CALCULUS Derivatives of inverse functions (The Inverse Function Theorem) OLD

 $\underset{\text{OLD}}{\text{O440-1.Differentiate}} \ y = \arctan\left(e^x + \sqrt[3]{x}\right).$

$$\underbrace{0440-2. \text{Differentiate}}_{\text{OLD}} F(t) = \left[e^{3t+4} \right] \left[\arcsin \left(t^2 \right) \right].$$

$$0440-3$$
. Differentiate $f(x) = \sin(\arctan x)$.

0440-4. Differentiate
$$v(s) = \operatorname{arccot} \left[\sqrt{\frac{2-s}{2+s}} \right]$$
.

O440-5. Draw a graph of a 1-1 function f which passes through (4,5) and whose tangent line at (4,5) has slope 2/3. In the same picture, draw that tangent line.

In the same picture,
draw a right triangle whose
hypotenuse is on the tangent line
and whose legs have lengths 2 and 3.
In a separate picture, reflect,

through the 45° line, everything in the previous picture.

Let $g := f^{-1}$. What are the values of f(4) and f'(4)?

What are the values of f(4) and f'(4)?

What are the values of g(5) and g'(5)?