CALCULUS
 Volume by slices and the disk and washer methods:
 Problems
 OLD2

OTD20-1. Let R be the region bounded by

$$
y=x+1 \text { and } x=3 \text { in } 2 \leq y \leq 3
$$

a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the x-axis.
c. Find the volume of the solid obtained by rotating R about the y-axis.
$0720-2$. Let R be the region bounded by

$$
y=x^{2} \text { and } y=2 x+3
$$

a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the x-axis.
c. Find the volume of the solid obtained by rotating R about the line $x=-2$.
$0720-3$. Let R be the region bounded by $y=\ln x, x=9$ and $y=2$.
a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the y-axis.
$0720-4$. Let R be the region bounded by

$$
y=\sin x \text { and } y=0 \text { in } 0 \leq x \leq \frac{\pi}{3} .
$$

a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the x-axis.
Hint: $\sin ^{2} x=\frac{1-[\cos (2 x)]}{2}$
$0720-5$. Let R be the region bounded by

$$
(x-1)^{2}+(y-3)^{2}=4
$$

a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the x-axis.

Note: This solid is called a torus. It is in the shape of a doughnut.

Hint: Remember that $2 \int_{-2}^{2} \sqrt{4-u^{2}} d u$ is known; it is the area enclosed in a circle of radius 2 .
$0720-6$. Let R be the region bounded by

$$
y=x^{2} \text { and } x=y^{4}
$$

a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the line $y=-1 / 3$.
c. Find the volume of the solid obtained by rotating R about the line $x=-1 / 2$.
0720-7. Let R be the region bounded by

$$
y=x^{3} \text { and } x=y^{6}
$$

a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the line $y=-1 / 3$.
c. Find the volume of the solid obtained by rotating R about the line $x=-1 / 2$.

0720-8. Let R be the region bounded by

$$
y=-\sin x, y=e^{x} \text { in } 0 \leq x \leq \pi / 3
$$

Set up, but do not evaluate, an integral that yields the volume of the solid obtained by rotating R about the line $y=-3$.
0720-9. Describe the solid of revolution Whose volume is given by

$$
\pi \int_{1 / 2}^{3 / 2}\left(9 e^{8 x}-4 \cos ^{2} x\right) d x
$$

Do not evaluate this integral.
0720-10. Describe the solid of revolution Whose volume is given by

$$
\pi \int_{\pi / 2}^{\pi}(3+\cos x)^{2}-9 d x
$$

Do not evaluate this integral.

0720-11. A solid S sits above a horizontal plane $P . \forall x \geq 0$, let P_{x} be the horizontal plane that is x units above P. Suppose that S lies between P_{1} and P_{2}. Suppose, also, that $\forall x \in[1,2]$, the intersection of S and P_{x} is the region inside a triangle whose base has length $5 x$ and whose altitude has length $e^{3 x^{2}}$.
Compute the volume of S.

0720-12. Using the disk method, find the volume in a ball of radius 37, following the diagram shown below.

0720-13. We create a napkin holder by drilling a^{2} cylindrical hole of radius 12 through the middle of a ball of radius 37 , as shown below. Using the washer method, find its volume.

