac{x^2 + 3x - 8}{2x + 3}$$

(c)
$$(\ln(x^2)) + 3(\ln x) - (\ln 8)$$

(d)
$$ln(2x+3)$$

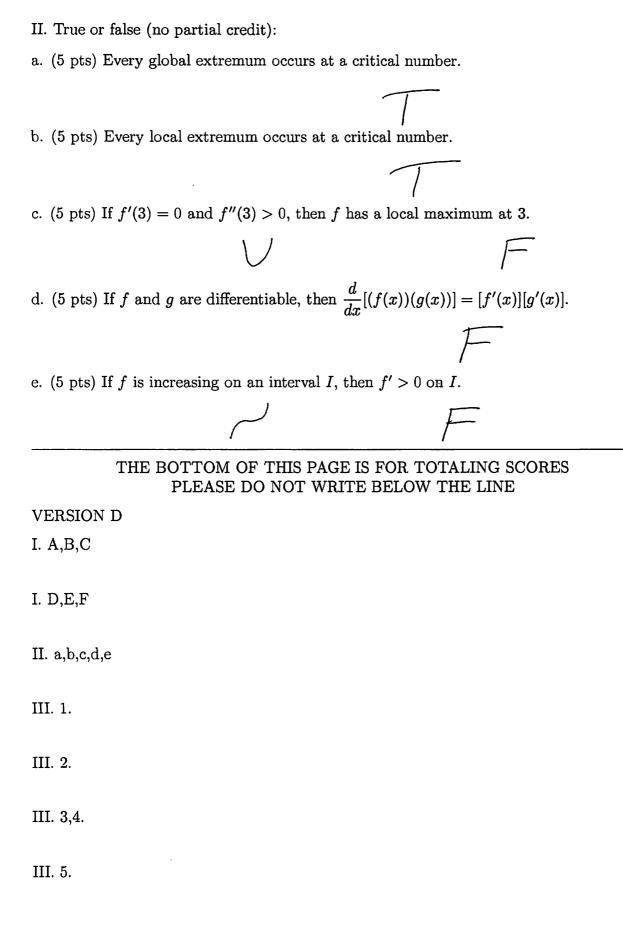
(e) NONE OF THE ABOVE

F. (5 pts) (no partial credit) Suppose $f'(x) = -x^2 + 3x - 2$. At most one of the following statements is true. If one is, circle it. Otherwise, circle "NONE OF THE ABOVE".

- (a) f is increasing on $(-\infty, 1]$, decreasing on [1, 2] and increasing on $[2, \infty)$.
- (b) f is decreasing on $(-\infty, 1]$, increasing on [1, 2] and decreasing on $[2, \infty)$.
- (c) f is increasing on $(-\infty, -2]$, decreasing on [-2, -1] and increasing on $[-1, \infty)$.
- (d) f is decreasing on $(-\infty, -2]$, increasing on [-2, -1] and decreasing on $[-1, \infty)$.
- (e) NONE OF THE ABOVE

$$f(x) = -(x^2 - 3x + 2)$$
= -(x-1)(x-2)

f'neg 0 pos 0 neg



III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Compute
$$\frac{d}{dx} \left[\frac{2x^3 - 8}{\arctan x} + xe^{\sin x} \right]$$

$$\frac{\left(\arctan x\right)(6x^2) - \left(2x^3 - 8\right)\left(\frac{1}{1 + x^2}\right)}{\left(\arctan x\right)^2} +$$

$$\left[\left(e^{\sin x}\right) + \chi\left(e^{\sin x}\right)\left(\cos x\right)\right]$$

2. (10 pts) Using implicit differentiation (and logarithmic differentiation), find y' = dy/dx, assuming that $(2 + y^2)^{xy} = 9$.

$$y(ln(2+y^2)) + xy'(ln(2+y^2)) + xy(\frac{2yy'}{2+y^2}) = 0$$

$$y' = \frac{-y \left(\ln(2+y^2) \right)}{x \left(\ln(2+y^2) \right) + \frac{2xy^2}{2+y^2}}$$

5. (10 pts) Among all pairs of positive numbers x and y such that xy = 100, find the global maximum value of x + 4y, provided it exists. Then find the global minimum value, provided it exists. (NOTE: If the global maximum value does not exist, you need to state that clearly to receive full credit. If it does exist, for full credit, you'll need to compute x + 4y; computing x and/or y alone is insufficient. These same comments apply to the global minimum value.)

$$y = \frac{100}{x}$$
Let $f(x) = x + 4y = x + \frac{400}{x} = x + 400x^{-1}$

$$f'(x) = 1 - 400x^{-2} = 1 - \frac{400}{x^2}$$

On
$$x>0$$

f(x) has no global maximum and has one global minimum at $x=20$, $y=\frac{100}{20}=5$

with global minimum value $20+4.5=40$

3. (5 pts) Suppose f is 1-1 and $g = f^{-1}$ is the inverse of f. Suppose f(3) = 4 and f'(3) = 58. Compute g(4) and g'(4).

$$g(4) = 3$$
 $g(4) = \frac{1}{58}$

4. (10 pts) Find the maximal intervals of increase and decrease for $f(x) = x^3 - 6x^2 + 5$.

$$f'(x) = 3x^2 - 12x$$
$$= 3x(x - 4)$$

f is increasing on
$$[-\infty,0]$$
 decreasing on $[0,4]$ increasing on $[4,\infty)$