Consider the graph of $f(x)$ shown below.

1. **Multiple choice:** Choose the best answer (5 points each, 10 points total)

 A. The removable discontinuity(s) of $f(x)$ is/are which of the following?

 a. $x = 4$

 b. $x = 6$

 c. $x = -4$ and $x = 6$

 d. $x = -4$

 e. $f(x)$ is continuous at all points of x

 B. The infinite discontinuity(s) of $f(x)$ is/are which of the following?

 a. $x = 4$

 b. $x = 6$

 c. $x = -4$ and $x = 6$

 d. $x = -4$

 e. $f(x)$ is continuous at all points of x

2. **Short answer:** Evaluate the following based on the graph: (5 points each, 50 points total)

 $f(4) = $

 $\lim_{x \to -4^-} f(x) = \lim_{x \to -4^+} f(x) = \lim_{x \to -4} f(x) = $

 $\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = \lim_{x \to 4} f(x) = $

 $\lim_{x \to 6^-} f(x) = \lim_{x \to 6^+} f(x) = \lim_{x \to 6} f(x) = $
3. **Problem solving**: Find the limit of a function $f(x)$. Please show your work: (40 points total)

A. (10 points) $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$

B. (15 points) $\lim_{x \to 0} \frac{\sqrt{1-x} - \sqrt{1-x^2}}{x}$

C. (15 points) $\lim_{x \to 0} \frac{\tan 3x}{\sin 2x}$