MATH 1271 Fall 2013, Midterm \#1
Handout date: Thursday 10 October 2013

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:
I. Multiple choice
A. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow-\infty}\left[\frac{x^{8}+2 x^{3}-4 x^{2}}{2 x^{4}-7 x^{2}}\right]$. Circle one of the following answers:
(a) $1 / 2$
(b) $-1 / 2$
(c) ∞
(d) $-\infty$
(e) NONE OF THE ABOVE
B. (5 pts) (no partial credit) Compute $[d / d x]\left[(\sin x) e^{x}\right]$. Circle one of the following answers:
(a) $(\cos x)\left(x e^{x-1}\right)$
(b) $(\cos x) e^{x}$
(c) $(\cos x) e^{x}+(\sin x) e^{x}$
(d) $(\cos x) e^{x}+(\sin x)\left(x e^{x-1}\right)$
(e) NONE OF THE ABOVE
C. (5 pts) (no partial credit) Which is the intuitive definition of $\lim _{x \rightarrow 8^{+}}(H(x))=\infty$? Circle one of the following answers:
(a) If $H(x)$ is very positive, then x is close to 8 .
(b) If x is close to 8 , then $H(x)$ is very positive.
(c) If x is close to 8 , but greater than 8 , then $H(x)$ is very positive.
(d) If x is close to 8 , but not equal to 8 , then $H(x)$ is very positive.
(e) NONE OF THE ABOVE
D. (5 pts) (no partial credit) Compute $[d / d x]\left[3 x^{4}+2 x^{1 / 2}+\pi\right]$. Circle one of the following answers:
(a) $4 x^{3}+x^{-1 / 2}$
(b) $12 x^{3}+x^{-1 / 2}$
(c) $12 x^{3}+x^{1 / 2}+\pi$
(d) $3 x^{3}+x^{1 / 2}+\pi$
(e) NONE OF THE ABOVE
E. (5 pts) (no partial credit) What is the smallest number x such that $|x-3| \leq 0.002$? Circle one of the following answers:
(a) -2.998
(b) 3
(c) 3.002
(d) 2.998
(e) NONE OF THE ABOVE
F. (5 pts) (no partial credit) Compute $[d / d x]\left[2 e^{x}+5 \pi\right]$. Circle one of the following answers:
(a) $2 e^{x}+5$
(b) $2 x e^{x-1}+5$
(c) $2 e^{x}+5 \pi$
(d) $2 x e^{x-1}+5 \pi$
(e) NONE OF THE ABOVE
II. True or false (no partial credit):
a. $(5 \mathrm{pts}) \frac{d}{d x}\left[\frac{\sin x}{x^{2}}\right]=\frac{\cos x}{2 x}$.
b. (5 pts) If f is a polynomial of degree 7 , then $f^{\prime \prime}$ is a polynomial of degree 5 .
c. $(5 \mathrm{pts}) \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}}=1$.
d. (5 pts) If two functions have the same derivative, then they must be equal.
e. (5 pts) If f and g are continuous at 3 , then $f^{2} g^{3}$ MUST be continuous at 3 as well.

VERSION D

I. A, B, C
I. D,E,F
II. a,b,c,d,e
III. 1
III. 2
III. 3
III. 4
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Compute

$$
\frac{d}{d x}\left(\left[\frac{x^{2}}{1+e^{x}}\right][5+\sin x]\right)
$$

2. (15 pts) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{0.05}{n}\right)^{n}$.
3. (10 pts) Find all horizontal asymptotes to

$$
y=\frac{\sqrt{4 x^{6}+4 x+4}}{9 x^{3}+4}
$$

(NOTE: A horizontal asymptote is a line; your answers should be equations of lines, NOT numbers.)
4. (10 pts) Suppose $f(0)=4$ and $f^{\prime}(0)=7$. Suppose $g(0)=3$ and $g^{\prime}(0)=5$. Let $h=f g$. Compute $h(0)$ and $h^{\prime}(0)$.

