CALCULUS

Volume by cylindrical shells:
Problems
NEW

0750-1. Using the shell method, find the volume in a ball of radius 26, following the diagram shown below.

0750-2. We create a napkin holder by drilling a cylindrical hole of radius 10 through the middle of a ball of radius 26 , as shown below. Using the shell method, find its volume.

$0750-3$. Let R be the region bounded by

$$
y=(x-2)^{2}(x-4)^{2}+1 \text { and } y=10
$$

a. Sketch R.
b. Using whatever method you prefer, set up an integral to compute the volume of the solid obtained by rotating R about the x-axis. Do not evalute the integral.
c. Using whatever method you prefer, set up an integral to compute the volume of the solid obtained by rotating R about the y-axis. Do not evalute the integral.
d. Using whatever method you prefer, set up an integral to compute the volume of the solid obtained by rotating R about the line $x=6$. Do not evalute the integral.
${\underset{N E W}{0} 50-4 \text {. Let } R \text { be the region bounded by }}_{2}$

$$
x=1+e^{-y^{2}}, x=1, y=1 \text { and } y=2 \text {. }
$$

a. Sketch R.
b. Using whatever method you prefer, find the volume of the solid obtained by rotating R about the x-axis.
$0750-5$. Let R be the region bounded by

$$
x=y^{2}+y, x=2 \text { and } y=2
$$

a. Sketch R.
b. Using whatever method you prefer, find the volume of the solid obtained by rotating R about the line $x=-1$.

\qquad
\square find

0750-6. Let R be the region bounded by $x=\sin y, x=0, y=\pi / 4$ and $y=\pi$.
Set up, but do not evaluate, an integral that yields the volume of the solid obtained by rotating R about the line $y=\pi$.
0750-7. Describe the solid of revolution whose volume is given by

$$
2 \pi \int_{3}^{5} x\left[\left(e^{8 x}\right)-(\sin (\pi x))\right] d x
$$

Do not evaluate this integral.
0750-8. Describe the solid of revolution whose volume is given by

$$
2 \pi \int_{3}^{5}[x+4]\left[\left(e^{8 x}\right)-(\sin (\pi x))\right] d x
$$

Do not evaluate this integral.

