CALCULUS Volume by slices and the disk and washer methods: Problems OLD2 0720-1. Let R be the region bounded by y = x + 1 and x = 3 in $2 \le y \le 3$.

a. Sketch R.

- b. Find the volume of the solid obtained by rotating R about the x-axis.
- c. Find the volume of the solid obtained by rotating R about the y-axis.
- 0720-2. Let R be the region bounded by $y = x^2$ and y = 2x + 3.
 - a. Sketch R.
 - b. Find the volume of the solid obtained by rotating R about the x-axis.
 - **c**. Find the volume of the solid obtained by rotating R about the line x = -2.

0720-3. Let R be the region bounded by $y = \ln x$, x = 9 and y = 2.

a. Sketch R.

- b. Find the volume of the solid obtained by rotating R about the y-axis.
- 0720-4. Let R be the region bounded by $y = \sin x$ and y = 0 in $0 \le x \le \frac{\pi}{3}$.
 - a. Sketch R.
 - b. Find the volume of the solid obtained by rotating R about the x-axis.

Hint:
$$\sin^2 x = \frac{1 - [\cos(2x)]}{2}$$

0720-5. Let R be the region bounded by $(x-1)^2 + (y-3)^2 = 4.$

a. Sketch R.

- b. Find the volume of the solid obtained by rotating R about the x-axis.
- Note: This solid is called a torus. It is in the shape of a doughnut.
- Hint: Remember that $2\int_{-2}^{2}\sqrt{4-u^2} du$ is known;
 - it is the area enclosed in a circle of radius 2.

0720-6. Let R be the region bounded by $y = x^2$ and $x = y^4$.

- a. Sketch R.
- b. Find the volume of the solid obtained by rotating R about the line y = -1/3.
- c. Find the volume of the solid obtained by rotating R about the line x = -1/2.
- 0720-7. Let R be the region bounded by $y = x^3$ and $x = y^6$.
 - a. Sketch R.
 - b. Find the volume of the solid obtained by rotating R about the line y = -1/3.
 - c. Find the volume of the solid obtained by rotating R about the line x = -1/2.

0720-8. Let R be the region bounded by $y = -\sin x$, $y = e^x$ in $0 \le x \le \pi/3$. Set up, but do not evaluate, an integral that yields the volume of the solid obtained by rotating R about the line y = -3.

0720-9. Describe the solid of revolution Whose volume is given by

$$\pi \int_{1/2}^{3/2} \left(9e^{8x} - 4\cos^2 x\right) dx.$$

Do not evaluate this integral

0720-10. Describe the solid of revolution Whose volume is given by

$$\pi \int_{\pi/2}^{\pi} (3 + \cos x)^2 - 9 \, dx.$$

Do not evaluate this integral.

0720-11. A solid S sits above a horizontal plane P. $\forall x > 0$, let P_x be the horizontal plane that is x units above P. Suppose that S lies between P_1 and P_2 . Suppose, also, that $\forall x \in [1,2]$, the intersection of S and P_x is the region inside a triangle whose base has length 5xand whose altitude has length e^{3x^2} . Compute the volume of S.

0720-12. Using the disk method, find the volume in a ball of radius 37, following the diagram shown below.

0720-13. We create a napkin holder by drilling a cylindrical hole of radius 12 through the middle of a ball of radius 37, as shown below. Using the washer method, find its volume.

