CALCULUS Newton's method NEVV

O530-1. We wish to solve $x^5 + x^3 + 2 = 0$. Starting with an initial guess of $x_1 = -1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

O530-2. We wish to solve $x^5 + x^3 + 3 = 0$. Starting with an initial guess of $x_1 = -1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

O530-3. We wish to solve $x^5 - 2 = 0$. Starting with an initial guess of $x_1 = 1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

O530-4. We wish to solve $x^5 - 2x^3 + 16 = 0$. Starting with an initial guess of $x_1 = -2$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

Starting with an initial guess of $x_1 = -1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

0530-6. Using Newton's method, calculate $\sqrt[3]{5}$,

to five decimal places.

0530-7. Find the unique solution to $-x = \cos x$, to five decimal places.

O530-8. Find a solution to $\tan x = \cos x$, to five decimal places, by applying Newton's method to $f(x) = (\tan x) - (\cos x)$, with $x_1 = 1$.

O530-9. We wish to solve $\sqrt[5]{t} = 0$. Let $t_1 := 0.25$. Starting with this initial guess t_1 , compute the next six guesses, t_2, \ldots, t_7 , using Newton's method. Draw a picture, to illustrate what is happening. (The picture should show t_1 , t_2 and t_3 . It needn't show t_4 through t_7 .)