

CALCULUS
Volume by cylindrical shells:
Problems
NEVV

0750-1. Using the shell method, find the volume in a ball of radius 13, following the diagram shown below.

O750-2. We create a napkin holder by drilling a cylindrical hole of radius 5 through the middle of a ball of radius 13, as shown below. Using the shell method, find its volume.

0750-3. Let R be the region bounded by

$$y = \frac{1}{5}(x-2)^2(x-4)^2 + \frac{6}{5}$$
 and $y = 3$.

- a. Sketch R. b. Using whatever method you prefer, set up
- an integral to compute the volume of the solid obtained by rotating R about the x-axis. Do not evalute the integral.
- c. Using whatever method you prefer, set up an integral to compute the volume of the solid obtained by rotating R about the y-axis. Do not evalute the integral.
- d. Using whatever method you prefer, set up an integral to compute the volume of the solid obtained by rotating R about the line $x=\frac{1}{2}$. Do not evalute the integral.

O750-4. Let R be the region bounded by $x=1+e^{-y^2}$, x=1, y=0 and y=2.

- a. Sketch R.
- b. Using whatever method you prefer, find the volume of the solid obtained by rotating R about the x-axis.

O750-5.Let
$$R$$
 be the region bounded by
$$x=y^2+y,\; x=0 \text{ and } y=1.$$
 a. Sketch R .

b. Using whatever method you prefer, find the volume of the solid obtained by rotating R about the line x = -1.

0750-6. Let R be the region bounded by $x=\sin y, \ x=0, \ y=\pi/8 \ \text{and} \ y=3\pi/4.$

Set up, but do not evaluate, an integral that yields the volume of the solid obtained by rotating R about the line $y = 3\pi/2$.

0750-7. Describe the solid of revolution whose volume is given by

$$2\pi \int_{2}^{5} x \left[\left(e^{4x} \right) - \left(\sin(\pi x) \right) \right] dx.$$

Do not evaluate this integral.

0750-8. Describe the solid of revolution whose volume is given by

$$2\pi \int_{2}^{5} [x+6] \left[\left(e^{4x} \right) - \left(\sin(\pi x) \right) \right] dx.$$

6

Do not evaluate this integral.