PRINT YOUR NAME:

PRINT YOUR X.500 ID:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.
I. Multiple choice

A. (5 pts) (no partial credit) Let $y = x^2 + x$. Compute dy, evaluated at $x = 10$, $dx = 0.1$. Circle one of the following answers:

(a) 12
(b) 21
(c) 1.22
(d) 2.11
(e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Let $f(x) = e^{3x-4}$. Recall that $L_2S_5^1 f$ denotes the left endpoint Riemann sum, from 1 to 5, of f, with two subintervals. Which of these is equal to $L_2S_5^1 f$? Circle one of the following answers:

(a) $2(e^5 + e^{11})$
(b) $2(e^{-1} + e^5)$
(c) $e^5 + e^{11}$
(d) $2(e^2 + e^8)$
(e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Suppose $f''(x) = -(x - 7)^3(x - 8)^3$. At most one of the following statements is true. If one is, circle it. Otherwise, circle “NONE OF THE ABOVE”.

(a) f is concave down on $(-\infty, 7]$ and up on $[7, \infty])$.
(b) f is concave up on $(-\infty, 7]$ and down on $[7, \infty])$.
(c) f is concave up on $(-\infty, 7]$, down on $[7, 8]$ and up on $[8, \infty)$.
(d) f is concave down on $(-\infty, 7]$, up on $[7, 8]$ and down on $[8, \infty)$.
(e) NONE OF THE ABOVE
D. (5 pts) (no partial credit) Let \(f(x) = \cos^2(5x^4 + 1) \). Compute \(\int_3^3 f(x) \, dx \). Circle one of the following answers:

(a) \(-2\)
(b) 0
(c) 6
(d) 20
(e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Let \(f(x) = e^{2x} + 3x \). What is the iterative formula of Newton’s method used to solve \(f(x) = 0 \)? Circle one of the following answers:

(a) \(x_{n+1} = x_n - \frac{e^{2x_n} + 3x_n}{2e^{2x_n} + 3x_n} \)
(b) \(x_{n+1} = x_n + \frac{2e^{2x_n} + 3}{e^{2x_n} + 3x_n} \)
(c) \(x_{n+1} = x_n - \frac{e^{2x_n} + 3x_n}{2e^{2x_n} + 3} \)
(d) \(x_{n+1} = x_n + \frac{2e^{2x_n} + 3x_n}{2e^{2x_n} + 3x_n} \)
(e) NONE OF THE ABOVE

F. (5 pts) (no partial credit) Find the derivative of \((2 + x^4)^{\cos x}\) w.r.t. \(x \). Circle one of the following answers:

(a) \([(2 + x^4)^{\cos x}][(-\sin x)(\ln(2 + x^4)) + (\cos x)(4x^3/(2 + x^4))] \)
(b) \([(2 + x^4)^{\cos x}][(-\sin x)(4x^3/(2 + x^4))] \)
(c) \([(2 + x^4)^{\cos x}][\cos x(\ln(2 + x^4)) + (-\sin x)(4x^3/(2 + x^4))] \)
(d) \([(2 + x^4)^{\cos x}][\cos x(\ln(2 + x^4))] \)
(e) NONE OF THE ABOVE
II. True or false (no partial credit):

a. (5 pts) Let $f : \mathbb{R} \to \mathbb{R}$ be any function such that $f'(8) = 0$ and $f''(8) > 0$. Assume that f'' is defined on \mathbb{R}. Then f has a local maximum at 8.

b. (5 pts) Let $f, g : \mathbb{R} \to \mathbb{R}$ be any two differentiable functions such that, for all $x \in \mathbb{R}$, $f'(x) = g'(x)$. Then $f = g$.

c. (5 pts) Assume that $\lim_{x \to a} [f(x)] = 1 = \lim_{x \to a} [g(x)]$. Assume also that $\lim_{x \to a} \frac{f'(x)}{g'(x)} = 3$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} = 3$.

d. (5 pts) $\frac{d}{dx} \left[\int_1^x \sin(e^t) \, dt \right] = \sin(e^x)$.

e. (5 pts) If f is continuous on $[a, b]$, then $\int_a^b (f(x)) \, dx = \lim_{n \to \infty} [M_n S_a^b f]$.
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Find an antiderivative w.r.t. x of $\sin^2(2x - 3)$. (Hint: $\cos(2\theta) = 1 - 2(\sin^2 \theta)$.)
2. (10 pts) Let $f(x) = \int_{2x-1}^{e^{x-1}} \sqrt{2t^6 - 2t^2 + 4} \, dt$. Compute $f'(1)$.
3. (15 pts) We are asked to design a large cup in the shape of a cylinder. The cup is to have an open top, and must contain 2π cubic feet of volume inside. Let r be the radius of the top of the cup. On the interval $r > 0$, find the choice of r (in feet) that minimizes the surface area, A, of the cup. (HINT: Our local precalculus expert shows us the formula that relates A to r. It is $A = \pi r^2 + (4\pi/r)$.)
4. (10 pts) A conical pile of sand is growing. Its height is always equal to the radius, \(r \), of its base. Assume that its volume is always growing at a rate of 10 cubic feet per minute. Find the rate of growth in \(r \) (in feet per minute) at the moment when the volume is 9\(\pi \) cubic feet. (HINT: According to our local precalculus expert, its volume, \(V \), is given by \(V = \pi r^3/3 \).)