## CALCULUS

Average rates of change

## OLD2

0130-1. Water is being added to a tub, and the amount in the tub is constantly monitored, and is tabulated against time as follows:

## hrs: 24 <br> gallons: $62 \quad 100 \quad 146 \quad 200$

Let $W$ be the amount in the tank at time $t$.
Let $B=(6,146)$, a point on the graph of $W$.
a. Find the slope of the secant lines between $B$ and the other points on the graph of $W$ appearing in the table above.
b. Estimate the slope of the tangent line to the graph of $W$ at the point $B$, by averaging the following two numbers:
the slope of the secant line between $B$ and $(4,100)$ and the slope of the secant line between $B$ and $(8,200)$.

0130-2. Let $A$ be the point $(1,5)$ on the graph of $y=x^{2}+4 x$. Let $B$ be a variable point $\left(x, x^{2}+4 x\right)$ on the same graph.
a. Compute the slope of the secant line between $A$ and $B$, when $x$ is equal to
(i) 2
(ii) 1.1
(iii) 1.01
(iv) 0
(v) 0.9
(vi) 0.99
(vii) $1+h$, with $h \neq 0$
b. Guess the slope of the tangent line to $y=x^{2}+4 x$ at $A$.
c. Using b, write an equation of the tangent line to $y=x^{2}+4 x$ at $A$.

0130-3. A tennis player, in a fit of rage over $a^{2}$ lost point, throws his racquet into the air. Assume that its distance, in feet, above the ground, $t$ seconds later, is $6+50 t-16 t^{2}$.
a. Find its average velocity over the time period starting at time 2 , and continuing for the following number of seconds:

$$
\begin{array}{ccc}
\text { (i) } 1 & \text { (ii) } 0.5 & \text { (iii) } 0.01 \\
\text { (iv) } 0.001 & \text { (v) } 0.0001 & \text { (vi) } 0.00005 \\
& \text { (vii) } \triangle t \text {, with } \Delta t \neq 0
\end{array}
$$

b. Guess its instantaneous velocity 2 seconds after it's thrown.

