CALCULUS
Derivatives and rates of change
NEW
0270-1. Let C be the curve $y = -x^2 + 2x + 3$. Let L be the tangent line to C at the point $(0, 3)$.

a. Find the slope of L, by computing a limit of slopes of secant lines.

b. Find an equation of L.

c. Graph C and L in the rectangle $-2 \leq x \leq 4, \quad -2 \leq y \leq 5$.

d. Graph C and L in the rectangle $-1 \leq x \leq 1, \quad 1 \leq y \leq 5$.

e. Graph C and L in the rectangle $-0.1 \leq x \leq 0.1, \quad 2.8 \leq y \leq 3.2$.

In c, d and e, note that, as you “zoom in”, the tangent line looks more and more like the curve.
Let C be the curve $y = -x^2 + 2x + 3$. Let L be the tangent line to C at the point $(0, 3)$.

a. Find the slope of L by...

ANSWER: a.

$$
\lim_{h \to 0} \frac{[-(0 + h)^2 + 2 \cdot (0 + h) + 3] - [-0^2 + 2 \cdot 0 + 3]}{h}
$$

$$
= - \left[\lim_{h \to 0} \frac{(0 + h)^2 - 0^2}{h} \right] + 2 \left[\lim_{h \to 0} \frac{(0 + h) - 0}{h} \right]
$$

$$
= - \left[\lim_{h \to 0} \frac{h^2}{h} \right] + 2 \left[\lim_{h \to 0} \frac{h}{h} \right]
$$
Let C be the curve $y = -x^2 + 2x + 3$. Let L be the tangent line to C at the point $(0, 3)$.

a. Find the slope of L.

ANSWER: a.

\[
\begin{align*}
&= - \left[\lim_{h \to 0} \frac{h^2}{h} \right] + 2 \left[\lim_{h \to 0} \frac{1}{h} \right] \\
&= - \left[\lim_{h \to 0} h \right] + 2 \left[\lim_{h \to 0} 1 \right] \\
&= -0 + 2 \cdot 1 = 2
\end{align*}
\]
Let C be the curve $y = -x^2 + 2x + 3$. Let L be the tangent line to C at the point $(0, 3)$.

b. Find an equation of L.

ANSWER: b. Slope of L: 2 (from Part a) a point on L: $(0, 3)$

equations of L: $y - 3 = 2(x - 0)$

or $y = 3 + 2(x - 0)$

or $y = 2x + 3$
Let C be the curve $y = -x^2 + 2x + 3$. Let L be the tangent line to C at the point $(0,3)$.

c. Graph C and L in the rectangle $-2 \leq x \leq 4, \quad -2 \leq y \leq 5.$

ANSWER: c. equation of L: $y = 2x + 3$
Let C be the curve $y = -x^2 + 2x + 3$. Let L be the tangent line to C at the point $(0, 3)$. Graph C and L in the rectangle $-1 \leq x \leq 1$, $1 \leq y \leq 5$. **ANSWER:** d. equation of L: $y = 2x + 3$
Let C be the curve $y = -x^2 + 2x + 3$. Let L be the tangent line to C at the point $(0,3)$.

e. Graph C and L in the rectangle $-0.1 \leq x \leq 0.1, \quad 2.8 \leq y \leq 3.2$.

ANSWER: e. equation of L: $y = 2x + 3$
0270-2. a. Compute \(\lim_{h \to 0} \frac{\sqrt{4 + 3h} - 2}{h} \).

b. Find the slope of the secant line to \(y = \sqrt{3x + 1} \) through the points \((1, 2) \) and \((1 + h, \sqrt{4 + 3h}) \).

c. Find an equation of the tangent line to \(y = \sqrt{3x + 1} \) at the point \((1, 2) \).
Compute \(\lim_{{h \to 0}} \frac{\sqrt{4 + 3h} - 2}{h} \).

ANSWER: a.

\[
\lim_{{h \to 0}} \frac{\sqrt{4 + 3h} - 2}{h} = \lim_{{h \to 0}} \left[\frac{\sqrt{4 + 3h} - 2}{h} \right] \left[\frac{\sqrt{4 + 3h} + 2}{\sqrt{4 + 3h} + 2} \right] \\
= \lim_{{h \to 0}} \frac{(\sqrt{4 + 3h})^2 - 2^2}{h(\sqrt{4 + 3h} + 2)} = \lim_{{h \to 0}} \frac{(4 + 3h) - 4}{h(\sqrt{4 + 3h} + 2)} \\
= \lim_{{h \to 0}} \frac{3}{\sqrt{4 + 3h} + 2} = \frac{3}{\sqrt{4 + 0} + 2} \\
= \frac{3}{2 + 2} = \frac{3}{4}
\]
0270-2. a. Compute \(\lim_{{h \to 0}} \frac{\sqrt{4 + 3h} - 2}{h} \).

b. Find the slope of the secant line
to \(y = \sqrt{3x} + 1 \) through the points
\((1, 2)\) and \((1 + h, \sqrt{4 + 3h})\).

ANS: b. \[
\text{rise} = \sqrt{4 + 3h} - 2 \\
\text{run} = (1 + h) - 1 = h \\
\text{slope} = \frac{\sqrt{4 + 3h} - 2}{h}
\]

c. Find an equation of the tangent line
to \(y = \sqrt{3x} + 1 \) at the point \((1, 2)\).

ANS: c. \[
\text{slope} = \lim_{{h \to 0}} \frac{\sqrt{4 + 3h} - 2}{h} = \frac{3}{4}
\]

equation: \(y = 2 + \frac{3}{4}(x - 1) \)
A particle moves on a number line. Its position at any time \(t \) is \(\sqrt{3t + 1} \).

a. Find the average velocity between time \(t = 1 \) and time \(t = 1 + h \).

b. Find the instantaneous velocity at time \(t = 1 \).

ANSWER:

a.
change in position \(= \sqrt{3(1 + h) + 1} - \sqrt{3 \cdot 1 + 1} \)
\(= \sqrt{4 + 3h} - 2 \)
change in time \(= (1 + h) - 1 = h \)
average velocity \(= \frac{\sqrt{4 + 3h} - 2}{h} \)

b.
instantaneous velocity \(= \lim_{h \to 0} \frac{\sqrt{4 + 3h} - 2}{h} \)
\(= \frac{2}{3} \)
A heavy object is taken to the top of a building 200 feet high. At time $t = 0$, it is thrown upward at 10 feet/second. We engage the services of two Nobel prize-winning physicists who confer (i.e., yell and scream at one another). After several hours of scholarly study, followed by minor medical treatment for blunt trauma, lacerations and contusions, they hold a joint press conference, and inform their public that, t seconds after release, the object will be located

$$200 + 10t - 16t^2$$

feet above the ground. Based on this, find the velocity of the object 0.4 seconds after release. Give your answer in feet per second.
... t seconds after release, the object will be located
\[200 + 10t - 16t^2\] feet above the ground. Based on this, find the velocity of the object 0.4 seconds after release. Give your answer in feet per second.

ANSWER: [avg velocity between times 0.4 and 0.4 + h] =
\[
\frac{[200 + 10(0.4 + h) - 16(0.4 + h)^2] - [200 + 10(0.4) - 16(0.4)^2]}{h}
\]
\[
= 10 \left[\frac{(0.4 + h) - 0.4}{h} \right] - 16 \left[\frac{(0.4 + h)^2 - (0.4)^2}{h} \right]
\]
\[
= 10 - 16 \left[\frac{(0.4)^2 + 2(0.4)h + h^2 - (0.4)^2}{h} \right]
\]
\[
= 10 - 16 \left[\frac{2(0.4)h + h^2}{h} \right]
\]
... t seconds after release, the object will be located

$$200 + 10t - 16t^2$$

feet above the ground. Based on this, find the velocity of the object 0.4 seconds after release. Give your answer in feet per second.

ANSWER:

[avg velocity between times 0.4 and 0.4 + h]

$$= 10 - 16 \left[\frac{2(0.4)h + h^2}{h} \right]$$

$h \neq 0$

$$= 10 - 16 [2(0.4) + h]$$

$$= 10 - 16 [0.8 + h]$$

$$= 10 - 12.8 - 16h = -2.8 - 16h$$

[instantaneous velocity at time 0.4]

$$= \lim_{h \to 0} (-2.8 - 16h) = -2.8$$

That is, it’s traveling downward at 2.8 ft/sec.
Order these numbers, from smallest to largest:

\[f'(-2), f'(-1), f'(0), f'(1), f'(2), f'(3) \]

Note that we are asking about \(f' \), not \(f \).

\textbf{ANSWER:}

\[f'(-2) < f'(-1) < f'(0) < f'(1) < f'(2) < f'(3) \]
Let \(f(x) = \frac{7x + 5}{2x + 1} \).

a. Compute \(f'(2) \).

b. Compute \(f'(3) \).

c. Compute \(f'(4) \).

d. Compute \(f'(a) \), for an arbitrary number \(a \).
0270-6. Let \(f(x) = \frac{7x + 5}{2x + 1} \).

d. Compute \(f'(a) \), for an arbitrary number \(a \).

ANSWER: d. \[
\frac{1}{h \to 0} \lim h \left[\frac{7(a + h) + 5}{2(a + h) + 1} - \frac{7a + 5}{2a + 1} \right] = \\
\frac{7a + 7h + 5}{2a + 2h + 1} - \frac{7a + 5}{2a + 1} = \\
\frac{[7h + 7a + 5][2a + 1] - [2h + 2a + 1][7a + 5]}{[2a + 2h + 1][2a + 1]} = \\
\frac{[7h][2a + 1] - [2h][7a + 5]}{[2a + 2h + 1][2a + 1]}.
\]
Let \(f(x) = \frac{7x + 5}{2x + 1} \).

d. Compute \(f'(a) \), for an arbitrary number \(a \).

\[
\text{ANSWER: d. } f'(a) = \lim_{h \to 0} \frac{1}{h} \left[\frac{7(a + h) + 5}{2(a + h) + 1} - \frac{7a + 5}{2a + 1} \right]
\]

\[
= \lim_{h \to 0} \frac{[7(a + h) + 5][2a + 1] - [2h][7a + 5]}{[2a + 2h + 1][2a + 1]}
\]

\[
= \lim_{h \to 0} \frac{7h - 10h}{[2a + 2h + 1][2a + 1]}
\]

\[
= \lim_{h \to 0} \frac{-3h}{[2a + 2h + 1][2a + 1]}
\]

\[
= \frac{-3}{(2a + 1)^2}
\]
d. Compute \(f'(a) \), for an arbitrary number \(a \).

ANSWER:

\[
f'(a) = \lim_{h \to 0} \frac{1}{h} \left[\frac{7(a + h) + 5}{2(a + h) + 1} - \frac{7a + 5}{2a + 1} \right] = \frac{-3}{[2a + 1]^2}
\]
Let \(f(x) = \frac{7x + 5}{2x + 1} \).

d. Compute \(f'(a) \), **for an arbitrary number** \(a \).

ANSWER:

d. \(f'(a) = \frac{-3}{(2a + 1)^2} \)

a. Compute \(f'(2) \).

b. Compute \(f'(3) \).

c. Compute \(f'(4) \).

ANSWER:

a. \(f'(2) = \frac{-3}{[2 \cdot 2 + 1]^2} = -\frac{3}{25} \)

b. \(f'(3) = \frac{-3}{[2 \cdot 3 + 1]^2} = -\frac{3}{49} \)

c. \(f'(4) = \frac{-3}{[2 \cdot 4 + 1]^2} = -\frac{3}{81} = -\frac{1}{27} \)
Find a function f and a number a s.t.

$$f'(a) = \lim_{h \to 0} \frac{[\ln(3 + h)] - [\ln(3)]}{h}.$$

ANSWER:

$$f'(a) = \lim_{h \to 0} \frac{[f(a + h)] - [f(a)]}{h}$$

$$f = \ln, \quad a = 3$$