PRINT YOUR NAME:

PRINT YOUR TA’S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:
I. Multiple choice

A. (5 pts) (no partial credit) Suppose \(f'(x) = -(x - 1)^2(x - 2)(x - 3)^2 \). Which of the following is a maximal interval of increase for \(f \)? Circle one of the following answers:

(a) \((-\infty, 2]\)
(b) \([1, \infty)\)
(c) \((2, \infty)\)
(d) \([3, \infty)\)
(e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Suppose \(f''(x) = x^2 - 4x + 3 \). At most one of the following statements is true. If one is, circle it. Otherwise, circle “NONE OF THE ABOVE”.

(a) \(f \) is concave down on \((-\infty, 1]\), up on \([1, 3]\) and down on \([3, \infty)\).
(b) \(f \) is concave down on \((-\infty, \infty)\).
(c) \(f \) is concave down on \((-\infty, -3]\), up on \([-3, -1]\) and down on \([-1, \infty)\).
(d) \(f \) is concave up on \((-\infty, -3]\), down on \([-3, -1]\) and up on \([-1, \infty)\).
(e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Compute \(\frac{d}{dx}[\sin^2(xy)] \). Circle one of the following answers:

(a) \(2[\sin(xy)][y + xy'] \)
(b) \([\cos^2(xy)][y + xy'] \)
(c) \(2[\sin(xy)][\cos(xy)][y + xy'] \)
(d) \(2[\sin(xy)][\cos(y + xy')] \)
(e) NONE OF THE ABOVE
D. (5 pts) (no partial credit) Find the logarithmic derivative of \((2 + \sin(2x))^{\cos x}\) w.r.t. \(x\). Circle one of the following answers:

(a) \((\cos x)(\ln(2 + \sin(2x))) + (\sin x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right)\)

(b) \((-\sin x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right)\)

(c) \((-\sin x)(\ln(2 + \sin(2x))) + (\cos x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right)\)

(d) \((\cos x)(\ln(2 + \sin(2x)))\)

(e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Find the derivative of \((2 + \sin(2x))^{\cos x}\) w.r.t. \(x\). Circle one of the following answers:

(a) \([(2 + \sin(2x))^{\cos x}] \left[(\cos x)(\ln(2 + \sin(2x))) + (\sin x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right) \right]\)

(b) \([(2 + \sin(2x))^{\cos x}] \left[(-\sin x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right) \right]\)

(c) \([(2 + \sin(2x))^{\cos x}] \left[(-\sin x)(\ln(2 + \sin(2x))) + (\cos x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right) \right]\)

(d) \([(2 + \sin(2x))^{\cos x}] \left[(\cos x)(\ln(2 + \sin(2x))) \right]\)

(e) NONE OF THE ABOVE

F. (5 pts) (no partial credit) Compute the derivative of \(\ln(x^{\arctan x})\), with respect to \(x\), on the interval \(x > 0\). Circle one of the following answers:

(a) \(\frac{1}{x^{\sec^2 x}}\)

(b) \(x^{\sec^2 x}\)

(c) \(\frac{1}{x^{\arctan x}}\)

(d) \(\frac{\ln x}{1 + x^2} + \frac{\arctan x}{x}\)

(e) NONE OF THE ABOVE
II. True or false (no partial credit):

a. (5 pts) Assume that \(\lim_{x \to 0} [f(x)] = 0 = \lim_{x \to 0} [g(x)] \). Assume also that \(\lim_{x \to 0} \left[\frac{f'(x)}{g'(x)} \right] \) does not exist. Then \(\lim_{x \to 0} \left[\frac{f(x)}{g(x)} \right] \) does not exist.

b. (5 pts) Assume that \(\lim_{x \to 3} [f(x)] = 0 = \lim_{x \to 3} [g(x)] \). Assume also that \(\lim_{x \to 3} \left[\frac{f'(x)}{g'(x)} \right] = 7 \). Then \(\lim_{x \to 3} \left[\frac{f(x)}{g(x)} \right] = 7 \).

c. (5 pts) If \(f \) and \(g \) are differentiable at a number \(a \), then \(fg + f + g \) is differentiable at \(a \).

d. (5 pts) If \(f \) is increasing on an interval \(I \), then \(f' > 0 \) on \(I \).

e. (5 pts) If \(f' > 0 \) on an interval \(I \), then \(f \) is increasing on \(I \).
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (5 pts) Compute \(\frac{d}{dx} \left[\frac{e^{x^4} - 8}{5 + \csc(x^2)} \right] \). (Here \(e^{x^4} \) means \(e^{(x^4)} \).)

2. (5 pts) Compute \(\frac{d}{dx} \left[(5 - \sin x)^7\arctan x \right] \).
3. (10 pts) Find an equation for the tangent line to \(x^3 + xy + y^3 = 11 \) at (2,1).
4. (15 pts) Compute \(\lim_{x \to 0} ((\cos x) + (\sin x))^{-2/x} \).
5. (10 pts) Find the global maximum and minimum value of \(f(x) = -x^3 + 3x^2 - 3x - 3 \) on the interval \(0 \leq x \leq 1 \).