CALCULUS
Average rates of change
NEW
Water is being drained from a tub; the amount in the tub is constantly monitored, and is tabulated against time as follows:

<table>
<thead>
<tr>
<th>hrs</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>liters</td>
<td>101</td>
<td>79</td>
<td>33</td>
<td>25</td>
</tr>
</tbody>
</table>

Let W be the amount in the tank at time t.
Let $B = (6, 33)$, a point on the graph of W.

a. Find the slope of the secant lines between B and the other points on the graph of W appearing in the table above.

b. Estimate the slope of the tangent line to the graph of W at the point B, by averaging the following two numbers:
 - the slope of the secant line between B and $(4, 79)$
 - and the slope of the secant line between B and $(8, 25)$.
Let A be the point $(1, 4)$ on the graph of $y = 5 - x^3$. Let B be a variable point $(x, 5 - x^3)$ on the same graph.

a. Compute the slope of the secant line between A and B, when x is equal to

 (i) 2
 (ii) 1.1
 (iii) 1.01
 (iv) 0
 (v) 0.9
 (vi) 0.99
 (vii) $1 + h$, with $h \neq 0$

b. Guess the slope of the tangent line to $y = 5 - x^3$ at A.

c. Using b, write an equation of the tangent line to $y = 5 - x^3$ at A.
A tennis player, in a fit of rage over a lost point, throws his racquet into the air. Assume that its distance, in feet, above the ground, \(t \) seconds later, is \(8 + 30t - 16t^2 \).

a. Find its average velocity over the time period starting at time 1, and continuing for the following number of seconds:

(i) 1 (ii) 0.5 (iii) 0.01
(iv) 0.001 (v) 0.0001 (vi) 0.00005
(vii) \(\Delta t \), with \(\Delta t \neq 0 \)

b. Guess its instantaneous velocity 1 second after it’s thrown.