CALCULUS
Chain Rule problems
OLD2
0380-1. Write \(\tan(x^3) \) as a composite \(f(g(x)) \). State explicitly what the function \(f \) is, and what the expression \(g(x) \) is.

0380-2. Compute \(\frac{d}{dx} \left[\tan(x^3) \right] \).

0380-3. Write \(\tan^3 x \) as a composite \(f(g(x)) \). State explicitly what the function \(f \) is, and what the expression \(g(x) \) is.

0380-4. Compute \(\frac{d}{dx} \left[\tan^3 x \right] \).
0380-5. Compute \(\frac{d}{dx} \left[(x^4 - 7x^2 + 5)^{250} \right] \).

0380-6. Compute \(\frac{d}{dx} \left[\sqrt[3]{x^5 - 4x^2 + 5} \right] \).

0380-7. Compute \(\frac{d}{dx} \left[(3x - 2)^{510}(-3x + 4)^{50} \right] \).

0380-8. Compute \(\frac{d}{dx} \left[\sin \left(4x^{25} - 2x^{12} + 8 \right) \right] \).
0380-9. Compute \(\frac{d}{dx} \left[(e^{2x-5}) \right] \).

0380-10. Compute \(\frac{d}{dx} \left[e^{\csc(\pi x)} \right] \).

0380-11. Compute \(\frac{d}{dx} \left[\sin \left(\sec^2 \left(x^6 \right) \right) \right] \).

0380-12. Compute \(\frac{d}{dx} \left[\cot \left(\sqrt[5]{\sin \left(\cos \left(x^3 + 1 \right) \right)} \right) \right] \).
0380-13. Suppose \(f(1) = 3, \ f'(1) = 4, \)
\(g(3) = 5 \) and \(g'(3) = 6. \)
Let \(h(x) = g(f(x)) \).

a. Compute \(h(1) \).

b. Compute \(h'(1) \).

0380-14. Let \(f : \mathbb{R} \to \mathbb{R} \) be a differentiable function.

a. Compute \(\frac{d}{dx} \left[\tan \left(f(x) \right) \right] \).

b. Compute \(\frac{d}{dx} \left[f \left(\tan x \right) \right] \).

c. Compute \(\frac{d}{dx} \left[f \left(e^{2x} \right) \right] \).

d. Compute \(\frac{d}{dx} \left[e^{2[f(x)]]} \right] \).