CALCULUS
Derivatives of exponential functions
NEW
0330-1. Differentiate \(f(x) = 2e^2 + x \).

ANSWER: \(f'(x) = 1 \)

0330-2. Differentiate \(f(x) = 2e^x + x \).

ANSWER: \(f'(x) = 2e^x + 1 \)
0330-3. Differentiate $f(x) = \frac{-3x^4 + ex^7}{3\sqrt{x^2}}$.

ANSWER:

$$f(x) = \left[-3x^4 + ex^7\right] \left[x^{-2/3}\right]$$

$$= -3x^{10/3} + ex^{19/3}$$

$$f'(x) = -3 \left[\frac{10}{3} x^{(10/3)-1}\right] + e \left[\frac{19}{3} x^{(19/3)-1}\right]$$

$$= -10 \left[x^{7/3}\right] + \frac{19e}{3} \left[x^{16/3}\right]$$

$$= \left(\frac{-30}{3} \left[x^2\right] + \frac{19e}{3} \left[x^5\right]\right) \left(x^{1/3}\right)$$

$$= \left(\frac{-30 + 19ex^3}{3}\right) \left(x^2 \sqrt[3]{x}\right)$$
Differentiate \(f(x) = 6 \sqrt[3]{\pi} x^4 - 2e^x \).

ANSWER:

\[
f(x) = 6 \sqrt[3]{\pi} x^{4/3} - 2e^x
\]

\[
f'(x) = 6 \sqrt[3]{\pi} \left[\frac{4}{3} x^{4/3 - 1} \right] - 2e^x
\]

\[
= 8 \sqrt[3]{\pi} x^{1/3} - 2e^x
\]

\[
= 8 \sqrt[3]{\pi} x - 2e^x
\]
0330-5. Let \(C \) be the graph of
\[y = 7e^x - x^3 - x^{8/3} - 2, \]
and let \(p = (0, 5) \in C \).

a. Find the slope of the tangent line to \(C \) at \(p \).

b. Find an equation of the tangent line to \(C \) at \(p \).

c. Find the slope of the normal line to \(C \) at \(p \).

d. Find an equation of the normal line to \(C \) at \(p \).

ANS:

a.
\[
\left(\frac{d}{dx} \right) (7e^x - x^3 - x^{8/3} - 2) \bigg|_{x: \to 0} = \left(7e^x - 3x^2 - (8/3)x^{(8/3)-1} \right) \bigg|_{x: \to 0} = 7
\]

b. \(p = (0, 5) \) is on the line; slope = 7
\[y = 5 + 7(x - 0), \]
i.e., \(y = 7x + 5 \)

ANS:

c. Normal to slope 7 implies slope \(-1/7\)

ANS:

d. \(p = (0, 5) \) is on the line; slope = \(-1/7\)
\[y = 5 + \left(-1/7\right)(x - 0), \]
i.e., \(y = (-x/7) + 5 \)
The position of a particle at time t is given by $p(t) = -7e^t + 4t^2 + 2t + 1$.

a. Find a formula for its velocity $v(t) = p'(t)$ at time t.

b. Find a formula for its acceleration $a(t) = v'(t) = p''(t)$ at time t.

ANSWER:

- $p(t) = -7e^t + 4t^2 + 2t + 1$
- a. $v(t) = p'(t) = -7e^t + 8t + 2$
- b. $a(t) = v'(t) = p''(t) = -7e^t + 8$
0330-7. Find all points on the graph of

\[y = -x^3 - 12x^2 - 21x + 4 \]

where the tangent line is horizontal.

(To specify a point, you must give both its \(x\)-coordinate and its \(y\)-coordinate.)

ANS: \[0 = \left(\frac{d}{dx} \right)(-x^3 - 12x^2 - 21x + 4) \]

\[= -3x^2 - 24x - 21 \]

\[= -3(x^2 + 8x + 7) \]

\[= 6(x + 7)(x + 1) \]

iff \[[(x = -7) \text{ or } (x = -1)] \]
0330-7. Find all points on the graph of
\[y = -x^3 - 12x^2 - 21x + 4 \]
where the tangent line is horizontal. (To specify a point, you must give both its \(x \)-coordinate and its \(y \)-coordinate.)

ANS: \[0 = (d/dx)(-x^3 - 12x^2 - 21x + 4) \]
iff \[[(x = -7) \text{ or } (x = -1)] \]

\[\begin{align*}
\left[-x^3 - 12x^2 - 21x + 4 \right]_{x \rightarrow -7} &= -(-7)^3 - 12(-7)^2 - 21(-7) + 4 = -94 \\
\left[-x^3 - 12x^2 - 21x + 4 \right]_{x \rightarrow -1} &= -(-1)^3 - 12(-1)^2 - 21(-1) + 4 = 14
\end{align*} \]

Answer is: \((-7, -94), (-1, 14)\)
0330-8. Find a linear polynomial P

s.t. $P(-3) = 4$ and s.t. $P'(-3) = 1$.

ANSWER:

$$P(x) = mx + b$$
$$P'(x) = m$$

$$P(-3) = -3m + b$$
$$P'(-3) = m$$

2 eq’ns, 2 unknowns: $$\begin{cases} 4 = -3m + b \\ 1 = m \end{cases}$$

Solution: $m = 1, \quad b = 7$

$$P(x) = x + 7$$
0330-9. Find a quadratic polynomial Q

s.t. $Q(1) = 2$, s.t. $Q'(1) = -2$ and s.t. $Q''(1) = 5$.

ANSWER:

\[Q(x) = a(x - 1)^2 + b(x - 1) + c \]
\[Q'(x) = 2a(x - 1) + b \]
\[Q''(x) = 2a \]

\[Q(1) = c \]
\[Q'(1) = b \]
\[Q''(1) = 2a \]

3 eq’ns, 3 unknowns: \[
\begin{cases}
2 = c \\
-2 = b \\
5 = 2a
\end{cases}
\]

Solution: \[
a = \frac{5}{2}, \quad b = -2, \quad c = 2
\]

\[
Q(x) = \frac{5}{2}(x - 1)^2 - 2(x - 1) + 2
\]
\[
= \frac{5}{2}(x^2 - 2x + 1) - 2x + 2 + 2
\]
\[
= \frac{5}{2}x^2 - 7x + \frac{13}{2}
\]
A population of microbes has growth rate always proportional to its size. (This implies that the size of the population at time t is given by Ce^{kt}, for unknown constants C and k.)

Assume that this size, at time $t = 0$, is 500. Assume that this size, at time $t = 3$, is 350.

a. Find C and k.

b. Find the size of the population at time $t = 7$.

ANSWER:

a. $500 = \left[Ce^{kt} \right]_{t \rightarrow 0} = C$, so $C = 500$.

$350 = \left[Ce^{kt} \right]_{t \rightarrow 3} = Ce^{3k} = 500e^{3k}$, so $\frac{7}{10} = e^{3k}$, so $\ln \frac{7}{10} = 3k$, so $k = \left(\ln \frac{7}{10} \right) / 3 \approx -0.11889165$.

b. $\left[Ce^{kt} \right]_{t \rightarrow 6} = 150e^{\frac{7}{3} \left(\ln \frac{7}{10} \right) / 3} \approx 65$.

\[\]
According to one set of estimates, the world population in the year 2000 was 6,123,000,000, and in the year 2010 was 6,896,000,000. Use an exponential model, in which the population in the year 2000 + t is Ce^{kt}.

a. Find C and k to fit the data given above.

b. Predict the world population in 2020.
According to one set of estimates, the world population in the year 2000 was 6,123,000,000, and in the year 2010 was 6,896,000,000.

Use an exponential model, in which the population in the year 2000 + \(t \) is \(C e^{kt} \).

a. Find \(C \) and \(k \) to fit the data given above.

ANS:

a. \[6123000000 = \left[C e^{kt} \right]_{t: \rightarrow 0} = C \]

\[6896000000 = \left[C e^{kt} \right]_{t: \rightarrow 10} = C e^{10k} \]

\[1.12625 \div 68960000000 = \frac{C e^{10k}}{C} = e^{10k} \]

\[0.1189 \div \ln(1.12625) = \ln \left(e^{10k} \right) = 10k \]

\[0.01189 \div k \]
According to one set of estimates, the world population in the year 2000 was 6,123,000,000, and in the year 2010 was 6,896,000,000. Use an exponential model, in which the population in the year $2000 + t$ is Ce^{kt}.

b. **Predict** the world population in 2020.

ANS: a. $6123000000 = C$, $0.01189 = k$

b. $\left[Ce^{kt} \right]_{t \to 20} = 6123000000e^{(0.01189)(20)} = 7767000000$

prediction: 7,767,000,000
Many radioactive isotopes exhibit exponential decay, which means that the amount of the isotope is given by Ce^{-kt} for constants C and k, with $k > 0$. In particular, this is true of carbon-14. Carbon-14 has a half-life of 5730 years, which means that $e^{-k \cdot 5730} = 1/2$.

a. Find k.

Animals and plants replace their carbon (including carbon-14) all through their lives, but when they die, that replacement stops and their amount of carbon-14 decays exponentially.

b. An animal body is discovered with 45% of the carbon-14 found in a living animal of the same size and species. Estimate how many years ago it died.
Many radioactive isotopes exhibit exponential decay, which means that the amount of the isotope is given by Ce^{-kt}

... which means that $e^{-k \cdot 5730} = 1/2$.

a. Find k.

ANSWER: a. $e^{-k \cdot 5730} = 1/2$

$$-k \cdot 5730 = \ln(e^{-k \cdot 5730}) = \ln(1/2) \doteq -0.693$$

$$k \doteq 0.693/5730 \doteq 0.000121$$
Many radioactive isotopes exhibit exponential decay, which means that the amount of the isotope is given by \(Ce^{-kt} \)

...which means that \(e^{-k \cdot 5730} = 1/2 \).

b. An animal body is discovered with 45% of the carbon-14 found in a living animal of the same size and species. Estimate how many years ago it died.

ANSWER:

a. \(k = 0.000121 \)

b. Say \(T \) years ago. Want: \(T \)

Amt of carbon-14 \(t \) years after death: \(Ce^{-kt} \)

Amt at death: \(\left[Ce^{-kt} \right]_{t \to 0} = C \)

Amt now: \(\left[Ce^{-kt} \right]_{t \to T} = Ce^{-kT} \)

\(Ce^{-kT} = (0.45)C \), so \(e^{-kT} = 0.45 \)
Many radioactive isotopes exhibit exponential decay, which means that the amount of the isotope is given by Ce^{-kt}

...which means that $e^{-k \cdot 5730} = 1/2$.

b. An animal body is discovered with 45% of the carbon-14 found in a living animal of the same size and species. Estimate how many years ago it died.

ANSWER:

a. $k \doteq 0.000121$

b. Say T years ago. Want: T

$$e^{-kT} = 0.45$$

$$-kT = \ln \left(e^{-kT} \right) = \ln(0.45) \doteq -0.799$$

$$T \doteq \frac{-0.431}{-k} \doteq \frac{-0.799}{-0.000121} \doteq 6600$$

6,600 years ago
The temperature of our Thanksgiving turkey is 345°F, as it’s brought out of the oven. The temperature decays exponentially, toward the room temperature of 76°F. That is, if \(f(t) \) denotes the temp (in °F) of the turkey \(t \) hours after it’s removed from the oven, then \(\exists \) constants \(C \in \mathbb{R} \) and \(k > 0 \) s.t.

\[
f(t) = 76 + Ce^{-kt}.
\]

Suppose the temperature of the turkey is 185°F 45 minutes after it’s removed from the oven.

a. Find \(C \) and \(k \).

b. When will the temperature of the turkey reach 100°F?
The temperature of our Thanksgiving turkey is 345°F, as it’s brought out of the oven. \(f(t) \) denotes the temp ... of the turkey \(t \) hours after it’s removed from the oven, then \(\exists C \in \mathbb{R} \) and \(k > 0 \) s.t. \(f(t) = 76 + Ce^{-kt} \). Suppose the temperature of the turkey is 185°F 45 minutes after it’s removed from the oven.

a. Find \(C \) and \(k \).

ANSWER:

a. \(345 = f(0) = \left[76 + Ce^{-kt} \right]_{t: \to 0} = 76 + C \)

\[C = 345 - 76 = 269 \]

45 minutes \(\vphantom{\text{hours}} = 0.75 \) hours

\(185 = f(0.75) = \left[76 + Ce^{-kt} \right]_{t: \to 0.75} = 76 + Ce^{-(0.75)k} \)

\[Ce^{-(0.75)k} = 185 - 76 = 109 \]
The temperature of our Thanksgiving turkey is $345^\circ F$, as it’s brought out of the oven. \(f(t) \) denotes the temp \(\ldots \) of the turkey \(t \) hours after it’s removed from the oven, then \(\exists C \in \mathbb{R} \) and \(k > 0 \) s.t. \(f(t) = 76 + Ce^{-kt} \).

Suppose the temperature of the turkey is $185^\circ F$ 45 minutes after it’s removed from the oven.

a. Find \(C \) and \(k \).

ANSWER:

a. \(C = 269 \)

\[
Ce^{-(0.75)k} = 109
\]

\[
e^{(0.75)k} = \frac{C}{Ce^{-(0.75)k}} = \frac{269}{109} \approx 2.4679
\]

\[
\ln \left(e^{(0.75)k} \right) \approx \ln(2.4679) \approx 0.9034
\]
The temperature of our Thanksgiving turkey is 345°F, as it’s brought out of the oven. \(f(t) \) denotes the temp \(\ldots \) of the turkey \(t \) hours after it’s removed from the oven, then \(\exists C \in \mathbb{R} \) and \(k > 0 \) s.t. \(f(t) = 76 + Ce^{-kt} \).

Suppose the temperature of the turkey is 185°F 45 minutes after it’s removed from the oven.

a. Find \(C \) and \(k \).

ANSWER:

a. \(C = 269 \)

\[(0.75)k \doteq 0.9034\]

\[k \doteq \frac{0.9034}{0.75} \doteq 1.2045\]
The temperature of our Thanksgiving turkey is $345^\circ F$, as it’s brought out of the oven.

... $f(t)$ denotes the temp... of the turkey t hours after it’s removed from the oven, then $\exists C \in \mathbb{R}$ and $k > 0$ s.t. $f(t) = 76 + Ce^{-kt}$.

b. When will the temperature of the turkey reach $100^\circ F$?

ANSWER:

a. $C = 269 \quad k \approx 1.2045$

b. Say T hrs after removal from oven. Want: T

$$76 + Ce^{-kT} = f(T) = 100$$

$$Ce^{-kT} = 100 - 76 = 24$$

$$e^{-kT} = \frac{24}{C} = \frac{24}{269} \approx 0.08922$$

$$-kT = \ln\left(e^{-kT}\right) = \ln(0.08922) \approx -2.4167$$
The temperature of our Thanksgiving turkey is 345°F, as it’s brought out of the oven. \(f(t) \) denotes the temperature of the turkey \(t \) hours after it’s removed from the oven, then \(\exists C \in \mathbb{R} \) and \(k > 0 \) s.t. \(f(t) = 76 + Ce^{-kt} \).

b. When will the temperature of the turkey reach 100°F?

Answer:

a. \(C = 269 \) \(k \approx 1.2045 \)

b. Say \(T \) hrs after removal from oven. Want: \(T \)

\[
-kT \doteq -2.4167
\]

\[
T \doteq \frac{-2.4167}{-k} \doteq \frac{-2.4167}{-1.2045} \doteq 2.006
\]

2.006 hrs (i.e., 2 hrs 0 min) after removal from oven
We invest 280 dollars in a bank. Say the account earns 2% nominally.

a. How much will we have in the bank after one year, if the compounding occurs
 i. once per year?
 ii. twice per year?
 iii. four times per year?
 iv. 365 times per year?
 v. continuously?

b. How much will we have in the bank after t years, assuming continuous compounding?
We invest 280 dollars in a bank. Say the account earns 2% nominally.

a. How much will we have in the bank after one year, if the compounding occurs
 i. once per year?
 ii. twice per year?
 iii. four times per year?
 iv. 365 times per year?

ANS: a. i. \[280(1 + 0.02) = 285.60 \text{ dollars} \]
 ii. \[280 \left(1 + \frac{0.02}{2}\right)^2 \approx 285.63 \text{ dollars} \]
 iii. \[280 \left(1 + \frac{0.02}{4}\right)^4 \approx 285.64 \text{ dollars} \]
 iv. \[280 \left(1 + \frac{0.02}{365}\right)^{365} \approx 285.66 \text{ dollars} \]
0330-14. We invest 280 dollars in a bank. Say the account earns 2% nominally.
a. How much will we have in the bank after one year, if the compounding occurs
 continuously?

ANS: a. v. \[
\lim_{n \to \infty} \left[280 \left(1 + \frac{0.02}{n} \right)^n \right]
\]

\[
= 280 \left(\lim_{n \to \infty} \left[\left(1 + \frac{0.02}{n} \right)^n \right] \right)
\]

\[
= 280 \left(\lim_{x \to \infty} \left[\left(1 + \frac{0.02}{(0.02)x} \right)^{(0.02)x} \right] \right)
\]
0330-14. We invest 280 dollars in a bank. Say the account earns 2% nominally.

a. How much will we have in the bank after one year, if the compounding occurs continuously?

ANS: a. v. \[
\lim_{n \to \infty} \left[280 \left(1 + \frac{0.02}{n} \right)^n \right]
\]

\[
= 280 \left(\lim_{x \to \infty} \left[\left(1 + \frac{0.02}{0.02x} \right) \right] \right)
\]

\[
= 280 \left(\lim_{x \to \infty} \left[\left(1 + \frac{1}{x} \right)^x \right]^{0.02} \right)
\]

\[
= 280 \left(\lim_{x \to \infty} \left[\left(1 + \frac{1}{x} \right)^x \right] \right)^{0.02}
\]

\[
= 280e^{0.02} \approx 285.66 \text{ dollars}
\]
We invest 280 dollars in a bank. Say the account earns 2% nominally.
a. How much will we have in the bank after one year, if the compounding occurs continuously?

ANS:

NOTE: The calculation above showed that

\[280 \left(\lim_{n \to \infty} \left[\left(1 + \frac{0.02}{n} \right)^n \right] \right) = 280e^{0.02} \]

i.e., that

\[\lim_{n \to \infty} \left[\left(1 + \frac{0.02}{n} \right)^n \right] = e^{0.02} \]
We invest 280 dollars in a bank. Say the account earns 2% nominally.

b. How much will we have in the bank after t years, assuming continuous compounding?

NOTE: \[\lim_{n \to \infty} \left[\left(1 + \frac{0.02}{n}\right)^n \right] = e^{0.02} \]

ANS:
\[
\begin{align*}
\lim_{n \to \infty} & \left[280 \left(1 + \frac{0.02}{n}\right)^{nt} \right] \\
= & 280 \left(\lim_{n \to \infty} \left[\left(1 + \frac{0.02}{n}\right)^{nt} \right] \right) \\
= & 280 \left(\lim_{n \to \infty} \left[\left(1 + \frac{0.02}{n}\right)^n \right]^t \right) \\
= & 280 \left(\lim_{n \to \infty} \left(1 + \frac{0.02}{n}\right)^n \right)^t \\
= & 280 \left(e^{0.02} \right)^t = 280e^{(0.02)t} \text{ dollars}
\end{align*}
\]