CALCULUS
The Mean Value Theorem
NEW
Let \(f(x) = x^2 - 2x - 3 \).

a. Check that \(f \) satisfies the conditions of Rolle’s Theorem on the interval \([-1, 3]\). That is, check

(i) that \(f \) is continuous on \([-1, 3]\),
(ii) that \(f \) is differentiable on \((-1, 3)\) and
(iii) that \(f(-1) = f(3) \).

b. Find all solutions to the equation in the conclusion of Rolle’s Th’m for \(f \) on \([-1, 3]\). That is, find all \(c \in (-1, 3) \) s.t. \(f'(c) = 0 \).
0460-2. Let \(f(x) = x^2 + x - 3 \).

a. **Check** that \(f \) satisfies the conditions of the MVT on the interval \([-1, 3]\). That is, **check**

 (i) that \(f \) is continuous on \([-1, 3]\) and (ii) that \(f \) is differentiable on \((-1, 3)\).

b. **Find** all solutions to the equation in the conclusion of the MVT for \(f \) on \([-1, 3]\). That is, **find all** \(c \in (-1, 3) \) s.t.

\[
 f'(c) = \frac{[f(3)] - [f(-1)]}{3 - (-1)}.
\]
Let \(f(x) = 7 + |x - 5| \).

a. Show that \(f \) is continuous on \([2, 8]\).

b. Show that \(f(2) = f(8) \).

c. Show that the conclusion of Rolle’s Th’m, for \(f \) on \([2, 8]\), fails. That is, show that there is no \(c \in (2, 8) \) s.t. \(f'(c) = 0 \).

d. Explain why this does not contradict Rolle’s Theorem.
0460-4. Let \(f(x) = x + |x - 5| \).

a. Show that \(f \) is continuous on \([2, 8]\).

b. Show that the conclusion of the MVT, for \(f \) on \([2, 8]\), fails. That is, show that there is no \(c \in (2, 8) \) s.t.

\[
f'(c) = \frac{[f(8)] - [f(2)]}{8 - 2}.
\]

c. Explain why this does not contradict the MVT.
Let \(f(x) = \begin{cases}
100, & \text{if } x = 2 \\
3x - 5, & \text{if } 2 < x < 8 \\
40, & \text{if } x = 8.
\end{cases} \)

a. Show that \(f \) is differentiable on \((2, 8)\).

b. Show that the conclusion of the MVT, for \(f \) on \([2, 8]\), fails. That is, show that there is no \(c \in (2, 8) \) s.t.

\[
f'(c) = \frac{[f(8)] - [f(2)]}{8 - 2}.
\]

c. Explain why this does not contradict the MVT.
0460-6. Show that $3x + \cos(2x) = 100$ has exactly one real solution.

0460-7. Let c be any constant. Show that $x^3 + x + c = 0$ has at most one real solution on \mathbb{R}.
At noon on some day, a certain car is at the 200 mile marker on some road. The speed limit on the road is 55 mph. A driver drives the car for seven hours, obeying the speed limit.

Let \(f(t) \) denote the position of the car \(t \) hours after noon; then

\[
\begin{align*}
 f(0) &= 200 \\
 \text{and} \\
 \forall t \in [0, 7], \quad f'(t) &\leq 55.
\end{align*}
\]

With these constraints, what is the largest possible value for \(f(7) \)?