CALCULUS
Continuity
NEW
0210-1. a. At which numbers is the function f, shown above, discontinuous?

b. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the LEFT at that number.

c. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the RIGHT at that number.
Display the graph of a function f

s.t. \[\lim_{x \to -2^-} f(x) = -1, \quad \lim_{x \to -2^+} f(x) = 2, \]

and s.t. \[f(-2) = 2, \]

and s.t. \[\lim_{x \to 1} f(x) = 3, \quad f(1) = 2, \]

and s.t. \[\lim_{x \to 2^-} f(x) = \infty, \quad \lim_{x \to 2^+} f(x) = -\infty, \]

and s.t. \[\lim_{x \to -\infty} f(x) = 2, \quad \lim_{x \to \infty} f(x) = 2. \]
0210-3. Let \(f(s) = \sqrt[3]{s^4 + s} \).

Using the properties of limits, show that \(f \) is continuous at 5.

0210-4.

Let \(f(x) = \begin{cases}
2x + 5, & \text{if } x < -1 \\
3, & \text{if } x = -1 \\
x^3 + 4, & \text{if } x > -1.
\end{cases} \)

a. Does \(\lim_{x \to -1} f(x) \) exist? If so, compute it.

b. Is \(f \) continuous at \(-1\)?
Let $g(x) = \begin{cases}
\cos(2x), & \text{if } x < 0 \\
2, & \text{if } x = 0 \\
(x^3 - 1)^2, & \text{if } x > 0.
\end{cases}$

a. Does $\lim_{x \to 0} g(x)$ exist? If so, compute it.

b. Is g continuous at 0?
Let \(g(x) = \begin{cases}
\cos(2x), & \text{if } x < 0 \\
2, & \text{if } x = 0 \\
(x^3 - 1)^2, & \text{if } x > 0.
\end{cases} \)

a. Does \(\lim_{x \to -1} g(x) \) exist? If so, compute it.

b. Is \(g \) continuous at \(-1\)?
0210-7. Let \(f(x) = x^{2/3} \).

a. Is \(f \) continuous at 0?
b. Is \(f \) continuous on \([0, \infty)\)?
c. Is \(f \) continuous?

0210-8. Let \(g(x) = x^{-2/3} \).

a. Is \(g \) continuous at 0?
b. Is \(g \) continuous on \((0, \infty)\)?
c. Is \(g \) continuous?

0210-9. Compute \(\lim_{x \to 64} \frac{x + \sqrt[3]{x}}{(x - 60)^2 + x - 46} \).
0210-10. Let \(f(x) = \begin{cases}
 x^2 + 3, & \text{if } x < 2 \\
 2x + 2, & \text{if } 2 \leq x \leq 3 \\
 7[\cos(x - 3)], & \text{if } 3 < x.
\end{cases} \)

a. At which numbers is the function \(f \) discontinuous?

b. For each of the numbers, given in Part a, where \(f \) is discontinuous, state whether or not \(f \) is continuous from the LEFT at that number.

c. For each of the numbers, given in Part a, where \(f \) is discontinuous, state whether or not \(f \) is continuous from the RIGHT at that number.
Let \(g(x) = \begin{cases}
4e^x, & \text{if } x < 0 \\
8, & \text{if } x = 0 \\
7x + 4, & \text{if } 0 < x.
\end{cases} \)

a. At which numbers is the function \(g \) discontinuous?

b. For each of the numbers, given in Part a, where \(g \) is discontinuous, state whether or not the discontinuity is removable.
0210-12. Find a number \(a \) s.t.

\[
f(w) = \begin{cases}
 a e^w, & \text{if } w \leq 0 \\
 4aw^6 + 5a + 8, & \text{if } 0 < w
\end{cases}
\]

is continuous at \(w = 0 \).

0210-13. Let \(g(z) = \frac{2z^2 + 10z - 12}{z + 6} \).

Find a function \(q : \mathbb{R} \rightarrow \mathbb{R} \)

such that \(q \) is continuous at \(-6\)

and such that, \(\forall z \in \mathbb{R} \setminus \{-6\}, \quad q(z) = g(z) \).
0210-14.
Using the Intermediate Value Theorem, show that \(x^3 + x + 100001 = 0\) has a solution \(x = c\) that satisfies \(-101 < c < 101\).

0210-15.
Using the Intermediate Value Theorem, show that \(e^{3x} + \sin^2 x = x^2 - 1\) has a solution \(x = c\) that satisfies \(-\pi < c < \pi\).