CALCULUS
Continuity
OLD2
0210-1. a. At which numbers is the function f, shown above, discontinuous?

b. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the LEFT at that number.

c. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the RIGHT at that number.
0210-1. a. At which numbers is the function f, shown above, discontinuous?

ANSWER: $-4, -2, 2, 4$
0210-1.b.

For each of the numbers, given in Part a, where \(f \) is discontinuous, state whether or not \(f \) is continuous from the LEFT at that number.

\[\text{ANSWER:} \]

\(f \) is continuous from the LEFT at \(-2, 4\).
\(f \) is not continuous from the LEFT at \(-4, 2\).
0210-1. c.
OLD2
For each of the numbers, given in Part a, where \(f \) is discontinuous, state whether or not \(f \) is continuous from the RIGHT at that number.

ANSWER:
\(f \) is not continuous from the RIGHT at \(-4, -2, 2, 4.\)
0210-2. Display the graph of a function f

s.t. \(\lim_{x \to -1^-} f(x) = -3, \quad \lim_{x \to -1^+} f(x) = 1, \)

and s.t. \(f(-1) = 1, \)

and s.t. \(\lim_{x \to 1} f(x) = -\infty, \quad f(1) = 2, \)

and s.t. \(\lim_{x \to 2} f(x) = 1, \quad f(2) = 0, \)

and s.t. \(\lim_{x \to -\infty} f(x) = -1, \quad \lim_{x \to \infty} f(x) = -4. \)
\[\lim_{x \to -1^-} f(x) = -3, \quad \lim_{x \to -1^+} f(x) = 1, \quad f(-1) = 1, \]
\[\lim_{x \to 1} f(x) = -\infty, \quad f(1) = 2, \]
\[\lim_{x \to 2} f(x) = 1, \quad f(2) = 0, \]
\[\lim_{x \to -\infty} f(x) = -1, \quad \lim_{x \to \infty} f(x) = -4. \]

ANS:

Many, many other correct answers!
0210-3. Let \(f(t) = (4t^{2/3} + 3)^{85} \).

Using the properties of limits, show that \(f \) is continuous at 7.

ANS:

\[
\lim_{t \to 7} f(t) = \lim_{t \to 7} (4t^{2/3} + 3)^{85}
\]

- Limit commutes with powers

\[
= \left(\lim_{t \to 7} \left(4t^{2/3} + 3 \right) \right)^{85}
\]

- Limit is linear

\[
= \left[4 \left(\lim_{t \to 7} t^{2/3} \right) + \left(\lim_{t \to 7} 3 \right) \right]^{85}
\]

- Limit commutes with powers

\[
= \left[4 \left(\lim_{t \to 7} t \right)^{2/3} + \left(\lim_{t \to 7} 3 \right) \right]^{85}
\]

- Polynomials are continuous

\[
= \left[4(7)^{2/3} + 3 \right]^{85} = f(7)
\]
0210-4. Let \(f(x) = \begin{cases}
2x + 5, & \text{if } x < -1 \\
3, & \text{if } x = -1 \\
x^2 + 4, & \text{if } x > -1
\end{cases} \)

a. Does \(\lim_{x \to -1} f(x) \) exist? If so, compute it.

b. Is \(f \) continuous from the left at \(-1\)?

ANSWER:

a.
\[
\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} (2x + 5) = 2(-1) + 5 = 3
\]

\[
\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (x^2 + 4) = (-1)^2 + 4 = 5
\]

Therefore the limit does not exist.

b. \(f(-1) = 3 = \lim_{x \to -1^-} f(x) \)

Therefore \(f \) is continuous from the left at \(-1\).
0210-5. Let \(g(x) = \begin{cases}
\cos(2x), & \text{if } x < 0 \\
1, & \text{if } x = 0 \\
x^2 + 1, & \text{if } x > 0.
\end{cases} \)

a. Does \(\lim_{{x \to 0}} g(x) \) exist? If so, compute it.

b. Is \(g \) continuous at 0?

\textbf{ANSWER:} a.

\[
\lim_{{x \to 0^-}} g(x) = \lim_{{x \to 0^-}} \cos(2x) = \cos(2 \cdot 0) = 1 \\
\lim_{{x \to 0^+}} g(x) = \lim_{{x \to 0^+}} (x^2 + 1) = (0)^2 + 1 = 1
\]

Therefore \(\lim_{{x \to 0}} g(x) = 1. \)

b. \(g(0) = 1 = \lim_{{x \to 0}} g(x), \)

so \(g \) is continuous at 0.
0210-6. Let \(g(x) = \begin{cases}
\cos(2x), & \text{if } x < 0 \\
1, & \text{if } x = 0 \\
x^2 + 1, & \text{if } x > 0.
\end{cases} \)

a. Does \(\lim_{x \to -1} g(x) \) exist? If so, compute it.

b. Is \(g \) continuous at \(-1\)?

ANSWER:

a. \(\lim_{x \to -1} g(x) = \lim_{x \to -1} \cos(2x) = \cos(-2) \);

in particular, the limit exists.

b. \(g(-1) = \cos(-2) = \lim_{x \to -1} g(x) \)

Therefore \(g \) is continuous at \(-1\). ■
Let \(f(x) = \sqrt[3]{x} \).

a. Is \(f \) continuous at 0?

b. Is \(f \) continuous on \([0, \infty)\)?

c. Is \(f \) continuous?

ANS:

a. \(\lim_{x \to 0} f(x) = \lim_{x \to 0} \sqrt[3]{x} = 0 = \sqrt[3]{0} = f(0) \),

so \(f \) is continuous at 0.

b. \(\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \sqrt[3]{x} = 0 = \sqrt[3]{0} = f(0) \),

so \(f \) is continuous from the right at 0.

\(\forall a \in (0, \infty), \ f \) is continuous at \(a \),

so \(f \) is continuous on \((0, \infty)\).

Then \(f \) is continuous on \([0, \infty)\).

c. \(\forall a \in \mathbb{R} = \text{dom}[f], \ f \) is continuous at \(a \),

so \(f \) is continuous.
0210-8. Let $g(x) = 1/\sqrt[3]{x}$.

a. Is g continuous at 0?
b. Is g continuous on $(0, \infty)$?
c. Is g continuous?

ANSWER:

a. $g(0)$ DNE, so g is **not** continuous at 0.

b. $\forall a \in (0, \infty)$, g is continuous at a, so g is continuous on $(0, \infty)$.

c. $\forall a \in \mathbb{R} \setminus \{0\} = \text{dom}[g]$, g is continuous at a, so g is continuous.
0210-9. Compute \(\lim_{x \to 27} \frac{x + \sqrt[3]{x}}{(x - 20)^2 - 2x + 6} \).

ANSWER: Let \(f(x) = \frac{x + \sqrt[3]{x}}{(x - 20)^2 - 2x + 6} \).

By the properties of limit, \(f \) is continuous at 27, i.e.,

\[
\lim_{x \to 27} \frac{x + \sqrt[3]{x}}{(x - 20)^2 - 2x + 6} = \left[\frac{x + \sqrt[3]{x}}{(x - 20)^2 - 2x + 6} \right]_{x \to 27}
\]

\[
= \frac{27 + \sqrt[3]{27}}{(27 - 20)^2 - 2 \cdot 27 + 6} = \frac{27 + 3}{49 - 54 + 6} = \frac{30}{1} = 30
\]
Let \(f(x) = \begin{cases}
 x^2 + 3, & \text{if } x < 2 \\
 2x + 2, & \text{if } 2 \leq x < 3 \\
 8[\cos(x - 3)], & \text{if } 3 \leq x.
\end{cases} \)

a. At which numbers is the function \(f \) discontinuous?

b. For each of the numbers, given in Part a, where \(f \) is discontinuous, state whether or not \(f \) is continuous from the LEFT at that number.

c. For each of the numbers, given in Part a, where \(f \) is discontinuous, state whether or not \(f \) is continuous from the RIGHT at that number.
0210-10. Let \(f(x) = \begin{cases}
 x^2 + 3, & \text{if } x < 2 \\
 2x + 2, & \text{if } 2 \leq x < 3 \\
 8[\cos(x - 3)], & \text{if } 3 \leq x.
\end{cases} \)

a. At which numbers is the function \(f \) discontinuous?

ANS:

\[
\lim_{{x \to 2^-}} f(x) = \lim_{{x \to 2^-}} x^2 + 3 = 7 \\
\lim_{{x \to 2^+}} f(x) = \lim_{{x \to 2^+}} 2x + 2 = 6 \\
\lim_{{x \to 3^-}} f(x) = \lim_{{x \to 3^-}} 2x + 2 = 8 \\
\lim_{{x \to 3^+}} f(x) = \lim_{{x \to 3^+}} 8[\cos(x - 3)] = 8 \\
\]

\(f(2) = [2x + 2]_{x \to 2} = 6 \)

\(f(3) = [8[\cos(x - 3)]]_{x \to 3} = 8 \)

\[a. \text{ } f \text{ is discontinuous only at } 2.\]
Let \(f(x) = \begin{cases}
 x^2 + 3, & \text{if } x < 2 \\
 2x + 2, & \text{if } 2 \leq x < 3 \\
 8[\cos(x - 3)], & \text{if } 3 \leq x.
\end{cases} \)

b. For each of the numbers, given in Part a, where \(f \) is discontinuous, state whether or not \(f \) is continuous from the LEFT at that number.

\[\text{ANS: } \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} x^2 + 3 = 7 \quad \quad f(2) = [2x + 2]_{x: \to 2} = 6 \]

\[\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 2x + 2 = 6 \]

\[\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} 2x + 2 = 8 \quad \quad f(3) = \lim_{x : \to 3^-} [8[\cos(x - 3)]] = 8 \]

\[\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} 8[\cos(x - 3)] = 8 \]

a. \(f \) is discontinuous only at 2.

b. \(f \) is not continuous from the LEFT at 2.
Let \(f(x) = \begin{cases}
 x^2 + 3, & \text{if } x < 2 \\
 2x + 2, & \text{if } 2 \leq x < 3 \\
 8[\cos(x - 3)], & \text{if } 3 \leq x.
\end{cases} \)

c. For each of the numbers, given in Part a, where \(f \) is discontinuous, state whether or not \(f \) is continuous from the RIGHT at that number.

ANS:

\[
\lim_{{x \to 2^-}} f(x) = \lim_{{x \to 2^-}} x^2 + 3 = 7
\]

\[
f(2) = 2[2x + 2]_{{x \to 2}} = 6
\]

\[
\lim_{{x \to 2^+}} f(x) = \lim_{{x \to 2^+}} 2x + 2 = 6
\]

\[
f(3) = 8[\cos(x - 3)]_{{x \to 3}} = 8
\]

\[
\lim_{{x \to 3^-}} f(x) = \lim_{{x \to 3^-}} 2x + 2 = 8
\]

\[
\lim_{{x \to 3^+}} f(x) = \lim_{{x \to 3^+}} 8[\cos(x - 3)] = 8
\]

a. \(f \) is discontinuous only at 2.

b. \(f \) is continuous from the RIGHT at 2.
0210-11. Let \(g(x) = \begin{cases} 4e^x, & \text{if } x \leq 0 \\ (x + 2)^2, & \text{if } 0 < x < 1 \\ 7x + 2, & \text{if } 1 < x. \end{cases} \)

(a) At which numbers is the function \(g \) discontinuous?

(b) For each of the numbers, given in Part a, where \(g \) is discontinuous, state whether or not the discontinuity is removable.
0210-11. Let \(g(x) = \begin{cases} 4e^x, & \text{if } x \leq 0 \\ (x + 2)^2, & \text{if } 0 < x < 1 \\ 7x + 2, & \text{if } 1 < x. \end{cases} \)

a. At which numbers is the function \(g \) discontinuous?

\[
\begin{align*}
\text{ANS:} & \quad \lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} 4e^x = 4 \\
& \quad \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x + 2)^2 = 4 \\
& \quad \lim_{x \to 1^-} g(x) = \lim_{x \to 1^-} (x + 2)^2 = 9 \\
& \quad \lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} 7x + 2 = 9 \\
& \quad g(0) = [4e^x]_{x = 0} = 4 \\
& \quad g(1) \text{ DNE}
\end{align*}
\]

a. \(g \) is discontinuous only at 1.
0210-11. Let \(g(x) = \begin{cases} 4e^x, & \text{if } x \leq 0 \\ (x + 2)^2, & \text{if } 0 < x < 1 \\ 7x + 2, & \text{if } 1 < x. \end{cases} \)

b. For each of the numbers, given in Part a, where \(g \) is discontinuous, state whether or not the discontinuity is removable.

\[
\begin{align*}
\lim_{x \to 0^-} g(x) &= \lim_{x \to 0^-} 4e^x = 4 \\
\lim_{x \to 0^+} g(x) &= \lim_{x \to 0^+} (x + 2)^2 = 4 \\
\lim_{x \to 1^-} g(x) &= \lim_{x \to 1^-} (x + 2)^2 = 9 \\
\lim_{x \to 1^+} g(x) &= \lim_{x \to 1^+} 7x + 2 = 9 \\
\end{align*}
\]

\(g(0) = [4e^x]_{x \to 0} = 4 \)

\(g(1) \) DNE

a. \(g \) is discontinuous only at 1.

b. The discontinuity at 1 is removable.
Find a number a s.t.

$$f(x) = \begin{cases}
 a e^x, & \text{if } x \leq 0 \\
 a x^3 + 3a + 8, & \text{if } 0 < x
\end{cases}$$

is continuous at $x = 0$.

ANSWER:

$$\lim_{{x \to 0^-}} f(x) = \lim_{{x \to 0^-}} a e^x = a$$

$$f(0) = [a e^x]_{x: \to 0} = a$$

$$\lim_{{x \to 0^+}} f(x) = \lim_{{x \to 0^+}} a x^3 + 3a + 8 = 3a + 8$$

For continuity, we need $3a + 8 = a$.

$$2a = -8$$

$$a = -4$$
0210-13. Let \(h(s) = \frac{s^2 + 5s - 6}{s - 1} \).

Find a function \(p: \mathbb{R} \rightarrow \mathbb{R} \) such that \(p \) is continuous at 1 and such that, \(\forall s \in \mathbb{R} \setminus \{1\}, \ p(s) = h(s) \).

Answer:

\[
\begin{align*}
 h(s) &= \frac{s^2 + 5s - 6}{s - 1} \\
 &= s + 6 \quad (s \neq 1)
\end{align*}
\]

Let \(p(s) = s + 6 \). \(\square \)
Using the Intermediate Value Theorem, show that \(x^3 + 2x - 8 = 0 \) has a solution \(x = c \) that satisfies \(-2 < c < 2\).

ANSWER:

\[
\begin{align*}
[x^3 + 2x - 8]_{x \to -2} &= -8 - 4 - 8 < 0 \\
[x^3 + 2x - 8]_{x \to 2} &= 8 + 4 - 8 > 0
\end{align*}
\]

\(x^3 + 2x - 8 \) is continuous on \(-2 \leq x \leq 2\).

By the Intermediate Value Theorem, \(\exists c \in (-2, 2) \) s.t. \([x^3 + 2x - 8]_{x \to c} = 0 \).
Using the Intermediate Value Theorem, show that \(4e^x + \cos x = x + 6\) has a sol’n \(x = c\) that satisfies \(-2 < c < 9\).

\[
\cos(-2) \leq 1
\]

\[
\begin{align*}
[4e^x + (\cos x) - x - 6]_{x \to -2} &\leq (4/e^2) + 1 - (-2) - 6 < 0 \\
[4e^x + (\cos x) - x - 6]_{x \to 9} &\geq 4 \cdot e^9 - 1 - 9 - 6 > 0
\end{align*}
\]

\(4e^x + (\cos x) - x - 6\) is continuous on \(-2 \leq x \leq 9\). By the Intermediate Value Theorem, \(\exists c \in (-2, 9)\) s.t.

\[
[4e^x + (\cos x) - x - 6]_{x \to c} = 0.
\]