MATH 1271 Spring 2014, Midterm #1 Handout date: Thursday 27 February 2014 Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR X.500 ID:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I. Multiple choice

A. (5 pts) (no partial credit) Let $f(t) = \cot^2 t$. Compute $f'(\pi/4)$. (Hint: $f(t) = (\cot t)(\cot t)$.) Circle one of the following answers:

- (a) 1
- (b) $-\sqrt{2}/2$
- (c) -4
- (d) -1
- (e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Compute $[d/dx][2e^3 + 5\sin x]$. Circle one of the following answers:

- (a) $6e^2 + 5\cos x$
- (b) $6e^3 + 5\cos x$
- (c) $-5\cos x$
- (d) $5\cos x$
- (e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Which is the intuitive definition of $\lim_{x \to -\infty} (f(x)) = \infty$? Circle one of the following answers:

- (a) If x is very negative, then f(x) is very positive.
- (b) If x is very positive, then f(x) is very negative.
- (c) If f(x) is very positive, then x is very negative.
- (d) If f(x) is very negative, then x is very positive.
- (e) NONE OF THE ABOVE

D. (5 pts) (no partial credit) Compute $\left[\frac{d}{dx}\right] \left[\frac{e^x}{x^4 - 8x}\right]$. Circle one of the following answers:

(a)
$$\frac{(x^4 - 8x)(e^x) - (e^x)(4x^3 - 8)}{\sqrt{x^4 - 8x}}$$

(b)
$$\frac{(x^4 - 8x)(e^x) - (e^x)(4x^3 - 8)}{x^4 - 8x}$$

(c)
$$\frac{e^x}{4x^3 - 8}$$

(d)
$$\frac{xe^{x-1}}{4x^3 - 8}$$

(e) NONE OF THE ABOVE

- E. (5 pts) (no partial credit) Compute $\triangle(x^3 x^2)$. Circle one of the following answers:
 - (a) $3x^{2}(\triangle x) + 3x(\triangle x)^{2} + (\triangle x)^{3} 2x(\triangle x) (\triangle x)^{2}$
 - (b) $3x^2 2x$
 - (c) $(3x^2 2x)(\triangle x)$
 - (d) $3x^2 + 3x(\triangle x) + (\triangle x)^2 2x (\triangle x)$
 - (e) NONE OF THE ABOVE

F. (5 pts) (no partial credit) Let $g(x) = [8 - 3x] \left[\frac{x - 5}{x - 5} \right]$. What is the largest $\delta > 0$ such that $0 < |x - 5| < \delta \implies |(g(x)) + 7| < 0.6$? Circle one of the following answers:

- (a) 0.3
- (b) -0.3
- (c) 0.2
- (d) 1.8
- (e) NONE OF THE ABOVE

II. True or false (no partial credit):

a. (5 pts) If P is any polynomial of degree 3 and Q is any polynomial of degree 2, then $\lim_{x \to -\infty} \left[\frac{P(x)}{Q(x)} \right] = -\infty.$

b. (5 pts)
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$

c. (5 pts) If f and g are both differentiable at 3, then $f^2g - f$ is also differentiable at 3.

d. (5 pts) Let f and g be any two functions such that f'(4) = 10 and g'(4) = 20. Then (f+g)'(4) = 30.

e. (5 pts)
$$\frac{d}{dx} \left[\frac{\sin x}{e} \right] = \frac{\cos x}{e}$$
.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION B

I. A,B,C

I. D,E,F

II. a,b,c,d,e

III. 1

III. 2

III. 3ab

III. 4abc

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Compute
$$\frac{d}{dx} \left[\frac{(2x^2 + 8x)(\csc x)}{5 + e^x} \right].$$

2. (10 pts) Compute
$$\lim_{x \to 0} \left[\frac{(\sin(3x))(\cos(2x))(3x^5 - 4x^4 - 2x^2)}{x(\sec(-x))(\tan^2 x)} \right].$$

- 3. Let $f(x) = -3x^5 + 5x^3 + 2e^7$.
- a. (5 pts) Find all $a \in \mathbb{R}$ such that the graph of f has a horizontal tangent line at (a, f(a)).

b. (5 pts) Find all the maximal intervals on which f' is negative.

4. Let $y = 2x^3 - x$. Then $\triangle y = ax^2(\triangle x) + bx(\triangle x)^2 + c(\triangle x)^3 + k(\triangle x)$, for some real numbers a, b, c, k.

a. (5 pts) Compute a, b, c and k.

b. (5 pts) Assuming $\triangle x \neq 0$, compute $\frac{\triangle y}{\triangle x}$.

c. (5 pts) Compute
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
.