CALCULUS
Average rates of change
NEW
Water is being drained from a tub; the amount in the tub is constantly monitored, and is tabulated against time as follows:

<table>
<thead>
<tr>
<th>hrs</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>gallons</td>
<td>101</td>
<td>80</td>
<td>35</td>
<td>26</td>
</tr>
</tbody>
</table>

Let W be the amount in the tank at time t. Let $B = (9, 35)$, a point on the graph of W.

a. Find the slope of the secant lines between B and the other points on the graph of W appearing in the table above.

b. Estimate the slope of the tangent line to the graph of W at the point B, by averaging the following two numbers: the slope of the secant line between B and $(6, 80)$ and the slope of the secant line between B and $(12, 26)$.

Let A be the point $(1, 1)$ on the graph of $y = 3 - 2x^4$. Let B be a variable point $(x, 3 - 2x^4)$ on the same graph.

a. **Compute** the slope of the secant line between A and B, when x is equal to:

(i) 2 (ii) 1.1 (iii) 1.01
(iv) 0 (v) 0.9 (vi) 0.99
(vii) $1 + h$, with $h \neq 0$

b. **Guess** the slope of the tangent line to $y = 3 - 2x^4$ at A.

c. Using b, **write** an equation of the tangent line to $y = 3 - 2x^4$ at A.
A tennis player, in a fit of rage over a lost point, throws his racquet into the air. Assume that its distance, in feet, above the ground, \(t \) seconds later, is \(5 + 60t - 16t^2 \).

a. Find its average velocity over the time period starting at time 4, and continuing for the following number of seconds:

(i) 1
(ii) 0.5
(iii) 0.01
(iv) 0.001
(v) 0.0001
(vi) 0.00005
(vii) \(\Delta t \), with \(\Delta t \neq 0 \)

b. Guess its instantaneous velocity 4 seconds after it’s thrown.