CALCULUS
The derivative of a function is a function
OLD
The graph of f is shown above. Which of the following is the graph of f'?

Choose red, green or purple.
The graph of f is shown above. Which of the following is the graph of f'?

ANSWER:

Choose red, **green** or purple.
The graph of f is shown above. Which of the following is the graph of f'?

Choose red, green or purple.
The graph of f is shown above. Which of the following is the graph of f'?

ANSWER:

Choose red, green or purple.

The graph of f is shown above. Freehand a sketch of the graph of f'. On your graph, indicate 1 and -1 on the horizontal axis.
OLD

ANSWER:
The graph of f is shown above.

a. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not defined?

b. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not continuous?

c. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not differentiable?
The graph of f is shown above.

a. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not defined?
ANS: $-3, 2$

b. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not continuous?
ANS: $-3, 1, 2$

c. At which of the numbers $-3, -2, -1, 0, 1, 2, 3$ is f not differentiable?
ANS: $-3, -2, 1, 2$
The graphs of \(f, f' \) and \(f'' \) are shown above. Which is which?

State the color of \(f \), the color of \(f' \) and the color of \(f'' \).
The graphs of f, f' and f'' are shown above. Which is which?

State the color of f, the color of f' and the color of f''.

ANSWER:

f'' is red

f' is green

f is blue
Let \(f(s) = 7s - 5s^3 \).

a. What is the domain of \(f \)?

b. Using the definition of the derivative, and using the cubic binomial formula
\[
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,
\]
compute \(f'(s) \).

c. What is the domain of the derivative \(f' \)?
0280-6. Let $f(s) = 7s - 5s^3$.

a. What is the domain of f?

ANSWER:

a. $\mathbb{R} = (-\infty, \infty)$
0280-6. Let \(f(s) = 7s - 5s^3 \).

b. Using the definition of the derivative, and using the cubic binomial formula

\[(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,\]

compute \(f'(s) \).

ANSWER:

\[
b. \quad f'(s) = \lim_{h \to 0} \frac{[7(s + h) - 5(s + h)^3] - [7s - 5s^3]}{h}
\]

\[
= \lim_{h \to 0} \frac{[7(s + h) - 5(s^3 + 3s^2h + 3sh^2 + h^3)] - [7s - 5s^3]}{h}
\]

\[
= \lim_{h \to 0} \frac{7h - 5(3s^2h + 3sh^2 + h^3)}{h}
\]

\[
= \lim_{h \to 0} 7 - 5(3s^2 + 3sh + h^2)
\]

\[= 7 - 5(3s^2) = 7 - 15s^2\]
Let \(f(s) = 7s - 5s^3 \).

c. What is the domain of the derivative \(f' \)?

ANSWER:

\[f'(s) = 7 - 15s^2 \]

c. \(\mathbb{R} = (-\infty, \infty) \)
0280-7. Let \(f(x) = \frac{1 + x}{2 + x} \).

a. What is the domain of \(f \)?

b. Using the definition of the derivative, compute \(f'(x) \).

c. What is the domain of the derivative \(f' \)?
Let \(f(x) = \frac{1 + x}{2 + x} \).

a. What is the domain of \(f \)?

ANSWER:

a. \(\mathbb{R} \setminus \{-2\} \)
Let \(f(x) = \frac{1 + x}{2 + x} \).

b. Using the definition of the derivative, compute \(f'(x) \).

ANSWER:

\[
\begin{align*}
1 & \left[\frac{1 + x + h}{2 + x + h} - \frac{1 + x}{2 + x} \right] \\
= & \frac{1}{h} \left[\frac{(1 + x + h)(2 + x) - (2 + x + h)(1 + x)}{(2 + x + h)(2 + x)} \right] \\
= & \frac{h(2 + x) - h(1 + x)}{h(2 + x + h)(2 + x)} \\
= & \frac{1}{h(2 + x + h)(2 + x)} \quad h \rightarrow 0 \\
= & \frac{1}{(2 + x)^2}
\end{align*}
\]
0280-7. Let $f(x) = \frac{1 + x}{2 + x}$.

c. What is the domain of the derivative f'?

ANSWER: $f'(x) = \frac{1}{(2 + x)^2}$

c. $\mathbb{R}\setminus\{-2\}$
Let \(f(x) = |x^2 - 2x - 3| \).

At which numbers is \(f \) not differentiable?

Hint: Determine the (maximal) intervals where \(x^2 - 2x - 3 \) is positive and negative.

Sketch the graph of \(y = x^2 - 2x - 3 \).

Sketch the graph of \(y = f(x) \).

GENERAL RULE:

At numbers \(x \) where \(x^2 - 2x - 3 \) has a root of multiplicity one, \(f \) is not differentiable. Everywhere else, \(f \) is differentiable.
Let \(f(x) = |x^2 - 2x - 3| \).

At which numbers is \(f \) not differentiable?

ANSWER:

\[
x^2 - 2x - 3 = (x + 1)(x - 3)
\]

- positive on \(3 < x \)
- negative on \(-1 < x < 3 \)
- positive on \(x < -1 \)
Let \(f(x) = |x^2 - 2x - 3| \).

At which numbers is \(f \) not differentiable?

ANSWER:

\[x^2 - 2x - 3 = (x + 1)(x - 3) \]

- positive on \(3 < x \)
- negative on \(-1 < x < 3 \)
- positive on \(x < -1 \)

\(f \) is not differentiable at \(-1\) and \(3\).
Let \(f(x) = |x^4 - 2x^3 - 3x^2| \).

At which numbers is \(f \) not differentiable?

Hint: Determine the (maximal) intervals where \(x^4 - 2x^3 - 3x^2 \) is positive and negative.

Sketch the graph of \(y = x^4 - 2x^3 - 3x^2 \).

Sketch the graph of \(y = f(x) \).

GENERAL RULE:

At numbers \(x \) where \(x^4 - 2x^3 - 3x^2 \) has a root of multiplicity one, \(f \) is not differentiable. Everywhere else, \(f \) is differentiable.
0280-9. Let \(f(x) = |x^4 - 2x^3 - 3x^2| \).

At which numbers is \(f \) not differentiable?

ANSWER:

\[
x^4 - 2x^3 - 3x^2 = (x + 1)x^2(x - 3)
\]

- positive on \(3 < x \)
- negative on \(0 < x < 3 \)
- negative on \(-1 < x < 0 \)
- positive on \(x < -1 \)
Let \(f(x) = |x^4 - 2x^3 - 3x^2| \). At which numbers is \(f \) not differentiable?

Answer:

\[
x^4 - 2x^3 - 3x^2 = (x + 1)x^2(x - 3)
\]

- positive on \(3 < x \)
- negative on \(0 < x < 3 \)
- negative on \(-1 < x < 0 \)
- positive on \(x < -1 \)

\[
y = f(x) = |x^4 - 2x^3 - 3x^2|
\]

\(f \) is not differentiable at \(-1\) and \(3\).