1. (15 points each, 30 points total)

A. If \(y = \cos^2 x \), then \(y' \) is which of the following?
 a. \(y' = 2 \cos x \)
 b. \(y' = 2(\cos x)(\sin x) \)
 c. \(y' = \sin^2 x \)
 d. \(y' = -2(\cos x)(\sin x) \)

B. (True or False) Let \(f \) and \(g \) be functions. Then \((fg)' = (f')(g') \).
 a. True
 b. False

2. (20 points)
A particle is moving along a number line, and its position equation is \(s = 2t^3 - 6t \), where \(t \) is measured in seconds, and \(s \) is measured in meters.

A. Find the velocity of the particle as a function of \(t \).
 \[
 \frac{ds}{dt} = 6t^2 - 6 \text{ m/s}
 \]

B. Find the acceleration of the particle as a function of \(t \).
 \[
 \frac{d^2s}{dt^2} = 12t \text{ m/s}^2
 \]

C. Find the acceleration of the particle when the velocity is 0 (assuming that time is always positive).
 \[
 6t^2 - 6 = 0 \iff t^2 = 1 \iff t = \pm 1
 \]
 \[
 \left(\frac{d^2s}{dt^2} \right)_{t \to \pm 1} = \left[12t \right]_{t \to \pm 1} = \pm 12 \text{ m/s}^2
 \]
3. **(20 points)**

Differentiate \(y = 2x^4 \ln(x^{1/4}) = (2x^4)(\frac{1}{4} \ln x) = (\frac{1}{2} x^4)(\ln x) \)

\[
\frac{dy}{dx} = (2x^3)(\ln x) + (\frac{1}{2} x^4)(\frac{1}{x})
\]

\[= 2x^3(\ln x) + \frac{x^3}{2}\]

4. **(30 points)**

Let \(f(x) = e^{2x} \cos x \).

A. Find an equation of the tangent line to \(f(x) \) at \((0,1)\).

\[f'(x) = (2e^{2x})(\cos x) + (e^{2x})(-\sin x)\]

\[\text{slope} = f'(0) = (2)(1) + (1)(-0) = 2\]

\[y-1 = 2(x-0), \quad \text{or} \quad y = 2x + 1\]

B. Find an equation of the normal line to \(f(x) \) at \((0,1)\).

\[\text{slope} = -\frac{1}{2}\]

\[y-1 = -\frac{1}{2}(x-0), \quad \text{or} \quad y = -\frac{1}{2}x + 1\]