CALCULUS
Volume by slices and the disk and washer methods:
Problems
OLD
0720-1. Let \(R \) be the region bounded by \(y = x + 1 \) and \(x = 2 \) in \(1 \leq y \leq 2 \).

a. Sketch \(R \).

b. Find the volume of the solid obtained by rotating \(R \) about the \(x \)-axis.

c. Find the volume of the solid obtained by rotating \(R \) about the \(y \)-axis.

0720-2. Let \(R \) be the region bounded by \(y - 1 = (x - 1)^2 \) and \(y = x \).

a. Sketch \(R \).

b. Find the volume of the solid obtained by rotating \(R \) about the \(x \)-axis.

c. Find the volume of the solid obtained by rotating \(R \) about the \(y \)-axis.
0720-3. Let \(R \) be the region bounded by
\[y = \ln x, \quad x = 4 \text{ and } y = 1. \]

(a) Sketch \(R \).

(b) Find the volume of the solid obtained by rotating \(R \) about the \(y \)-axis.

0720-4. Let \(R \) be the region bounded by
\[y = \sin x \text{ and } y = 0 \text{ in } 0 \leq x \leq \pi. \]

(a) Sketch \(R \).

(b) Find the volume of the solid obtained by rotating \(R \) about the \(x \)-axis.

Hint: \[\sin^2 x = \frac{1 - \left[\cos(2x) \right]}{2} \]
0720-5. Let R be the region bounded by
$$x^2 + (y - 3)^2 = 1.$$

a. Sketch R.

b. Find the volume of the solid obtained by rotating R about the x-axis.

Note: This solid is called a torus. It is in the shape of a doughnut.

Hint: Remember that $2 \int_{-1}^{1} \sqrt{1 - x^2} \, dx$ is known; it is the area enclosed in a circle of radius 1.
0720-6. Let R be the region bounded by $y = x^3$ and $x = y^4$.

a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the line $y = -1/2$.
c. Find the volume of the solid obtained by rotating R about the line $x = -1/3$.

0720-7. Let R be the region bounded by $y = x^2$ and $x = y^6$.

a. Sketch R.
b. Find the volume of the solid obtained by rotating R about the line $y = -1/2$.
c. Find the volume of the solid obtained by rotating R about the line $x = -1/3$.

5
Let R be the region bounded by $y = 4 \cos x$, $y = e^x$ in $0 \leq x \leq \pi/4$. Set up, but do not evaluate, an integral that yields the volume of the solid obtained by rotating R about the line $y = 5$.

Describe the solid of revolution whose volume is given by

$$\pi \int_1^2 \left(9e^{8x} - 4e^{2x}\right) \, dx.$$ Do not evaluate this integral.

Describe the solid of revolution whose volume is given by

$$\pi \int_{\pi/2}^\pi (2 + \sin x)^2 - 4 \, dx.$$ Do not evaluate this integral.
0720-11. A solid S sits above a horizontal plane P. $\forall x \geq 0$, let P_x be the horizontal plane that is x units above P. Suppose that S lies between P_1 and P_2. Suppose, also, that $\forall x \in [1, 2]$, the intersection of S and P_x is the region inside an ellipse whose major axis has length x and whose minor axis has length e^{2x^2}.

Compute the volume of S.

Hint: Remember that if a and b are the major and minor axes of an ellipse E, then the area inside E is $\pi ab/4$.
Using the disk method, find the volume in a ball of radius 5, following the diagram shown below.
We create a napkin holder by drilling a cylindrical hole of radius 4 through the middle of a ball of radius 5, as shown below. Using the washer method, find its volume.