CALCULUS
Antidifferentiation problems
OLD2
0560-1. Find all antiderivatives in x of

$$-2x^3 + x^2 + 5.$$

ANSWER:

all antiderivatives: $$-rac{x^4}{2} + rac{x^3}{3} + 5x + C$$

0560-2. Find all antiderivatives in t of

$$\left(-2 \sqrt[4]{t} + 7 \sqrt[6]{t}\right) t^3.$$

ANS:

$$\left(-2 \sqrt[4]{t} + 7 \sqrt[6]{t}\right) t^3 = -2t^{13/4} + 7t^{19/6}$$

all antiderivatives: $$-\frac{2t^{17/4}}{17/4} + \frac{7t^{25/6}}{25/6} + C$$
0560-3. Find all antiderivatives in t of
\[
\frac{3\sqrt{t} + 8\sqrt[5]{t}}{\sqrt[5]{t}}.
\]

ANSWER:
\[
\frac{3\sqrt{t} + 8\sqrt[5]{t}}{\sqrt[5]{t}} = t^{2/15} + 8t^{-2/35}
\]

all antiderivatives: \[
\frac{t^{17/15}}{17/15} + \frac{8t^{33/35}}{33/35} + C
\]

0560-4. Find all antiderivatives in ν of
\[
\frac{4e^{\nu} - \cos \nu}{3}.
\]

ANSWER: all antiderivatives: \[
\frac{4e^{\nu} - \sin \nu}{3} + C
\]
0560-5. Find the unique \(f(x) \) such that
\[
f'(x) = -5x^4 - 9x^2 + 2 \quad \text{and} \quad f(0) = 4.
\]
ANSWER:
\[
f(x) = -x^5 - 3x^3 + 2x + 4
\]

0560-6. Find the unique \(f(x) \) such that
\[
f'(x) = \frac{3x^2 + 4}{x \sqrt[6]{x}} \quad \text{and} \quad f(1) = 0.
\]
ANSWER:
\[
f'(x) = \frac{3x^2 + 4}{x \sqrt[6]{x}} = 3x^{5/6} + 4x^{-7/6}
\]
\[
f(x) = \frac{3x^{11/6}}{11/6} + \frac{4x^{-1/6}}{-1/6} - \frac{3}{11/6} - \frac{4}{-1/6}
\]
0560-7. Find the unique \(h(t) \) such that \(h'(t) = 2 \sin t - 7 \cos t \) and \(h(0) = -4 \).

ANSWER:

\[h(t) = -2 \cos t - 7 \sin t - 2 \]

0560-8. Find the unique \(p(t) \) such that \(p''(t) = -e^t + 12t^3, \ p'(0) = 3 \) and \(p(0) = 1 \).

ANSWER:

\[p'(t) = -e^t + 3t^4 + 4 \]

\[p(t) = -e^t + \frac{3t^5}{5} + 4t + 2 \]
0560-9. The graph of f is shown below.

Which of the following could be the graph of an antiderivative of f?
0560-9. The graph of f is shown below.

Which of the following could be the graph of an antiderivative of f?

ANSWER:
0560-10. The graph of \(f \) is shown below.

Which of the following could be the graph of an antiderivative of \(f \)?
The graph of \(f \) is shown below.

Which of the following could be the graph of an antiderivative of \(f \)?

ANSWER:
The graph of f is shown below.

Which of the following could be the graph of an antiderivative of f?
The graph of f is shown below.

Which of the following could be the graph of an antiderivative of f?

ANSWER:
The graph of f is shown below.

Which of the following could be the graph of an antiderivative of f?
The graph of f is shown below.

Which of the following could be the graph of an antiderivative of f?

Answer:
0560-13. A particle travels on a number line.

Suppose its acceleration at time \(t \) is \(3t^2 + 2t - 6 \), its position at time 0 is 2 and its velocity at time 0 is \(-3\).

Find an expression for its position at time \(t \).

ANSWER:

velocity at time \(t \): \[t^3 + t^2 - 6t - 3 \]

position at time \(t \): \[\frac{t^4}{4} + \frac{t^3}{3} - 3t^2 - 3t + 2 \]
We drop a heavy ball out of a window in a tall building. Its speed at the moment of impact with the ground is 160 feet per second. From what height was it dropped?

Answer:

- Acceleration is: \(32 \text{ ft/sec}^2 \)
- Velocity at time \(t \) seconds after release is: \(32t \text{ ft/sec} \)
- Distance fallen in the first \(t \) seconds after release is: \(16t^2 \text{ ft} \)

Let \(t_0 \) be the number of seconds between release and impact.

\[32t_0 = 160, \text{ so } t_0 = 5 \text{ seconds.} \]

Distance from release point to the ground is

\[16t_0^2 = 16 \cdot 5^2 = 400 \text{ ft.} \]