CALCULUS The quotient rule NEVV

0350-1. Differentiate
$$f(x) = (x^5 + 7x + \sqrt{2})e^x$$
.
0350-2. Differentiate $u = \frac{x^5 + 7x + \sqrt{2}}{e^x}$.

$$\underset{\text{NEW Differentiate } F(r) = \left(\frac{6e^{r} + 7}{r^{3} - 4r^{5}}\right) \left(\frac{2r - 5}{r^{2} + e^{r}}\right)$$

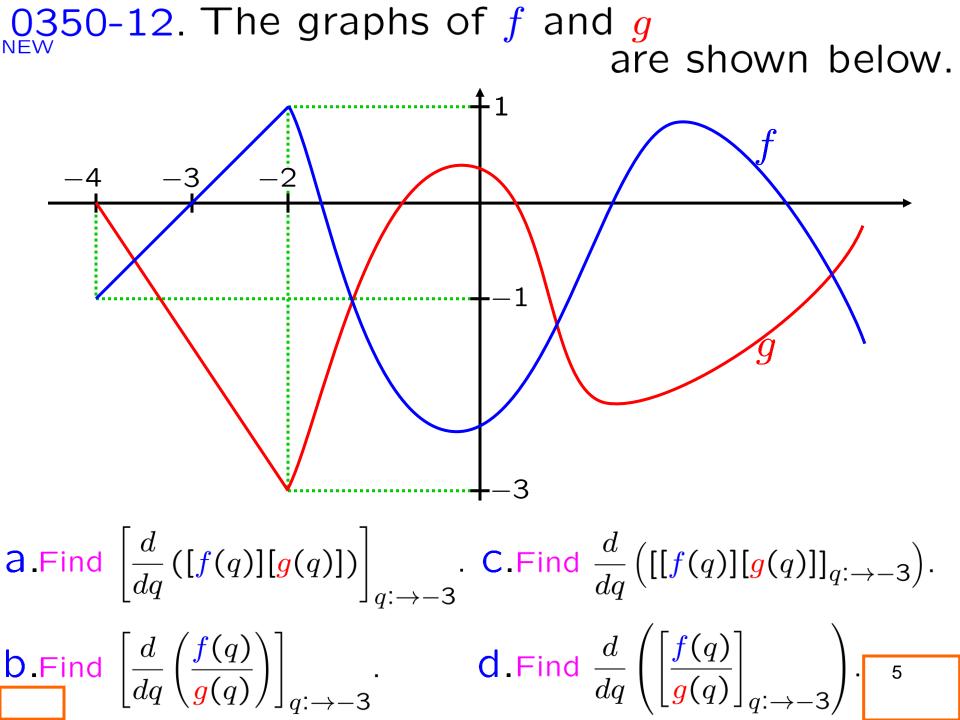
0350-4. Differentiate
$$G(w) = e^{3-w}$$
.
Hint: $e^{3-w} = e^3/e^w$

0350-5. Differentiate
$$H(z) = e^{5+3z}$$
.
Hint: $e^{5+3z} = e^5(e^z)(e^z)(e^z)$

0350-6. Differentiate $y = (e^3 + 1)(x^2 + 2)e^{-3x}$.

0350-8. Find an equation of the tangent line to $y = (x^2 - 3x - 2)e^x$ at (0, -2).

0350-9. Find an equation of the tangent line to $y = (x^2 - 3x - 2)e^{-x}$ at (0, -2). $\begin{array}{l} \begin{array}{l} \text{O350-10. Say } p(8) = 3 \ \text{and} \ p'(8) = 6. \\ \text{Say } q(8) = 9 \ \text{and} \ q'(8) = 5. \end{array}$


a.Let
$$g(x) = \frac{p(x)}{q(x)}$$
. Compute $g(8)$ and $g'(8)$.

b. Let h(x) = [p(x)][q(x)]. Compute h(8) and h'(8).

$$\bigcup_{\text{NEW}} 0350-11.\text{Say } w(4) = -1 \text{ and } w'(4) = -2.$$

a.Compute
$$\left[\frac{d}{dt}\left(e^{-3t}\left(w(t)\right)\right)\right]_{t\to 4}$$

b.Compute $\frac{d}{dt}\left(\left[e^{-3t}\left(w(t)\right)\right]_{t\to 4}\right)$.

