CALCULUS Implicit differentiation NEVV

- 0430-1. Let an expression y of x be given, implicitly, by the formula $xy + 2x^3 9y = 5$.
- a. Find dy/dx by implicit differentiation. b. Solve for y as an explicit expression of x.
- c. Differentiate your answer to Part b, writing dy/dx as an explicit expression of x.
- d. Substitute your answer for Part b into every y appearing in your answer to Part a, writing dy/dx as an explicit expression of x.
- e. Verify that your answers to Part c and Part d are the same.

- 0430-2.Let an expression y of x be given, implicitly, by the formula $x^3 + y^7 = 1$.
 - a. Find dy/dx by implicit differentiation.
- b. Solve for y as an explicit expression of x.
- c. Differentiate your answer to Part b, writing dy/dx as an explicit expression of x.
- d. Substitute your answer for Part b into every y appearing in your answer to Part a, writing dy/dx as an explicit expression of x.
- e. Verify that your answers to Part c and Part d are the same.

O430-3. Let an expression y of x be given, implicitly, by the formula $ye^x - \sec y - \pi e^x \ln y = 2.$ Find dy/dx by implicit differentiation.

0430-4. Let an expression y of x be given, implicitly, by the formula $\cos y = 2x + 4y - e$. Find dy/dx by implicit differentiation.

0430-5. Let an expression y of x be given, implicitly, by the formula $x^3+y^4=9$. Find an equation of the tangent li

Find an equation of the tangent line to the graph of this equation at the point (2,-1).

O430-6. Let an expression y of x be given, implicitly, by the formula $y^2 = x^6 - \sqrt[3]{5}x^2.$

Find an equation of the tangent line to the graph of this equation at the point $(\sqrt[3]{5}, -2\sqrt{5})$.

O430-7. Let an expression y of x be given, implicitly, by the formula $2x^4 + 8y^5 - 6xy = 4.$ Find d^2y/dx^2 by implicit differentiation.

O430-8. Let an expression
$$y$$
 of x be given, implicitly, by the formula
$$\sqrt[3]{2}x^2 + y^5 = 2 + xy.$$
 Find d^2y/dx^2 by implicit differentiation.

O430-9. For every $a \in \mathbb{R}$, for every b > 0, let G_a be graph of $x^2 - y^2 = ax^2y^2$ and let H_b be graph of $x^4 + y^4 = b$.

a. Let p be the point (2,1), which lies both on $G_{3/\!\!/4}$ and on H_{17} .

Show that the tangent lines to $G_{3/\!\!4}$ and H_{17} at p are perpendicular.

b. Let a and b be any two real numbers, with b>0. Let q be any point which lies

both on G_a and on H_b .

Show that the tangent lines to G_a and H_b at q are perpendicular.

Challenge problem (not assigned):

For every $a, b \in \mathbb{R}$, let G_a be graph of $e^{-x} - e^{-y} = a$ and let H_b be graph of $e^x + e^y = 2b$.

- both on G_0 and on H_e . Show that the tangent lines to G_0 and H_e
- at p are perpendicular.
- b. Let a and b be any two real numbers.

a. Let p be the point (1,1), which lies

Let q be any point which lies both on G_a and on H_b .

Show that the tangent lines to G_a and H_b at q are perpendicular.