CALCULUS
The derivative of a function is a function
OLD2
The graph of f is shown above. Which of the following is the graph of f'?

Choose red, green or purple.
The graph of f is shown above. Which of the following is the graph of f'?

Answer: Choose red, green or purple.
The graph of f is shown above. Which of the following is the graph of f'?

Choose red, green or purple.
The graph of \(f \) is shown above. Which of the following is the graph of \(f' \)?

ANSWER:

Choose red, green or **purple**.
The graph of f is shown above.
Freehand a sketch of the graph of f'.
On your graph, indicate 1 and -1 on the horizontal axis.
0280-3.

ANSWER:
The graph of \(f \) is shown above.

a. At which of the numbers \(-3, -2, -1, 0, 1, 2, 3\) is \(f \) not defined?

b. At which of the numbers \(-3, -2, -1, 0, 1, 2, 3\) is \(f \) not continuous?

c. At which of the numbers \(-3, -2, -1, 0, 1, 2, 3\) is \(f \) not differentiable?
The graph of f is shown above.

a. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not defined? \(\text{ANS: } -1, 2 \)

b. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not continuous? \(\text{ANS: } -1, 2, 3 \)

c. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not differentiable? \(\text{ANS: } -2, -1, 1, 2, 3 \)
The graphs of f, f' and f'' are shown above. Which is which?

State the color of f, the color of f' and the color of f''.

14
The graphs of f, f' and f'' are shown above. Which is which?

State the color of f, the color of f' and the color of f''.
0280-6. Let \(f(s) = 5s^3 - 4s \).

a. What is the domain of \(f \)?

b. Using the definition of the derivative, and using the cubic binomial formula
\[
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,
\]
compute \(f'(s) \).

c. What is the domain of the derivative \(f' \)?
0280-6. Let $f(s) = 5s^3 - 4s$.

a. What is the domain of f?

ANSWER:

a. $\mathbb{R} = (-\infty, \infty)$
Let $f(s) = 5s^3 - 4s$.

b. Using the definition of the derivative, and using the cubic binomial formula

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$$

compute $f'(s)$.

ANSWER:

\[
\begin{align*}
\text{b. } f'(s) &= \lim_{h \to 0} \frac{[5(s + h)^3 - 4(s + h)] - [5s^3 - 4s]}{h} \\
&= \lim_{h \to 0} \frac{[5(s^3 + 3s^2h + 3sh^2 + h^3) - 4(s + h)] - [5s^3 - 4s]}{h} \\
&= \lim_{h \to 0} \frac{5(3s^2h + 3sh^2 + h^3) - 4h}{h} \\
&= \lim_{h \to 0} 5(3s^2 + 3sh + h^2) - 4 \\
&= 5(3s^2) - 4 = 15s^2 - 4
\end{align*}
\]
0280-6. Let \(f(s) = 5s^3 - 4s \).

c. What is the domain of the derivative \(f' \)?
0280-7. Let \(f(x) = \frac{1 + 3x}{4 - 2x} \).

a. What is the domain of \(f \)?

b. Using the definition of the derivative, compute \(f'(x) \).

c. What is the domain of the derivative \(f' \)?
Let \(f(x) = \frac{1 + 3x}{4 - 2x} \).

a. What is the domain of \(f \)?

ANSWER:

a. \(\mathbb{R} \setminus \{2\} \)
0280-7. Let \(f(x) = \frac{1 + 3x}{4 - 2x} \).

b. Using the definition of the derivative, compute \(f'(x) \).

\[
\begin{align*}
\text{ANS: b.} \quad & \frac{(f(x + h)) - (f(x))}{h} = \frac{1}{h} \left[\frac{1 + 3x + 3h}{4 - 2x - 2h} - \frac{1 + 3x}{4 - 2x} \right] \\
& = \frac{1}{h} \left[\frac{(1 + 3x + 3h)(4 - 2x) - (4 - 2x - 2h)(1 + 3x)}{(4 - 2x - 2h)(4 - 2x)} \right] \\
& = \frac{3h(4 - 2x) + 2h(1 + 3x)}{h(4 - 2x - 2h)(4 - 2x)} \\
& = \frac{14h}{h(4 - 2x - 2h)(4 - 2x)} \\
& \quad \quad \quad \quad \quad \quad \xrightarrow{h \to 0} \frac{14}{(4 - 2x)^2}
\end{align*}
\]
Let \(f(x) = \frac{1 + 3x}{4 - 2x} \).

c. What is the domain of the derivative \(f' \)?

ANSWER:
\[f'(x) = \frac{14}{(4 - 2x)^2} \]

c. \(\mathbb{R} \setminus \{2\} \)
Let \(f(x) = |x^2 - 3x - 4| \).

At which numbers is \(f \) not differentiable?

Hint: Determine the (maximal) intervals where \(x^2 - 3x - 4 \)

is positive and negative.

Sketch the graph of \(y = x^2 - 3x - 4 \).

Sketch the graph of \(y = f(x) \).

GENERAL RULE:

At numbers \(x \) where \(x^2 - 3x - 4 \) has a root of multiplicity one, \(f \) is not differentiable. Everywhere else, \(f \) is differentiable.
Let \(f(x) = |x^2 - 3x - 4| \).

At which numbers is \(f \) not differentiable?

Answer:

\(x^2 - 3x - 4 = (x + 1)(x - 4) \)

- Positive on \(4 < x \)
- Negative on \(-1 < x < 4 \)
- Positive on \(x < -1 \)

\[y = x^2 - 3x - 4 \]
0280-8. Let \(f(x) = |x^2 - 3x - 4| \).

At which numbers is \(f \) not differentiable?

ANSWER: \(x^2 - 3x - 4 = (x + 1)(x - 4) \)
- positive on \(4 < x \)
- negative on \(-1 < x < 4 \)
- positive on \(x < -1 \)

\[y = f(x) = |x^2 - 3x - 4| \]

\(f \) is not differentiable at \(-1\) and \(4\).

GENERAL RULE:
At numbers \(x \) where \(x^2 - 3x - 4 \) has a root of multiplicity one, \(f \) is **not** differentiable. Everywhere else, \(f \) is differentiable.
0280-9. Let \(f(x) = |x^4 - 3x^3 - 4x^2| \).
At which numbers is \(f \) not differentiable?

Hint:
\(y = x^4 - 3x^3 - 4x^2 \) is hard to graph, but you don't have to; just use the...

GENERAL RULE:
At numbers \(x \) where \(x^4 - 3x^3 - 4x^2 \) has a root of multiplicity one, \(f \) is not differentiable. Everywhere else, \(f \) is differentiable.
0280-9. Let \(f(x) = |x^4 - 3x^3 - 4x^2| \).

At which numbers is \(f \) not differentiable?

ANSWER: \(x^4 - 3x^3 - 4x^2 = (x + 1)x^2(x - 4) \)

\(x^4 - 3x^3 - 4x^2 \) has a root of multiplicity one at \(x = -1 \) and \(x = 4 \),

so

\(f \) is not differentiable at \(-1\) and \(4\).

Everywhere else, \(f \) is differentiable.

GENERAL RULE:

At numbers \(x \) where \(x^4 - 3x^3 - 4x^2 \) has a root of multiplicity one, \(f \) is not differentiable.

Everywhere else, \(f \) is differentiable.