CALCULUS
Even more graphing problems
NEW
0500-1. Let \(f : (0, 15) \setminus \{7\} \to \mathbb{R} \) be as shown.

a. Find the maximal intervals on which

 (i) \(f \) is increasing;

 (ii) \(f \) is decreasing;

 (iii) \(f \) is concave up;

 and (iv) \(f \) is concave down.

b. Find all points of inflection for \(f \).
0500-1. Let \(f : (0, 15) \backslash \{7\} \rightarrow \mathbb{R} \) be as shown.

a. Find the maximal intervals on which

 (i) \(f \) is increasing;
 (ii) \(f \) is decreasing;

ANSWER:

a. (i) incr on \((0, 3]\), on \([5, 7)\) and on \([9, 13]\)

a. (ii) decr on \([3, 5]\), on \((7, 9]\) and on \([13, 15]\)
0500-1. Let \(f : (0, 15) \setminus \{7\} \rightarrow \mathbb{R} \) be as shown.

a. Find the maximal intervals on which
 (iii) \(f \) is concave up;
 and (iv) \(f \) is concave down.

b. Find all points of inflection for \(f \).

ANS:
 a. (iii) cc up on \([4, 7)\) and on \((7, 11]\)
 a. (iv) cc dn on \((0, 4]\) and on \([11, 15)\)
 b. points of inflection: \((4, 1)\) and \((11, 1)\)
0500-2. Let $f : [0, 15) \setminus \{7\} \to \mathbb{R}$ be continuous from the right at 0. The graph of f' is shown below. Find the maximal intervals on which

(i) f is concave up;
and (ii) f is concave down.

ANSWER:
(i) f cc up on $[0, 3]$, on $[5, 7)$ and on $[9, 13]$
(ii) f cc dn on $[3, 5]$, on $(7, 9]$ and on $[13, 15]$
Let $f : (0, 14] \rightarrow \mathbb{R}$ be as shown.

a. Find the maximal intervals on which
 (i) f is increasing;
 and (ii) f is decreasing.

b. Find all numbers at which
 (i) f attains a local maximum;
 and (ii) f attains a local minimum.
0500-3. Let \(f : (0, 14] \to \mathbb{R} \) be as shown.

a. Find the maximal intervals on which
 (i) \(f \) is increasing;
 and (ii) \(f \) is decreasing.

ANSWER: a.

(i) \(f \) is incr on \((1, 5]\) and on \([12, 14]\).
(ii) \(f \) is decr on \([5, 12]\).
Let $f : (0, 14] \to \mathbb{R}$ be as shown.

b. Find all numbers at which
 (i) f attains a local maximum;
 and (ii) f attains a local minimum.

ANSWER: b.
 (i) f attains a local maximum at 5.
 (ii) f attains a local minimum at 13.
0500-4. Let \(f \) be continuous on \((0, 14]\).
The graph of \(f' \) is shown below.

a. Find the maximal intervals on which
 (i) \(f \) is concave up;
 and (ii) \(f \) is concave down.

b. At what numbers does \(f \) have
 (i) a local maximum?
 (ii) a local minimum?
0500-4. Let f be continuous on $(0,14]$.
The graph of f' is shown below.

a. Find the maximal intervals on which
 (i) f is concave up;
 and (ii) f is concave down.

ANSWER: a.
(i) f is cc up on $(0,6]$.
(ii) f is cc down on $[6,14]$.
0500-4. Let f be continuous on $(0, 14]$. The graph of f' is shown below.

b. At what numbers does f have
 (i) a local maximum? (ii) a local minimum?

ANSWER: b.

(i) f has a local maximum at 9.
(ii) f has a local minimum at 2.
0500-5. Let \(f(x) = 2x^4 + 8x^3 + 9x^2 + 9 \).

a. Find the maximal intervals on which
 (i) \(f \) is increasing;
 and (ii) \(f \) is decreasing.

b. Find all numbers at which
 (i) \(f \) attains a local maximum;
 and (ii) \(f \) attains a local minimum.

c. Find the maximal intervals on which
 (i) \(f \) is concave up;
 and (ii) \(f \) is concave down.
0500-5. Let \(f(x) = 2x^4 + 8x^3 + 9x^2 + 9 \).

a. Find the maximal intervals on which
 (i) \(f \) is increasing;
 and (ii) \(f \) is decreasing.

b. Find all numbers at which
 (i) \(f \) attains a local maximum;
 and (ii) \(f \) attains a local minimum.

\[f'(x) = 8x^3 + 24x^2 + 18x \]
\[= 2x(2x + 3)^2 \]

a.(i) \(f \) is increasing on \([0, \infty)\).
 (ii) \(f \) is decreasing on \((-\infty, 0]\).

b.(i) \(f \) does not attain a local maximum.
 (ii) \(f \) attains a local minimum at 0.
Let \(f(x) = 2x^4 + 8x^3 + 9x^2 + 9 \).

c. Find the maximal intervals on which
(i) \(f \) is concave up; and
(ii) \(f \) is concave down.

ANSWER:
\[
f'(x) = 8x^3 + 24x^2 + 18x
\]
\[
f''(x) = 24x^2 + 48x + 18
= 6(2x + 3)(2x + 1)
\]

roots of \(f'' \): \(-\frac{3}{2}\) and \(-\frac{1}{2}\)

c.
(i) \(f \) is concave up on \((-\infty, -\frac{3}{2}]\) and on \([-\frac{1}{2}, \infty)\).
(ii) \(f \) is concave down on \([-\frac{3}{2}, -\frac{1}{2}]\).
Let \(f(x) = (x^2 + 2x + 3)e^x \).

a. Find the maximal intervals on which
 (i) \(f \) is increasing;
 and (ii) \(f \) is decreasing.

b. Find all numbers at which
 (i) \(f \) attains a local maximum;
 and (ii) \(f \) attains a local minimum.

c. Find the maximal intervals on which
 (i) \(f \) is concave up;
 and (ii) \(f \) is concave down.

d. Find all points of inflection for \(f \).
Let \(f(x) = (x^2 + 2x + 3)e^x \).

a. Find the maximal intervals on which
 (i) \(f \) is increasing;
 and (ii) \(f \) is decreasing.

b. Find all numbers at which
 (i) \(f \) attains a local maximum;
 and (ii) \(f \) attains a local minimum.

Answer:

\[
f'(x) = (2x + 2)e^x + (x^2 + 2x + 3)e^x
= (x^2 + 4x + 5)e^x
\]

\[4^2 - 4 \cdot 1 \cdot 5 < 0, \text{ so } \forall x \in \mathbb{R}, x^2 + 4x + 5 \neq 0.
\]

\[\forall x \in \mathbb{R}, x^2 + 4x + 5 > 0.
\]

a. (i) \(f \) is increasing on \(\mathbb{R} = (-\infty, \infty) \).
 (ii) \(f \) is never decreasing.

b. (i) \(f \) does not attain a local maximum.
 (ii) \(f \) does not attain a local minimum.
Let \(f(x) = (x^2 + 2x + 3)e^x \).

\(f''(x) = (2x + 4)e^x + (x^2 + 4x + 5)e^x \)
\[= (x^2 + 6x + 9)e^x = (x + 3)^2 e^x \]

\(f'(x) = (x^2 + 4x + 5)e^x \)

c. (i) \(f \) is cc up on \((-\infty, \infty)\).

(ii) \(f \) is nowhere cc down.

d. \(f \) has no points of inflection.
0500-7. Let $f(x) = e^{4x-2x^2}$.

a. Find all critical numbers for f.

b. For each critical number for f, use the Second Derivative Test to determine whether, at that number, the function f has a local maximum or a local minimum.

ANS: $f'(x) = e^{4x-x^2}(4-4x)$

$= -4(x-1)e^{4x-2x^2}$

$f''(x) = -4e^{4x-2x^2} - 4(x-1)e^{4x-2x^2}(4-4x)$

$= -4e^{4x-2x^2} + 4(x-1)e^{4x-2x^2}(4)(x-1)$

$= 4(-1 + 4(x-1)^2)e^{4x-2x^2}$
0500-7. Let \(f(x) = e^{4x-2x^2} \).

a. Find all critical numbers for \(f \).

b. For each critical number for \(f \), use the Second Derivative Test to determine whether, at that number, the function \(f \) has a local maximum or a local minimum.

ANS: \(f'(x) = -4(x - 1)e^{4x-2x^2} \)

\(f''(x) = 4(-1 + 4(x - 1)^2)e^{4x-2x^2} \)

a. Critical numbers for \(f \): 1

b. \(f''(1) = 4(-1 + 4 \cdot 0^2)e^{4-2} < 0 \), so \(f \) has a local maximum at 1.
Let \(f(x) = x^3 e^{-x^2/2} \).

a. Find all critical numbers for \(f \).

b. For each critical number for \(f \), what does the Second Derivative Test tell you about that critical number?

c. For each critical number for \(f \), use the First Derivative Test to determine whether, at that number, the function \(f \) has a local maximum or a local minimum.
Let \(f(x) = x^3 e^{-x^2/2} \).

a. Find all critical numbers for \(f \).

ANSWER:

\[
\begin{align*}
\frac{d}{dx} f(x) &= (3x^2) e^{-x^2/2} + x^3 e^{-x^2/2} (-x) \\
&= (3x^2 - x^4) e^{-x^2/2} \\
&= -x^2 (x^2 - 3) e^{-x^2/2} \\
&= -(x + \sqrt{3}) x^2 (x - \sqrt{3}) e^{-x^2/2}
\end{align*}
\]

\[
\begin{align*}
\frac{d^2}{dx^2} f(x) &= (6x - 4x^3) e^{-x^2/2} + (3x^2 - x^4) e^{-x^2/2} (-x) \\
&= (6x - 7x^3 + x^5) e^{-x^2/2} \\
&= x (x^4 - 7x^2 + 6) e^{-x^2/2} \\
&= x (x^2 - 6) (x^2 - 1) e^{-x^2/2} \\
&= (x + \sqrt{6}) (x + 1) x (x - 1) (x - \sqrt{6}) e^{-x^2/2}
\end{align*}
\]
0500-8. Let \(f(x) = x^3 e^{-x^2/2} \).

a. Find all critical numbers for \(f \).

ANSWER: \(f'(x) = -(x + \sqrt{3})x^2(x - \sqrt{3})e^{-x^2/2} \)

a. critical numbers: \(-\sqrt{3}, 0, \sqrt{3}\)

\(f''(x) = (6x - 7x^3 + x^5)e^{-x^2/2} \)

\(= (x + \sqrt{6})(x + 1)x(x - 1)(x - \sqrt{6})e^{-x^2/2} \) \(f'' \) is odd.

\(p := \sqrt{3} + \sqrt{6} > 0, \quad r := \sqrt{3} - 1 > 0, \)

\(q := \sqrt{3} + 1 > 0, \quad s := \sqrt{3} - \sqrt{6} < 0. \)

b. \(f''(\sqrt{3}) = \sqrt{3}(pqrs)e^{-3/2} < 0 \)

Loc max at \(\sqrt{3} \), by the second derivative test.

\(f''(0) = 0 \)

At 0, the second derivative test gives NO information.

\(f''(-\sqrt{3}) = -f(\sqrt{3}) > 0 \)

Loc min at \(-\sqrt{3}\), by the second derivative test.
Let \(f(x) = x^3 e^{-x^2/2} \).

For each critical number for \(f \), use the First Derivative Test to determine whether, at that number, the function \(f \) has a local maximum or a local minimum.

ANSWER: \(f'(x) = -(x + \sqrt{3})x^2(x - \sqrt{3})e^{-x^2/2} \)

Critical numbers: \(-\sqrt{3}, 0, \sqrt{3} \)

- \(f \) is decreasing on \((-\infty, -\sqrt{3}] \).
- \(f \) is increasing on \([-\sqrt{3}, \sqrt{3}] \).
- \(f \) is decreasing on \([\sqrt{3}, \infty) \).

Then \(f \) has a local minimum at \(-\sqrt{3} \), nor a local maximum at 0 and \(f \) has a local maximum at \(\sqrt{3} \).
0500-9. Sketch the graph of a function $H : [0, 8] \rightarrow \mathbb{R}$ with the following properties:

- H is continuous on $[0, 8]$;
- H'' is continuous on $(0, 8)$;
- $H(0) = 0$; $H(4) = H(8) = 2$;
- $H'(2) = H'(4) = H'(6) = 0$;
- $H'' < 0$ on $(0, 3)$;
- $H'' < 0$ on $(5, 8)$.

ANSWER:

There are many other answers.
0500-10. Find a cubic \(g(t) = at^3 + bt^2 + ct + d \) s.t. \(g \) attains a local min value of 20 at \(-1\) and a local max value of \(-16\) at 1.

ANSWER:

\[
g'(t) = 3at^2 + 2bt + c \\
0 = g'(-1) = 3a - 2b + c \\
0 = g'(1) = 3a + 2b + c \\
0 = [g'(1)] - [g'(-1)] = 4b \\
0 = b
\]

\[
0 = g'(1) = 3a + (2)(0) + c \\
-3a = c
\]
0500-10. Find a cubic \(g(t) = at^3 + bt^2 + ct + d \) s.t. \(g \) attains a local min value of 20 at \(-1\) and a local max value of \(-16\) at 1.

ANSWER: \(0 = b \quad -3a = c \)

\[
g(t) = at^3 + bt^2 + ct + d
= at^3 - 3at + d
\]

\[
20 = g(-1) = -a + 3a + d = 2a + d
\]

\[
-16 = g(1) = a - 3a + d = -2a + d
\]

\[
4 = [g(1)] + [g(-1)] = 2d
\]

\[
2 = d
\]

\[
20 = g(-1) = 2a + d = 2a + 2
\]

\[
18 = 2a
\]

\[
9 = a
\]
0500-10. Find a cubic \(g(t) = at^3 + bt^2 + ct + d \) s.t. \(g \) attains a local min value of 20 at \(-1\) and a local max value of \(-16\) at \(1\).

ANSWER:

\[
\begin{align*}
0 &= b \\
-3a &= c \\
2 &= d \\
9 &= a \\
-27 &= -3a = c
\end{align*}
\]

\[
g(t) = at^3 + bt^2 + ct + d \\
= 9t^3 - 27t + 2
\]
0500-11. Let \(f(x) = \cot^3(x/2) \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-11. Let \(f(x) = \cot^3(x/2) \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

\[
 f(x) = \frac{\cos^3(x/2)}{\sin^3(x/2)}
\]

a. \(f \) is odd and \(2\pi \)-periodic.

b. (i) \(\text{dom}[f] = \mathbb{R} \setminus \{\ldots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \ldots\} \supseteq (0, \pi] \)

(ii) \(f(0) \) is undefined, so no \(y \)-intercept.

\(x \)-intercepts: \(f(x) = 0 \) iff \(\cos(x/2) = 0 \) iff \(x \in \{\ldots, -3\pi, -\pi, \pi, 3\pi, \ldots\} \)

\(f \) is pos. on \(\ldots \), \((-2\pi, -\pi) \), \((0, \pi) \), \((2\pi, 3\pi) \), \ldots

\(f \) is neg. on \(\ldots \), \((-3\pi, -2\pi) \), \((-\pi, 0) \), \((\pi, 2\pi) \), \((3\pi, 4\pi) \), \ldots
Let $f(x) = \cot^3(x/2)$.

a. Describe the symmetries, if any, of f.

b. Find all max intervals of pos/neg for f.

Also:

(i) What is the domain of f?

(ii) Find all x- and y-intercepts of f.

(iii) Find all vert/horiz asymptotes of f.

ANSWER:

$$f(x) = \frac{\cos^3(x/2)}{\sin^3(x/2)}$$

f is odd and 2π-periodic.

b. (iii) f is periodic and nonconstant, so f has no horizontal asymptotes.

$$\lim_{x \to 0^-} f(x) = -\infty \quad \lim_{x \to 0^+} f(x) = \infty$$

Then $x = 0$ is a vertical asymptote for f.

So, as f is 2π-periodic, its vert. asymptotes are:

$$\ldots, x = -4\pi, x = -2\pi, \quad x = 0, \quad x = 2\pi, x = 4\pi, \ldots$$
0500-11. Let \(f(x) = \cot^3(x/2) \).

c. Find all max intervals of incr/decr for \(f \).

ANS: \(\text{dom}[f] = \mathbb{R} \setminus \{ \ldots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \ldots \} \supseteq (0, \pi] \)

\[f \text{ is odd and } 2\pi\text{-periodic.} \]

c. \(f'(x) = 3[\cot^2(x/2)][-\csc^2(x/2)][1/2] \]

\[= -\frac{3\cos^2(x/2)}{2\sin^4(x/2)} \text{ is neg. on } 0 < x < \pi, \]

because \(\sin(x/2) \) and \(\cos(x/2) \) are both positive on \(0 < x < \pi \).

\(f \) is decreasing on \((0, \pi] \)

\(f \) odd gives: \(f \) decreasing on \([-\pi, 0) \)

\(f \) 2\(\pi \)-periodic gives: \(f \) decreasing on \([\pi, 2\pi) \)

Then \(f \) is decreasing on \((0, 2\pi)\).

\(f \) is 2\(\pi \)-periodic gives:

\(f \) decr on \((2n\pi, 2n\pi + 2\pi), \quad \forall n \in \mathbb{Z} \).
0500-11. Let \(f(x) = \cot^3(x/2) \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANS:

\[
\text{dom}[f] = \mathbb{R} \setminus \{\ldots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \ldots\} \supseteq (0, \pi] \\
\text{\(f \) is odd and } 2\pi\text{-periodic.}
\]

\[
f'(x) = 3[\cot^2(x/2)][-\csc^2(x/2)][1/2] \\
= -\frac{3 \cos^2(x/2)}{2 \sin^4(x/2)}
\]

d. \(f''(x) = \frac{6(\sin^5(x/2))(\cos(x/2)) + 12(\cos^3(x/2))(\sin^3(x/2))}{4 \sin^8(x/2)} \)

is positive on \(0 < x < \pi \),

because \(\sin(x/2) \) and \(\cos(x/2) \) are both positive on \(0 < x < \pi \).

\(f \) is concave up on \((0, \pi] \)

\(f \) odd gives: \(f \) concave down on \([-\pi, 0) \)
Let \(f(x) = \cot^3(x/2) \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANS: \[\text{dom}[f] = \mathbb{R} \setminus \{\ldots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \ldots\} \supseteq (0, \pi] \]

\(f \) is odd and \(2\pi \)-periodic.

d. \(f \) is concave up on \((0, \pi]\)

\(f \) odd gives: \(f \) concave down on \([-\pi, 0)\)

\(f \) is \(2\pi \)-periodic gives:

\(f \) cc up on \((2n\pi, 2n\pi + \pi]\),
\(f \) cc dn on \([2n\pi - \pi, 2n\pi), \quad \forall n \in \mathbb{Z} \)
Let \(f(x) = \cot^3(x/2) \).

e. Sketch the graph of \(f \).

ANS:

e.
Let \(f(x) = \ln(9 - x^2) \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
Let \(f(x) = \ln(9 - x^2) \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:

(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER: a. \(f \) is even.

b. (i) \(9 - x^2 > 0 \iff -3 < x < 3 \).

\[\text{dom}[f] = (-3, 3) \supseteq [0, 3) \]

(ii) \(f(0) = \ln 9 \) is the \(y \)-intercept.

\(x \)-intercepts:

\[[9 - x^2 = 1] \iff [x = -2\sqrt{2} \text{ or } x = 2\sqrt{2}] \]

\[[f(x) = 0] \iff [x = -2\sqrt{2} \text{ or } x = 2\sqrt{2}] \]
0500-12. Let \(f(x) = \ln(9 - x^2) \).

a. Describe the symmetries, if any, of \(f \).
b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER: \(f \) is even \(\text{dom}[f] = (-3, 3) \supseteq [0, 3) \)

b. \([f(x) = 0] \) iff \([x = -2\sqrt{2} \text{ or } x = 2\sqrt{2}] \)

\[9 - x^2 < 1 \text{ on } 2\sqrt{2} < x < 3. \]
\[9 - x^2 > 1 \text{ on } -2\sqrt{2} < x < 2\sqrt{2}. \]
\[9 - x^2 < 1 \text{ on } -3 < x < -2\sqrt{2}. \]

\(f \) is negative on \((2\sqrt{2}, 3)\).
\(f \) is positive on \((-2\sqrt{2}, 2\sqrt{2})\).
\(f \) is negative on \((-3, -2\sqrt{2})\).
0500-12. Let \(f(x) = \ln(9 - x^2) \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:

 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

Answer: \(f \) is even \(\quad \text{dom}[f] = (-3, 3) \supseteq [0, 3] \)

b. (iii) \(\text{dom}[f] = (-3, 3) \),

 so \(f \) has no horizontal asymptotes.

\[
\lim_{x \to -3^+} f(x) = -\infty = \lim_{x \to 3^-} f(x)
\]

\(x = -3 \) and \(x = 3 \) are the vertical asymptotes for \(f \).
0500-12. Let \(f(x) = \ln(9 - x^2) \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER: \(f \) is even
\[\text{dom}[f] = (-3, 3) \supseteq [0, 3) \]

\[f'(x) = \frac{-2x}{9 - x^2} \] is neg. on \(0 < x < 3 \).
\(f \) is decreasing on \([0, 3)\).

Even gives: increasing on \((-3, 0]\)

d. \(f''(x) = \frac{(9 - x^2)(-2) - (-2x)(-2x)}{(9 - x^2)^2} = \frac{-2x^2 - 18}{(9 - x^2)^2} \)
Let \(f(x) = \ln(9 - x^2) \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f \) is even \(\text{dom}[f] = (-3, 3) \supseteq [0, 3) \)

\[
f''(x) = \frac{-2x^2 - 18}{(9 - x^2)^2}
\]

is negative on \(-3 < x < 3\).

\(f \) is concave down on \((-3, 3)\).
0500-12. Let $f(x) = \ln(9 - x^2)$.

e. Sketch the graph of f.

ANSWER:

e.
0500-13. Let \(f(x) = \frac{2x}{\sqrt{9 - x^2}} \).

a. Describe the symmetries, if any, of \(f \).
b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).
d. Find all max intervals of cc up/cc dn for \(f \).
e. Sketch the graph of \(f \).
Let \(f(x) = \frac{2x}{\sqrt{9 - x^2}} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

\[9 - x^2 > 0 \iff -3 < x < 3 \]

\[(i) \text{ dom}[f] = (-3, 3) \]

\[(ii) f(0) = 0 \text{ is the } y \text{-intercept.} \]

\[x \text{-intercepts: } [f(x) = 0] \iff [x = 0] \]

\(f \) is positive on \((0, 3)\) and negative on \((-3, 0)\).
Let \(f(x) = \frac{2x}{\sqrt{9 - x^2}} \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

\(f \) is odd. \quad \text{dom}[f] = (-3, 3)

b.(iii) vertical/horizontal asymptotes:

\[
f(x) = \frac{2x}{\sqrt{9 - x^2}} \quad x \geq 0 \quad \frac{2}{\sqrt{(9/x^2)} - 1} \quad x \to 3^-
\]

\[
f \text{ odd gives: } f(x) \to -\infty \quad x \to -3^+
\]

\(x = -3 \) and \(x = 3 \) are the vertical asymptotes of \(f \).

\[\text{dom}[f] = (-3, 3), \text{ so } \]

\(f \) has no horizontal asymptotes.
0500-13. Let \(f(x) = \frac{2x}{\sqrt{9 - x^2}} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER: \(f \) is odd. \(\text{dom}[f] = (-3,3) \)

c.

\[
f'(x) = \frac{([9 - x^2]^{1/2})(2) + (2x)([1/2][9 - x^2]^{-1/2}[+2x])}{9 - x^2}
\]

\[
= \frac{2[9 - x^2]^{1/2} + (2x^2)[9 - x^2]^{-1/2}}{9 - x^2}
\]

\[
= \frac{2[9 - x^2] + (2x^2)[1]}{[9 - x^2]^{3/2}}
\]

\[
= \frac{18}{[9 - x^2]^{3/2}}
\]
c. Find all max intervals of incr/decr for f.

ANSWER: f is odd.

$\text{dom}[f] = (-3, 3)$

c. $f'(x) = \frac{18}{[9 - x^2]^{3/2}}$ is positive on $(-3, 3)$.

f is increasing on $(-3, 3)$.
0500-13. Let \(f(x) = \frac{2x}{\sqrt{9-x^2}} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f \) is odd. \(\text{dom}[f] = (-3, 3) \)

\[
f'(x) = \frac{18}{[9-x^2]^{3/2}} = 18[9-x^2]^{-3/2}
\]

d. \(f''(x) = 18(\frac{3}{2})[9-x^2]^{-5/2}[+2x] \)

\[
= \frac{54x}{[9-x^2]^{5/2}}
\]

is negative on \(-3 < x < 0\) and positive on \(0 < x < 3\).

\(f \) is concave down on \((-3, 0]\) and concave up on \([0, 3)\).
0500-13. Let \(f(x) = \frac{2x}{\sqrt{9 - x^2}} \).

e. Sketch the graph of \(f \).

ANSWER:
e.

![Graph of f(x)](image)
0500-14. Let \(f(x) = x^5 + 5x^3 \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-14. Let \(f(x) = x^5 + 5x^3 \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

a. \(f \) is odd.

b. (i) \(\text{dom}[f] = \mathbb{R} \supseteq [0, \infty) \)
 \[
f(x) = (x^2 + 5)x^3
 \]
 (ii) \(f(0) = 0 \) is the \(y \)-intercept.
 \(x \)-intercepts: \([f(x) = 0] \) iff \([x = 0]\)
 \[
f(x) \text{ is negative on } x < 0
 \]
 and positive on \(0 < x \).
 (iii) vertical/horizontal asymptotes: none
0500-14. Let \(f(x) = x^5 + 5x^3 \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER: \(f \) is odd. \(\text{dom}[f] = \mathbb{R} \supseteq [0, \infty) \)

\[f'(x) = 5x^4 + 15x^2 \]
\[= 5(x^2 + 3)x^2 \]

is positive, for all \(x \in \mathbb{R} = (-\infty, \infty) \).

\(f \) is increasing on \(\mathbb{R} = (-\infty, \infty) \).

Also, \(f'(0) = 0 \).
0500-14. Let \(f(x) = x^5 + 5x^3 \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f \) is odd.

\[
f'(x) = 5x^4 + 15x^2
\]

\[
f''(x) = 20x^3 + 30x
\]

\[
= 20 \left(x^2 + \frac{3}{2} \right) x
\]

is negative on \(x < 0 \)

and positive on \(0 < x \).

\(f \) is concave down on \((-\infty, 0] \)

and concave up on \([0, \infty) \).
Let \(f(x) = x^5 + 5x^3 \).

e. Sketch the graph of \(f \).

ANSWER:

e.
Let \(f(x) = \frac{1}{x^3 - 1} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

 Also:

 (i) What is the domain of \(f \)?

 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-15. Let \(f(x) = \frac{1}{x^3 - 1} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?

(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

ANSWER:

a. **NO** symmetries.

b. \(x^3 - 1 > 0 \) on \(x > 1 \)
\(x^3 - 1 = 0 \) at \(x = 1 \)
\(x^3 - 1 < 0 \) on \(x < 1 \)

(i) \(\text{dom}[f] = \mathbb{R} \setminus \{1\} \)

(ii) \(f(0) = -1 \) is the \(y \)-intercept.
\(\forall x \in \text{dom}[f], \ f(x) \neq 0, \) so no \(x \)-intercepts

\[f(x) = \frac{1}{x^3 - 1} \] is negative on \(x < 1 \)
and positive on \(1 < x \).
0500-15. Let \(f(x) = \frac{1}{x^3 - 1} \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:
\[
\text{\(\text{dom}[f] = \mathbb{R}\setminus\{1\} \)}
\]

(iii) \(\lim_{x \to \infty} f(x) = 0 \) and \(\lim_{x \to -\infty} f(x) = 0 \)

\(y = 0 \) is the only horizontal asymptote.

- \(x^3 - 1 > 0 \) on \(x > 1 \)
- \(x^3 - 1 = 0 \) at \(x = 1 \)
- \(x^3 - 1 < 0 \) on \(x < 1 \)

\(\lim_{x \to 1^-} f(x) = -\infty \) and \(\lim_{x \to 1^+} f(x) = \infty \)

\(x = 1 \) is the only vertical asymptote.
0500-15. Let \(f(x) = \frac{1}{x^3 - 1} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

\[f(x) = \left[x^3 - 1 \right]^{-1} \]

\[f'(x) = -\left[x^3 - 1 \right]^{-2} \left[3x^2 \right] = \frac{-3x^2}{(x^3 - 1)^2} \]

is negative on \(x \in \mathbb{R} \setminus \{0, 1\} \).

\(f \) is decreasing on \((-\infty, 1)\) and on \((1, \infty)\).

Also, \(f'(0) = 0 \).
Let \(f(x) = \frac{1}{x^3 - 1} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[
f'(x) = \frac{-3x^2}{(x^3 - 1)^2}
\]

\[
f''(x) = \frac{[\frac{8(8x^3 - 1)}{(x^3 - 1)^4}] [-6x] - [\frac{-3x^2}{(x^3 - 1)^2}] [2(3x^2 - 1)(3x^2)]}{(x^3 - 1)^4}
\]

\[
= \frac{[x^3 - 1] [-6x] - [\frac{-3x^2}{(x^3 - 1)^2}] [6x^2]}{(x^3 - 1)^3}
\]

\[
\text{dom}[f] = \mathbb{R} \setminus \{1\}
\]
Let \(f(x) = \frac{1}{x^3 - 1} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[
\text{dom}[f] = \mathbb{R} \setminus \{1\}
\]

\[
d. \ f''(x) = \frac{\left[x^3 - 1 \right] [-6x] - \left[-3x^2 \right][6x^2]}{(x^3 - 1)^3}
\]

\[
= \frac{-6x^4 + 6x}{(x^3 - 1)^3} + \frac{18x^4}{(x^3 - 1)^3}
\]

\[
= \frac{12x^4 + 6x}{(x^3 - 1)^3} = \frac{12x(x^3 + \frac{1}{2})}{(x^3 - 1)^3}
\]
0500-15. Let \(f(x) = \frac{1}{x^3 - 1} \).

ANSWER:

d. Find all max intervals of cc up/cc dn for \(f \).

\[
\text{dom}[f] = \mathbb{R}\{1\}
\]

\[
(x^3 - 1)^3 > 0 \text{ on } x > 1
\]

\[
(x^3 - 1)^3 < 0 \text{ on } x < 1
\]

\[
x^3 + \frac{1}{2} > 0 \text{ on } x > -1/\sqrt[3]{2}
\]

\[
x^3 + \frac{1}{2} < 0 \text{ on } x < -1/\sqrt[3]{2}
\]

\[f''(x) = \frac{12x(x^3 + \frac{1}{2})}{(x^3 - 1)^3}\]

is negative on \(x < -1/\sqrt[3]{2} \)

and positive on \(-1/\sqrt[3]{2} < x < 0\)

and negative on \(0 < x < 1\)

and positive on \(1 < x\).

\(f\) is concave down on \((-\infty, -1/\sqrt[3]{2}]\)

and concave up on \([-1/\sqrt[3]{2}, 0]\)

and concave down on \([0, 1)\)

and concave up on \((1, \infty)\).
Let $f(x) = \frac{1}{x^3 - 1}$.

e. Sketch the graph of f.

ANSWER:

e. $-1/\sqrt[3]{2} \approx -0.79$

\[\begin{array}{c}
-1/\sqrt[3]{2} \approx -0.79 \\
-2/3 \\
-1 \\
1
\end{array}\]
0500-16. Let \(f(x) = \sqrt{x^2 + 4x + 7} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:

(i) What is the domain of \(f \)?

(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

(iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
NEW 0500-16. Let \(f(x) = \sqrt{x^2 + 4x + 7} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?

ANSWER:

a. **NO** symmetries

b. \(4^2 - 4 \cdot 1 \cdot 7 < 0 \), so, \(\forall x \in \mathbb{R}, x^2 + 4x + 7 \neq 0 \)

\(\forall x \in \mathbb{R}, x^2 + 4x + 7 > 0 \)

(i) \(\text{dom}[f] = \mathbb{R} = (-\infty, \infty) \)

(ii) \(f(0) = \sqrt{7} \) is the \(y \)-intercept.

\(\forall x \in \text{dom}[f], f(x) \neq 0 \), so no \(x \)-intercepts

\(f \) is positive on \(\mathbb{R} = (-\infty, \infty) \).

Note: \(f \) is symmetric about \(x = -2 \), but this is **not** one of our standard symmetries.
Let \(f(x) = \sqrt{x^2 + 4x + 7} \).

b. Find all max intervals of pos/neg for \(f \).

Also:
(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

\[
\text{dom}[f] = \mathbb{R} = (-\infty, \infty)
\]
\[
\forall x \in \mathbb{R}, \ x^2 + 4x + 7 > 0
\]

b. (iii) vertical/horizontal asymptotes: none

Note: \(f(x) - x \to 2 \), as \(x \to \infty \),

so \(y = x + 2 \) is a slant asymptote for \(f \).

Note: \(f(x) + x \to -2 \), as \(x \to -\infty \),

so \(y = -x - 2 \) is a slant asymptote for \(f \).
Let \(f(x) = \sqrt{x^2 + 4x + 7} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

\[
\text{dom}[f] = \mathbb{R} = (-\infty, \infty) \\
\forall x \in \mathbb{R}, \quad x^2 + 4x + 7 > 0
\]

\[
f(x) = (x^2 + 4x + 7)^{1/2}
\]

\[
f'(x) = \frac{1}{2} (x^2 + 4x + 7)^{-1/2} (2x + 4)
\]

\[
= \frac{x + 2}{\sqrt{x^2 + 4x + 7}}
\]

is negative on \(x < -2 \)
and positive on \(-2 < x \).

\(f \) is decreasing on \((-\infty, -2] \)
and increasing on \([-2, \infty) \).
0500-16. Let \(f(x) = \sqrt{x^2 + 4x + 7} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[\text{dom}[f] = \mathbb{R} = (-\infty, \infty) \]
\[\forall x \in \mathbb{R}, \ x^2 + 4x + 7 > 0 \]

\[f'(x) = \frac{x + 2}{\sqrt{x^2 + 4x + 7}} = \frac{x + 2}{(x^2 + 4x + 7)^{1/2}} \]

d. \(f''(x) = \)

\[\left(\frac{1}{2} \right) \frac{[1] - [x + 2] [1/2] (x^2 + 4x + 7)^{-1/2} (2x + 4)}{x^2 + 4x + 7} \]

\[= \frac{[x^2 + 4x + 7] [1] - [x + 2] [(1/2)(2x + 4)]}{(x^2 + 4x + 7)^{3/2}} \]
0500-16. Let \(f(x) = \sqrt{x^2 + 4x + 7} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[
d. \ f''(x) = \\
\frac{\left[x^2 + 4x + 7 \right] [1] - [x + 2] \left[(1/2)(2x + 4) \right]}{\left(x^2 + 4x + 7 \right)^{3/2}} \\
= \frac{\left[x^2 + 4x + 7 \right] - [x + 2][x + 2]}{\left(x^2 + 4x + 7 \right)^{3/2}} \\
= \frac{\left[x^2 + 4x + 7 \right] - [x^2 + 4x + 4]}{\left(x^2 + 4x + 7 \right)^{3/2}}
\]

\(\text{dom}[f] = \mathbb{R} = (-\infty, \infty) \)

\(\forall x \in \mathbb{R}, \ x^2 + 4x + 7 > 0 \)
0500-16. Let \(f(x) = \sqrt{x^2 + 4x + 7} \).

ANSWER:

\[\text{dom}[f] = \mathbb{R} = (-\infty, \infty) \]

\[\forall x \in \mathbb{R}, \quad x^2 + 4x + 7 > 0 \]

\[f''(x) = \frac{\left[x^2 + 4x + 7 \right] - \left[x^2 + 4x + 4 \right]}{(x^2 + 4x + 7)^{3/2}} \]

\[= \frac{3}{(x^2 + 4x + 7)^{3/2}} \]

is positive, for all \(x \in \mathbb{R} \).

\(f \) is concave up on \(\mathbb{R} = (-\infty, \infty) \).
Let \(f(x) = \sqrt{x^2 + 4x + 7} \).

e. Sketch the graph of \(f \).

\text{ANSWER: e.}
0500-17. Let \(f(x) = 2x + 1 - \cos x \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
NEW 0500-17. Let $f(x) = 2x + 1 - \cos x$.

a. Describe the symmetries, if any, of f.

b. Find all max intervals of pos/neg for f.

Also:

(i) What is the domain of f?

(ii) Find all x- and y-intercepts of f.

(iii) Find all vert/horiz asymptotes of f.

ANSWER: Note: $f(x + 2\pi) = (f(x)) + 4\pi$

a. NO symmetries.

b. (i) $\text{dom}[f] = \mathbb{R} = (-\infty, \infty)$

(ii) deferred until after c.

max intervals of pos/neg for f

also deferred until after c.

(iii) vertical/horizontal asymptotes: none

Note: f is symm. about $(-\pi/2, 1 - \pi)$, but this is not one of our standard symmetries.
0500-17. Let \(f(x) = 2x + 1 - \cos x \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

\[
dom[f] = \mathbb{R} = (-\infty, \infty)
\]

c. \(f'(x) = 2 + \sin x \)

is positive, \(\forall x \in \mathbb{R} \)

\(f \) is increasing on \(\mathbb{R} \).

b. (ii) \(f(0) = 0 \) is the \(y \)-intercept.

So, because \(f \) is increasing on \(\mathbb{R} \),

\(f \) is positive on \((0, \infty) \)

and \(f \) is negative on \((-\infty, 0) \).

\(x \)-intercepts: \([f(x) = 0] \) iff \([x = 0] \)
Let \(f(x) = 2x + 1 - \cos x \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[
f'(x) = 2 + \sin x
\]

\[
f''(x) = \cos x
\]

is neg. on \((2n + \frac{1}{2})\pi < x < (2n + \frac{3}{2})\pi\), \(\forall n \in \mathbb{Z} \), and pos. on \((2n - \frac{1}{2})\pi < x < (2n + \frac{1}{2})\pi\), \(\forall n \in \mathbb{Z} \).

\(f \) is cc down on \([(2n + \frac{1}{2})\pi, (2n + \frac{3}{2})\pi]\), \(\forall n \in \mathbb{Z} \), and cc up on \([(2n - \frac{1}{2})\pi, (2n + \frac{1}{2})\pi]\), \(\forall n \in \mathbb{Z} \).
0500-17. Let $f(x) = 2x + 1 - \cos x$.

e. Sketch the graph of f.

ANSWER:

e.
0500-18. Let \(f(x) = -2x^2e^{-x^2/2} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-18. Let \(f(x) = -2x^2e^{-x^2/2} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?

(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

a. \(f \) is even.

b. (i) \(\text{dom}[f] = \mathbb{R} \supseteq [0, \infty) \)

(ii) \(f(0) = 0 \) is the \(y \)-intercept.

\(x \)-intercepts: \([f(x) = 0] \text{ iff } [x = 0] \)

\(f \) is negative on \((0, \infty)\).

\(f \) even gives: \(f \) is negative on \((-\infty, 0)\).

(iii) vertical asymptotes: none

horizontal asymptotes: \(y = 0 \)
$0500-18$. Let $f(x) = -2x^2e^{-x^2/2}$.

c. Find all max intervals of incr/decr for f.

ANSWER:

c. $f'(x) = \left[-4x\right]\left[e^{-x^2/2}\right] + \left[-2x^2\right]\left[e^{-x^2/2}(-x)\right]$

$$= \left[2x^3 - 4x\right]\left[e^{-x^2/2}\right] = 2x[x^2 - 2]\left[e^{-x^2/2}\right]$$

$$= 2[x + \sqrt{2}]x[x - \sqrt{2}]\left[e^{-x^2/2}\right]$$

is negative on $x < -\sqrt{2}$,
and positive on $-\sqrt{2} < x < 0$,
and negative on $0 < x < \sqrt{2}$,
and positive on $\sqrt{2} < x$.

f is decreasing on $(-\infty, -\sqrt{2}]$,
and increasing on $[-\sqrt{2}, 0]$,
and decreasing on $[0, \sqrt{2}]$,
and increasing on $[\sqrt{2}, \infty)$.
0500-18. Let \(f(x) = -2x^2 e^{-x^2/2} \).

\(\text{NEW} \)

\(\text{d. Find all max intervals of cc up/cc dn for } f. \)

ANSWER: \(f'(x) = [2x^3 - 4x] \left[e^{-x^2/2} \right] \)

\(\text{d. } f''(x) = [6x^2 - 4] \left[e^{-x^2/2} \right] + [2x^3 - 4x] \left[e^{-x^2/2} (-x) \right] \)

\(= [6x^2 - 4 - 2x^4 + 4x^2] \left[e^{-x^2/2} \right] \)

\(= [-2x^4 + 10x^2 - 4] \left[e^{-x^2/2} \right] \)

\(= -2[x^4 - 5x^2 + 2] \left[e^{-x^2/2} \right] \)

\(= -2 \left[x^2 - a^2 \right] \left[x^2 - b^2 \right] \left[e^{-x^2/2} \right] \)

\(= -2 \left[x + b \right] \left[x + a \right] \left[x - a \right] \left[x - b \right] \left[e^{-x^2/2} \right] \)

\(a := \sqrt{\frac{5 - \sqrt{17}}{2}} \)

\(b := \sqrt{\frac{5 + \sqrt{17}}{2}} \)

\(z^2 - 5z + 2 = (z - a^2)(z - b^2) \)

\(z \mapsto x^2 \)
Let \(f(x) = -2x^2e^{-x^2/2} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(a := \sqrt{\frac{5 - \sqrt{17}}{2}} \quad b := \sqrt{\frac{5 + \sqrt{17}}{2}} \)

\(f''(x) = -2 [x + b] [x + a] [x - a] [x - b] e^{-x^2/2} \)

is negative on \(x < -a \),
and positive on \(-a < x < -b \),
and negative on \(-b < x < b \),
and positive on \(b < x < a \),
and negative on \(a < x \).

\(f \) is concave down on \((-\infty, -a] \),
and concave up on \([-a, -b] \),
and concave down on \([-b, b] \),
and concave up on \([b, a] \),
and concave down on \([a, \infty) \).
0500-18. Let \(f(x) = -2x^2e^{-x^2/2} \).

e. Sketch the graph of \(f \).

ANSWER:

\[
\begin{align*}
 a & := \sqrt{\frac{5 - \sqrt{17}}{2}} \\
 & \doteq 0.66 \\

 b & := \sqrt{\frac{5 + \sqrt{17}}{2}} \\
 & \doteq 2.14
\end{align*}
\]

\[
\begin{align*}
 f(a) & \doteq -0.70 \\
 f(b) & \doteq -0.93
\end{align*}
\]

\[
\begin{align*}
 f(a) = f(-a) \\
 f(b) = f(-b)
\end{align*}
\]

\[
\begin{align*}
 f(\sqrt{2}) & = f(-\sqrt{2}) \\
 \sqrt{2} & \doteq 1.41 \\
 f(\sqrt{2}) & \doteq -1.47
\end{align*}
\]
0500-19. Let \(f(x) = \frac{x^2 - 6x - 7}{x - 1} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-19. Let \(f(x) = \frac{x^2 - 6x - 7}{x - 1} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?

(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

ANSWER: \(f(x) = \frac{x^2 - 6x - 7}{x - 1} = \frac{(x + 1)(x - 7)}{x - 1} \)

a. **NO** symmetries

b. (i) \(\text{dom}[f] = \mathbb{R} \setminus \{1\} \)

(ii) \(f(0) = 7 \) is the \(y \)-intercept.

\(x \)-intercepts: \([f(x) = 0] \iff [x = -1 \text{ or } x = 7] \)

- \(f(x) \) is negative on \(x < -1 \),
- positive on \(-1 < x < 1 \),
- negative on \(1 < x < 7 \) and
- positive on \(7 < x \).
0500-19. Let \(f(x) = \frac{x^2 - 6x - 7}{x - 1} \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER: \(\text{dom}[f] = \mathbb{R}\setminus\{1\} \)

\(f(x) \) is negative on \(x < -1 \),
positive on \(-1 < x < 1 \),
negative on \(1 < x < 7 \)
and positive on \(7 < x \).

b. (iii) \(f \) has no horizontal asymptotes.

\[\lim_{x \to 1^-} f(x) = \infty \quad \lim_{x \to 1^+} f(x) = -\infty \]

\(x = 1 \) is the only vertical asymptote for \(f \).

\[\lim_{x \to \pm\infty} [(f(x)) - x] = -5, \]
so \(f(x) \) is slant asymptotic to \(x - 5 \), as \(x \to \pm\infty \).
Let \(f(x) = \frac{x^2 - 6x - 7}{x - 1} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

\[f'(x) = \frac{[x - 1][2x - 6] - [x^2 - 6x - 7][1]}{(x - 1)^2} \]

\[= \frac{[2x^2 - 8x + 6] - [x^2 - 6x - 7]}{(x - 1)^2} \]

\[= \frac{x^2 - 2x + 13}{(x - 1)^2} \]

\[\text{dom}[f] = \mathbb{R} \setminus \{1\} \]
Let \(f(x) = \frac{x^2 - 6x - 7}{x - 1} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

\[
\text{dom}[f] = \mathbb{R} \setminus \{1\}
\]

\[
f'(x) = \frac{x^2 - 2x + 13}{(x - 1)^2}
\]

\((-2)^2 - 4 \cdot 1 \cdot 13 < 0, \text{ so }
\forall x \in \mathbb{R}, x^2 - 2x + 13 \neq 0.
\]

\(\forall x \in \mathbb{R}, x^2 - 2x + 13 > 0.
\]

is positive on \(x < 1 \)

and positive on \(1 < x \).

\(f \) is increasing on \((-\infty, 1)\)

and increasing on \((1, \infty)\).
0500-19. Let \(f(x) = \frac{x^2 - 6x - 7}{x - 1} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[\text{dom}[f] = \mathbb{R} \setminus \{1\} \]

\[f'(x) = \frac{x^2 - 2x + 13}{(x - 1)^2} \]

\[f''(x) = \frac{[(x - 1)^2][2x - 2] - [x^2 - 2x + 13][2(x - 1)(1)]}{(x - 1)^3} \]

\[= \frac{[x - 1][2x - 2] - [x^2 - 2x + 13][2]}{(x - 1)^3} \]

\[= \frac{2x^2 - 4x + 2 - [2x^2 - 4x + 26]}{(x - 1)^3} \]

\[= \frac{-24}{(x - 1)^3} \]
Let \(f(x) = \frac{x^2 - 6x - 7}{x - 1} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[
dom[f] = \mathbb{R} \setminus \{1\}
\]

\[
f'(x) = \frac{x^2 - 2x + 13}{(x - 1)^2}
\]

\[
f''(x) = \frac{-24}{(x - 1)^3}
\]

is positive on \(x < 1 \) and negative on \(1 < x \).

\(f \) is concave up on \((-\infty, 1) \) and concave down on \((1, \infty) \).
0500-19. Let \(f(x) = \frac{x^2 - 6x - 7}{x - 1} \).

e. Sketch the graph of \(f \).

ANSWER: