CALCULUS
Even more graphing problems
OLD
0500-1. Let $f : [0, 15) \setminus \{8\} \rightarrow \mathbb{R}$ be as shown.

a. Find the maximal intervals on which
 (i) f is increasing;
 (ii) f is decreasing;
 (iii) f is concave up;
 and (iv) f is concave down.

b. Find all points of inflection for f.

0500-1. Let $f : [0, 15) \setminus \{8\} \to \mathbb{R}$ be as shown.

a. Find the maximal intervals on which

 (i) f is increasing;

 (ii) f is decreasing;

ANSWER:

a. (i) incr on $[0,2]$, on $[6,8)$ and on $[11,13]$

a. (ii) decr on $[2,6]$, on $(8,11]$ and on $[13,15]$
0500-1. Let \(f : [0, 15) \backslash \{8\} \rightarrow \mathbb{R} \) be as shown.

a. Find the maximal intervals on which
 (iii) \(f \) is concave up;
 and (iv) \(f \) is concave down.

b. Find all points of inflection for \(f \).

ANS:
 a. (iii) cc up on \([4,8)\) and on \((8,12]\)
 a. (iv) cc dn on \([0,4]\) and on \([12,15)\)
 b. points of inflection: \((4,3)\) and \((12,4)\)
0500-2. Let $f : [0, 15) \setminus \{8\} \to \mathbb{R}$ be continuous from the right at 0. The graph of f' is shown below. Find the maximal intervals on which
(i) f is concave up;
and (ii) f is concave down.

ANSWER:

(i) f is cc up on $[0, 2]$, on $[6, 8)$ and on $[11, 13]$

(ii) f is cc dn on $[2, 6]$, on $(8, 11]$ and on $[13, 15]$
0500-3. Let \(f : [0, 14] \to \mathbb{R} \) be as shown.

a. Find the maximal intervals on which
 (i) \(f \) is increasing;
 and (ii) \(f \) is decreasing.

b. Find all numbers at which
 (i) \(f \) attains a local maximum;
 and (ii) \(f \) attains a local minimum.
0500-3. Let \(f : [0, 14] \rightarrow \mathbb{R} \) be as shown.

a. Find the maximal intervals on which
(i) \(f \) is increasing;
and (ii) \(f \) is decreasing.

ANSWER: a.

(i) \(f \) is incr on \([0, 3]\) and on \([10, 14]\)
(ii) \(f \) is decr on \([3, 10]\)
0500-3. Let \(f : [0, 14] \to \mathbb{R} \) be as shown.

b. Find all numbers at which
(i) \(f \) attains a local maximum;
and (ii) \(f \) attains a local minimum.

ANSWER: b.
(i) \(f \) attains a local maximum at 3.
(ii) \(f \) attains a local minimum at 10.
Let f be continuous on $[0, 14]$.

The graph of f' is shown below.

a. Find the maximal intervals on which
 (i) f is concave up;
 and (ii) f is concave down.

b. At what numbers does f have
 (i) a local maximum?
 (ii) a local minimum?
0500-4. Let \(f \) be continuous on \([0, 14]\).

The graph of \(f' \) is shown below.

a. Find the maximal intervals on which
 (i) \(f \) is concave up;
 and (ii) \(f \) is concave down.

ANSWER: a.
 (i) \(f \) is cc up on \([0, 3]\) and on \([10, 14]\).
 (ii) \(f \) is cc dn on \([3, 10]\).
0500-4. Let f be continuous on $[0, 14]$. The graph of f' is shown below.

b. At what numbers does f have
 (i) a local maximum? (ii) a local minimum?

ANSWER: b.
 (i) f has a local maximum at 5.
 (ii) f has a local minimum at 1 and at 13.
Let $f(x) = x^4 - 4x^3 + 4x^2 + 9$.

a. Find the maximal intervals on which
 (i) f is increasing;
 and (ii) f is decreasing.

b. Find all numbers at which
 (i) f attains a local maximum;
 and (ii) f attains a local minimum.

c. Find the maximal intervals on which
 (i) f is concave up;
 and (ii) f is concave down.
0500-5. Let \(f(x) = x^4 - 4x^3 + 4x^2 + 9 \).

a. Find the maximal intervals on which
 (i) \(f \) is increasing;
 and (ii) \(f \) is decreasing.

b. Find all numbers at which
 (i) \(f \) attains a local maximum;
 and (ii) \(f \) attains a local minimum.

ANSWER: \(f'(x) = 4x^3 - 12x^2 + 8x \)

\[= 4x(x - 1)(x - 2) \]

a. (i) \(f \) is increasing on \([0, 1]\) and on \([2, \infty)\).
 (ii) \(f \) is decreasing on \((-\infty, 0]\) and on \([1, 2]\).

b. (i) \(f \) attains a local maximum at 1.
 (ii) \(f \) attains a local minimum at 0 and at 2.
Let \(f(x) = x^4 - 4x^3 + 4x^2 + 9 \).

c. Find the maximal intervals on which

(i) \(f \) is concave up; and

(ii) \(f \) is concave down.

ANSWER:
\[
\begin{align*}
 f'(x) &= 4x^3 - 12x^2 + 8x \\
 f''(x) &= 12x^2 - 24x + 8 \\
 &= 4(3x^2 - 6x + 2)
\end{align*}
\]

\[
\begin{align*}
 r &:= \frac{6 - \sqrt{36 - 24}}{6}, & s &:= \frac{6 + \sqrt{36 - 24}}{6}
\end{align*}
\]

roots of \(f'' \): \(r \) and \(s \)

\[c. \ (i) \ f \text{ is concave up on } (-\infty, r] \text{ and on } [s, \infty). \]

\[c. \ (ii) \ f \text{ is concave down on } [r, s].\]
0500-6. Let $f(x) = (x^2 + 1)e^{-x}$.

a. Find the maximal intervals on which
 (i) f is increasing; and
 (ii) f is decreasing.

b. Find all numbers at which
 (i) f attains a local maximum; and
 (ii) f attains a local minimum.

c. Find the maximal intervals on which
 (i) f is concave up; and
 (ii) f is concave down.

d. Find all points of inflection for f.
0500-6. Let \(f(x) = (x^2 + 1)e^{-x} \).

a. Find the maximal intervals on which
 (i) \(f \) is increasing;
 and (ii) \(f \) is decreasing.

b. Find all numbers at which
 (i) \(f \) attains a local maximum;
 and (ii) \(f \) attains a local minimum.

ANSWER:

\[
f'(x) = (2x)e^{-x} + (x^2 + 1)e^{-x}(-1)
= -(x^2 - 2x + 1)e^{-x}
= -(x - 1)^2e^{-x}
\]

a. (i) \(f \) has no intervals of increase.
 (ii) \(f \) is decreasing on \(\mathbb{R} = (-\infty, \infty) \).

b. (i) \(f \) has no local maxima.
 (ii) \(f \) has no local minima.
0500-6. Let \(f(x) = (x^2 + 1)e^{-x} \).

c. Find the maximal intervals on which

(i) \(f \) is concave up;

and (ii) \(f \) is concave down.

d. Find all points of inflection for \(f \).

ANSWER:

\[
\begin{align*}
 f'(x) &= -(x^2 - 2x + 1)e^{-x} \\
 f''(x) &= -(2x - 2)e^{-x} - (x^2 - 2x + 1)e^{-x}(-1) \\
 &= (x^2 - 4x + 3)e^{-x} \\
 &= (x - 1)(x - 3)e^{-x}
\end{align*}
\]

c. (i) \(f \) is cc up on \((-\infty, 1]\) and on \([3, \infty)\).

(ii) \(f \) is cc down on \([1, 3]\).

d. Points of inflection for \(f \):

\((1, 2/e), \quad (3, 10/e^3) \)
0500-7. Let \(f(x) = xe^{-x^2/2} \).

a. Find all critical numbers for \(f \).

b. For each critical number for \(f \), use the Second Derivative Test to determine whether, at that number, the function \(f \) has a local maximum or a local minimum.

ANSWER:

\[
f'(x) = e^{-x^2/2} + xe^{-x^2/2}(-2x/2) = (1 - x^2)e^{-x^2/2}
\]

\[
f''(x) = (-2x)e^{-x^2/2} + (1 - x^2)e^{-x^2/2}(-2x/2) = (x^3 - 3x)e^{-x^2/2}
\]
Let $f(x) = xe^{-x^2/2}$.

a. Find all critical numbers for f.

b. For each critical number for f, use the Second Derivative Test to determine whether, at that number, the function f has a local maximum or a local minimum.

ANSWER:

$$f'(x) = (1 - x^2)e^{-x^2/2}$$

$$f''(x) = (x^3 - 3x)e^{-x^2/2}$$

a. Critical numbers for f: -1 and 1

b. $f''(-1) = (-1 + 3)e^{-1/2} > 0$, so f has a local minimum at -1.

$$f''(1) = (1 - 3)e^{-1/2} < 0$$

so f has a local maximum at 1. ■
0500-8. Let \(f(x) = x^8 e^{x^2} \).

a. Find all critical numbers for \(f \).

b. For each critical number for \(f \), what does the Second Derivative Test tell you about that critical number?

c. For each critical number for \(f \), use the First Derivative Test to determine whether, at that number, the function \(f \) has a local maximum or a local minimum.
Let $f(x) = x^8 e^{x^2}$.

a. Find all critical numbers for f.

ANSWER:

\[
f'(x) = (8x^7)e^{x^2} + x^8 e^{x^2}(2x)
\]

\[
= (2x^9 + 8x^7)e^{x^2}
\]

\[
= x^7(2x^2 + 8)e^{x^2}
\]

a. critical numbers: 0
0500-8. Let \(f(x) = x^8 e^{x^2} \).

b. For each critical number for \(f \), what does the Second Derivative Test tell you about that critical number?

ANSWER: critical numbers: 0

\[
f'(x) = (2x^9 + 8x^7)e^{x^2}
\]

\[
f''(x) = (18x^8 + 56x^6)e^{x^2} + (2x^9 + 8x^7)e^{x^2}(2x)
\]

b. \(f''(0) = 0 \)

The second derivative test gives **NO** information.
0500-8. Let \(f(x) = x^8 e^{x^2} \).

c. For each critical number for \(f \), use the First Derivative Test to determine whether, at that number, the function \(f \) has a local maximum or a local minimum.

ANSWER: critical numbers: 0

\[
f'(x) = (2x^9 + 8x^7)e^{x^2}
= x^7(2x^2 + 8)e^{x^2}
\]

c. \(f \) is decreasing on \((-\infty, 0]\).
\(f \) is increasing on \([0, \infty)\).

Then \(f \) has a local minimum at 0.
0500-9. Sketch the graph of a function

\[H : [0, 8] \to \mathbb{R} \]

with the following properties:

1. \(H \) is continuous on \([0, 8]\);
2. \(H'' \) is continuous on \((0, 8)\);
3. \(H(0) = H(4) = H(8) = 0 \);
4. \(H'(2) = H'(6) = 0 \);
5. \(H'' < 0 \) on \((0, 4)\);
6. \(H'' > 0 \) on \((4, 8)\).

ANSWER:

There are many other answers.
0500-10. Find a cubic \(g(t) = at^3 + bt^2 + ct + d \)

s.t. \(g \) attains a local max value of 20 at \(-3\) and a local min value of \(-16\) at 3.

ANSWER:

\[
g'(t) = 3at^2 + 2bt + c
\]

\[
0 = g'(-3) = 27a - 6b + c
\]

\[
0 = g'(3) = 27a + 6b + c
\]

\[
0 = [g'(3)] - [g'(-3)] = 12b
\]

\[
0 = b
\]

\[
0 = g'(3) = 27a + (6)(0) + c
\]

\[-27a = c\]
0500-10. Find a cubic \(g(t) = at^3 + bt^2 + ct + d \) s.t. \(g \) attains a local max value of 20 at \(-3\) and a local min value of \(-16\) at 3.

ANSWER: \(0 = b \quad -27a = c \)

\[
g(t) = at^3 + bt^2 + ct + d = at^3 - 27at + d
\]

\[
20 = g(-3) = -27a + 81a + d = 54a + d
\]

\[
-16 = g(3) = 27a - 81a + d = -54a + d
\]

\[
4 = [g(3)] + [g(-3)] = 2d
\]

\[
2 = d
\]

\[
20 = g(-3) = 54a + d = 54a + 2
\]

\[
18 = 54a
\]

\[
1/3 = 18/54 = a
\]
0500-10. Find a cubic \(g(t) = at^3 + bt^2 + ct + d \) s.t. \(g \) attains a local max value of 20 at -3 and a local min value of -16 at 3.

Answer: \(0 = b \quad -27a = c \quad 2 = d \)

\[
\frac{1}{3} = a \\
-9 = -27(\frac{1}{3}) = -27a = c
\]

\[
g(t) = at^3 + bt^2 + ct + d = (\frac{1}{3})t^3 - 9t + 2
\]
0500-11. Let \(f(x) = 2 + \sin^2 x \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).
 Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
Let \(f(x) = 2 + \sin^2 x \).

a. Describe the symmetries, if any, of \(f \).
b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

a. \(f \) is even and \(\pi \)-periodic.

b. (i) \(\text{dom}[f] = \mathbb{R} \supseteq [0, \pi/2) \)

(ii) \(f(0) = 2 \) is the \(y \)-intercept.

\(\forall x \in \mathbb{R}, f(x) \neq 0 \), so no \(x \)-intercepts

\(f \) is positive on \(\mathbb{R} \).

(iii) no vertical or horizontal asymptotes
0500-11. Let \(f(x) = 2 + \sin^2 x \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER: \(f \) is even and \(\pi \)-periodic.

c. \(f'(x) = 2(\sin x)(\cos x) \)

is positive on \(0 < x < \pi/2 \).

\(f \) is increasing on \([0, \pi/2]\).

\(f \) even gives: \(f \) decreasing on \([-\pi/2, 0]\)

\(f \) \(\pi \)-periodic gives: \(f \) incr on \([n\pi, n\pi + (\pi/2)]\), \(f \) decr on \([n\pi - (\pi/2), n\pi]\), \(\forall n \in \mathbb{Z} \).
0500-11. Let \(f(x) = 2 + \sin^2 x \).

\(\text{d. Find all max intervals of cc up/cc dn for } f. \)

ANSWER: \(f \) is even and \(\pi \)-periodic.

\[f'(x) = 2(\sin x)(\cos x) \]

\[f''(x) = 2(\cos x)(\cos x) + 2(\sin x)(-\sin x) \]

\[= 2[(\cos^2 x) - (\sin^2 x)] \]

\[= 2 \cos(2x) \]

is positive on \(-\pi/4 < x < \pi/4\)

and negative on \(\pi/4 < x < 3\pi/4\).

\(f \) is concave up on \([-\pi/4, \pi/4]\)

and concave down on \([\pi/4, 3\pi/4]\).
Let $f(x) = 2 + \sin^2 x$.

d. Find all max intervals of cc up/cc dn for f.

ANSWER: f is even and π-periodic.

d. f is concave up on $[-\pi/4, \pi/4]$ and concave down on $[\pi/4, 3\pi/4]$.

π-periodicity gives:

f concave up on $[n\pi - (\pi/4), n\pi + (\pi/4)]$, f concave down on $[n\pi + (\pi/4), n\pi + (3\pi/4)]$, $\forall n \in \mathbb{Z}$
0500-11. Let $f(x) = 2 + \sin^2 x$.

e. Sketch the graph of f.

ANSWER:

e.
0500-12. Let \(f(x) = \ln(x^2 + 1) \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:
(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
(iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-12. Let \(f(x) = \ln(x^2 + 1). \)

a. Describe the symmetries, if any, of \(f. \)

b. Find all max intervals of pos/neg for \(f. \)

Also:

(i) What is the domain of \(f? \)

(ii) Find all \(x- \) and \(y- \)intercepts of \(f. \)

(iii) Find all vert/horiz asymptotes of \(f. \)

ANSWER:
a. \(f \) is even.

b. (i) \(\text{dom}[f] = \mathbb{R} \)

 (ii) \(f(0) = 0 \) is the \(y \)-intercept.

 \[x^2 + 1 = 1 \iff x = 0. \]

 \(x \)-intercepts: \(f(x) = 0 \iff x = 0 \)

 \(x^2 + 1 > 1 \) on \(x < 0 \) and on \(0 < x. \)

 \(f \) is positive on \((-\infty, 0) \) and on \((0, \infty). \)

(iii) no vertical or horizontal asymptotes
0500-12. Let $f(x) = \ln(x^2 + 1)$.

\[\text{c. Find all max intervals of incr/decr for } f. \]

ANSWER: f is even

\[c. \quad f'(x) = \frac{2x}{x^2 + 1} \] is positive on $0 < x$.

f is increasing on $[0, \infty)$. f even gives: f decreasing on $(-\infty, 0]$.
0500-12. Let $f(x) = \ln(x^2 + 1)$.

d. Find all max intervals of cc up/cc dn for f.

ANSWER: f is even

\[f'(x) = \frac{2x}{x^2 + 1} \]

d. \[f''(x) = \frac{\left(x^2 + 1\right)(2) - (2x)(2x)}{(x^2 + 1)^2} \]

\[= \frac{-2x^2 + 2}{(x^2 + 1)^2} \]
Let \(f(x) = \ln(x^2 + 1) \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f \) is even

\[
d. \quad f''(x) = \frac{-2x^2 + 2}{(x^2 + 1)^2} = \frac{-2(x + 1)(x - 1)}{(x^2 + 1)^2}
\]

is negative on \((-\infty, -1)\)
and positive on \((-1, 1)\)
and negative on \((1, \infty)\).

\(f \) is concave down on \((-\infty, -1]\)
and concave up on \([-1, 1]\)
and concave down on \([1, \infty)\).
0500-12. Let \(f(x) = \ln(x^2 + 1) \).

e. Sketch the graph of \(f \).

ANSWER:

e.
500-13. Let \(f(x) = \frac{x}{\sqrt{x^2 - 1}} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
(iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-13. Let \(f(x) = \frac{x}{\sqrt{x^2 - 1}} \).

a. Describe the symmetries, if any, of \(f \).
b. Find all max intervals of pos/neg for \(f \).
 Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

ANSWER:

a. \(f \) is odd.

b. (i) \(\text{dom}[f] = (-\infty, -1) \cup (1, \infty) \)

 (ii) \(f(0) \) is undefined, so no \(y \)-intercept

 \(\forall x \in \text{dom}[f], f(x) \neq 0 \), so no \(x \)-intercepts

 \(f \) is positive on \((1, \infty)\)

 and negative on \((-\infty, -1)\).
Let \(f(x) = \frac{x}{\sqrt{x^2 - 1}} \).

b. Also:
 (iii) Find all vert/horiz asymptotes of \(f \).

ANSWER: \(f \) is odd.

b. (iii) vertical/horizontal asymptotes:

\[
f(x) = \frac{x}{\sqrt{x^2 - 1}} = \frac{1}{\sqrt{1 - (1/x)^2}} \quad \text{as } x \to 1^+ \to \infty
\]

\(f \) odd gives: \(f(x) \xrightarrow{x \to -1^-} -\infty \)

\(x = -1 \) and \(x = 1 \) are vert. asymptotes.
0500-13. Let \(f(x) = \frac{x}{\sqrt{x^2 - 1}} \).

b. Also:
 (iii) Find all vert/horiz asymptotes of \(f \).

ANSWER: \(f \) is odd.

b. (iii) vertical/horizontal asymptotes:

\[
f(x) = \frac{x}{\sqrt{x^2 - 1}} \quad x \geq 1 \quad \frac{1}{\sqrt{1 - (1/x)^2}} \quad x \to \infty \quad 1
\]

\(f \) odd gives: \(f(x) \xrightarrow{x \to -\infty} -1 \)

\(y = -1 \) and \(y = 1 \) are hor. asymptotes.
Let \(f(x) = \frac{x}{\sqrt{x^2 - 1}} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER: \(f \) is odd. \(\text{dom}[f] = (-\infty, -1) \cup (1, \infty) \)

c. \[
f'(x) = \frac{([x^2 - 1]^{1/2})(1) - (x)([1/2][x^2 - 1]^{-1/2}[2x])}{x^2 - 1}
\]

\[
= \frac{[x^2 - 1]^{1/2} - (x^2)[x^2 - 1]^{-1/2}}{x^2 - 1}
\]

\[
= \frac{[x^2 - 1] - (x^2)[1]}{[x^2 - 1]^{3/2}}
\]

\[
= \frac{-1}{[x^2 - 1]^{3/2}}
\]
0500-13. Let \(f(x) = \frac{x}{\sqrt{x^2 - 1}} \).

c. Find all max intervals of incr/decr for \(f \).

\textbf{ANSWER:} \(f \) is odd. \quad \text{dom}[f] = (-\infty, -1) \cup (1, \infty)

c. \(f'(x) = \frac{-1}{[x^2 - 1]^{3/2}} \) is negative on \((1, \infty)\).

\(f \) is decreasing on \((1, \infty)\).

\(f \) odd gives: \(f \) is decreasing on \((-\infty, -1)\).
0500-13. Let \(f(x) = \frac{x}{\sqrt{x^2 - 1}} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f \) is odd. \[\text{dom}[f] = (-\infty, -1) \cup (1, \infty) \]

\[f'(x) = \frac{-1}{[x^2 - 1]^{3/2}} = -[x^2 - 1]^{-3/2} \]

\[f''(x) = \left(\frac{3}{2}\right)[x^2 - 1]^{-5/2}[2x] \]

\[= \frac{3x}{[x^2 - 1]^{5/2}} \]

is negative on \(x < -1 \) and positive on \(x > 1 \).

\(f \) is concave down on \((-\infty, -1)\) and concave up on \((1, \infty)\).
0500-13. Let \(f(x) = \frac{x}{\sqrt{x^2 - 1}} \).

e. Sketch the graph of \(f \).

ANSWER:

e.
0500-14. Let $f(x) = x^4 + 2x^3$.

a. Describe the symmetries, if any, of f.

b. Find all max intervals of pos/neg for f. Also:
 (i) What is the domain of f?
 (ii) Find all x- and y-intercepts of f.
 (iii) Find all vert/horiz asymptotes of f.

c. Find all max intervals of incr/decr for f.

d. Find all max intervals of cc up/cc dn for f.

e. Sketch the graph of f.
0500-14. Let \(f(x) = x^4 + 2x^3 \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?
(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

a. **NO** symmetries

b.

(i) \(\text{dom}[f] = \mathbb{R} \)

(ii) \(f(0) = 0 \) is the \(y \)-intercept.

\(x \)-intercepts:

\[
[f(x) = 0] \text{ iff } [x = 0 \text{ or } x = -2]
\]

\(f(x) = (x + 2)x^3 \) is positive on \(x < -2 \) and negative on \(-2 < x < 0 \) and positive on \(0 < x \).

(iii) **vertical/horizontal asymptotes:** none
0500-14. Let \(f(x) = x^4 + 2x^3 \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

c. \(f'(x) = 4x^3 + 6x^2 \)

\(= 4(x + (3/2))x^2 \)

is negative on \(x < -3/2 \)

and positive on \(-3/2 < x < 0\)

and positive on \(0 < x \).

\(f \) is decreasing on \((-\infty, -3/2] \)

and increasing on \([-3/2, \infty)\).

Also, \(f'(0) = 0 \).
Let $f(x) = x^4 + 2x^3$.

Find all max intervals of cc up/cc dn for f.

Answer:

$f'(x) = 4x^3 + 6x^2$

$f''(x) = 12x^2 + 12x$

$= 12(x + 1)x$

is positive on $x < -1$
and negative on $-1 < x < 0$
and positive on $0 < x$.

f is concave up on $(-\infty, -1]$ and concave down on $[-1, 0]$ and concave up on $[0, \infty)$.
0500-14. Let \(f(x) = x^4 + 2x^3 \).

e. Sketch the graph of \(f \).

ANSWER:

e.
0500-15. Let \(f(x) = \frac{1}{x^2 - 4} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-15. Let \(f(x) = \frac{1}{x^2 - 4} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?

(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

ANSWER:

a. \(f \) is even.

b. \(f(x) = \frac{1}{(x + 2)(x - 2)} \)

(i) \(\text{dom}[f] = \mathbb{R} \setminus \{-2, 2\} \supseteq [0, \infty) \setminus \{2\} \)

(ii) \(f(0) = -1/4 \) is the \(y \)-intercept.

\(\forall x \in \text{dom}[f], f(x) \neq 0 \), so no \(x \)-intercepts

\(f(x) \) is positive on \(x < -2 \)
and negative on \(-2 < x < 2 \)
and positive on \(2 < x \).
0500-15. Let \(f(x) = \frac{1}{x^2 - 4} \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

(iii) \(\lim_{x \to \infty} f(x) = 0 \) and \(\lim_{x \to -\infty} f(x) = 0 \)

\(y = 0 \) is the only horizontal asymptote.

\(\lim_{x \to -2^-} f(x) = \infty \) and \(\lim_{x \to -2^+} f(x) = -\infty \)

\(f \) even gives:

\(\lim_{x \to 2^-} f(x) = -\infty \) and \(\lim_{x \to 2^+} f(x) = \infty \)

\(x = -2 \) and \(x = 2 \)

are the vertical asymptotes.
0500-15. Let \(f(x) = \frac{1}{x^2 - 4} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER: \(f \) is even.

c. \(f(x) = \left[x^2 - 4 \right]^{-1} \)

\[
f'(x) = - \left[x^2 - 4 \right]^{-2} [2x] = \frac{-2x}{(x + 2)^2 (x - 2)^2}
\]

is negative on \(0 < x < 2 \) and on \(2 < x \).

\(f \) is decreasing on \([0, 2)\) and on \((2, \infty)\).

\(f \) even gives:

\(f \) is increasing on \((-\infty, -2)\) and on \((-2, 0]\).
Let \(f(x) = \frac{1}{x^2 - 4} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f \) is even.

\[
f'(x) = \frac{-2x}{(x^2 - 4)^2}
\]

\[
f''(x) = \frac{\left[(x^2 - 4)^2\right] [-2] - [-2x] \left[2 (x^2 - 4)(2x)\right]}{(x^2 - 4)^4}
\]

\[
= \frac{\left[x^2 - 4\right] [-2] - [-2x][4x]}{(x^2 - 4)^3}
\]
Let \(f(x) = \frac{1}{x^2 - 4} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f \) is even.

d. \(f''(x) = \frac{\left[x^2 - 4 \right] [-2] - [-2x][4x]}{\left(x^2 - 4 \right)^3} \)

\[
= \frac{\left[-2x^2 + 8 \right] + \left[8x^2 \right]}{\left(x^2 - 4 \right)^3}
\]

\[
= \frac{6x^2 + 8}{\left(x^2 - 4 \right)^3}
\]
0500-15. Let \(f(x) = \frac{1}{x^2 - 4} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f \) is even.

d. \(f''(x) = \frac{6x^2 + 8}{(x^2 - 4)^3} = \frac{6x^2 + 8}{(x + 2)^3 (x - 2)^3} \)

is positive on \(x < -2 \)
and negative on \(-2 < x < 2 \)
and positive on \(2 < x \).

\(f \) is concave up on \((-\infty, -2)\)
and concave down on \((-2, 2)\)
and concave up on \((2, \infty)\).
0500-15. Let \(f(x) = \frac{1}{x^2 - 4} \).

e. Sketch the graph of \(f \).

ANSWER:

e.
0500-16. Let $f(x) = \sqrt{x^2 + 6x + 5}$.

a. Describe the symmetries, if any, of f.

b. Find all max intervals of pos/neg for f. Also:
 (i) What is the domain of f?
 (ii) Find all x- and y-intercepts of f.
 (iii) Find all vert/horiz asymptotes of f.

c. Find all max intervals of incr/decr for f.

d. Find all max intervals of cc up/cc dn for f.

e. Sketch the graph of f.
0500-16. Let $f(x) = \sqrt{x^2 + 6x + 5}$.

a. Describe the symmetries, if any, of f.

b. Find all max intervals of pos/neg for f.

ANSWER:

a. **NO** symmetries

Note: f is symmetric about $x = -3$, but this is not one of our standard symmetries.

b. $x^2 + 6x + 5 = (x + 5)(x + 1)$

 is positive on $x < -5$

 and negative on $-5 < x < -1$

 and positive on $-1 < x$.
0500-16. Let $f(x) = \sqrt{x^2 + 6x + 5}$.

b. Find all max intervals of pos/neg for f.

Also:

(i) What is the domain of f?

(ii) Find all x- and y-intercepts of f.

ANSWER: b. $x^2 + 6x + 5 = (x + 5)(x + 1)$ is positive on $x < -5$
and negative on $-5 < x < -1$
and positive on $-1 < x$.

(i) $\text{dom}[f] = (-\infty, -5] \cup [-1, \infty)$

(ii) $f(0) = \sqrt{5}$ is the y-intercept.

x-intercepts: $[f(x) = 0]$ iff $[x = -5 \text{ or } x = -1]$

f is positive on $(-\infty, -5)$ and on $(-1, \infty)$.

0500-16. Let \(f(x) = \sqrt{x^2 + 6x + 5} \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(iii) Find all vert/horiz asymptotes of \(f \).

\[\frac{d}{dx} f(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{x^2 + 6x + 5}} \cdot (2x + 6) = \frac{x + 3}{\sqrt{x^2 + 6x + 5}}. \]

At \(x = -3 \), \(f \) has a horizontal asymptote: \(y = -3 \).

\[\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 + 6x + 5} = \lim_{x \to -\infty} \sqrt{x^2(1 + \frac{6}{x} + \frac{5}{x^2})} = \lim_{x \to -\infty} |x| \sqrt{1 + \frac{6}{x} + \frac{5}{x^2}} = \lim_{x \to -\infty} -x \sqrt{1 + \frac{6}{x} + \frac{5}{x^2}} = -\infty. \]

At \(x = -3 \), \(f \) has a vertical asymptote: \(x = -3 \).

\[\lim_{x \to -3} f(x) = \lim_{x \to -3} \sqrt{x^2 + 6x + 5} = \lim_{x \to -3} \sqrt{(x + 3)^2} = \lim_{x \to -3} |x + 3| = 0. \]

\[\lim_{x \to -3} \frac{x + 3}{\sqrt{x^2 + 6x + 5}} = \lim_{x \to -3} \frac{x + 3}{|x + 3|} = \lim_{x \to -3} \frac{x + 3}{-(x + 3)} = -1. \]

\[\lim_{x \to -3} (f(x) - x) = \lim_{x \to -3} \sqrt{x^2 + 6x + 5} - x = \lim_{x \to -3} \left(\sqrt{x^2 + 6x + 5} - x \right) = \lim_{x \to -3} \left(\frac{(\sqrt{x^2 + 6x + 5} - x)(\sqrt{x^2 + 6x + 5} + x)}{\sqrt{x^2 + 6x + 5} + x} \right) = \lim_{x \to -3} \frac{x^2 + 6x + 5 - x^2}{\sqrt{x^2 + 6x + 5} + x} = \lim_{x \to -3} \frac{6x + 5}{\sqrt{x^2 + 6x + 5} + x} = \lim_{x \to -3} \frac{6(\sqrt{x^2 + 6x + 5} + x)}{6x + 5} = \lim_{x \to -3} \frac{\sqrt{x^2 + 6x + 5} + x}{1} = 0. \]

\[\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 + 6x + 5} = \lim_{x \to -\infty} \sqrt{x^2(1 + \frac{6}{x} + \frac{5}{x^2})} = \lim_{x \to -\infty} x \sqrt{1 + \frac{6}{x} + \frac{5}{x^2}} = \lim_{x \to -\infty} x \sqrt{1 + \frac{6}{x} + \frac{5}{x^2}} = -\infty. \]

\[\lim_{x \to -3} \frac{x + 3}{\sqrt{x^2 + 6x + 5}} = \lim_{x \to -3} \frac{x + 3}{|x + 3|} = \lim_{x \to -3} \frac{x + 3}{-(x + 3)} = -1. \]

\[\lim_{x \to -3} (f(x) + x) = \lim_{x \to -3} \sqrt{x^2 + 6x + 5} + x = \lim_{x \to -3} \left(\sqrt{x^2 + 6x + 5} + x \right) = \lim_{x \to -3} \left(\frac{(\sqrt{x^2 + 6x + 5} + x)(\sqrt{x^2 + 6x + 5} - x)}{\sqrt{x^2 + 6x + 5} - x} \right) = \lim_{x \to -3} \frac{x^2 + 6x + 5 - x^2}{\sqrt{x^2 + 6x + 5} - x} = \lim_{x \to -3} \frac{6x + 5}{\sqrt{x^2 + 6x + 5} - x} = \lim_{x \to -3} \frac{6(\sqrt{x^2 + 6x + 5} - x)}{6x + 5} = \lim_{x \to -3} \frac{\sqrt{x^2 + 6x + 5} - x}{1} = 0. \]

\[\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 + 6x + 5} = \lim_{x \to -\infty} \sqrt{x^2(1 + \frac{6}{x} + \frac{5}{x^2})} = \lim_{x \to -\infty} x \sqrt{1 + \frac{6}{x} + \frac{5}{x^2}} = \lim_{x \to -\infty} x \sqrt{1 + \frac{6}{x} + \frac{5}{x^2}} = -\infty. \]

\[\lim_{x \to -3} \frac{x + 3}{\sqrt{x^2 + 6x + 5}} = \lim_{x \to -3} \frac{x + 3}{|x + 3|} = \lim_{x \to -3} \frac{x + 3}{-(x + 3)} = -1. \]

\[\lim_{x \to -3} (f(x) + x) = \lim_{x \to -3} \sqrt{x^2 + 6x + 5} + x = \lim_{x \to -3} \left(\sqrt{x^2 + 6x + 5} + x \right) = \lim_{x \to -3} \left(\frac{(\sqrt{x^2 + 6x + 5} + x)(\sqrt{x^2 + 6x + 5} - x)}{\sqrt{x^2 + 6x + 5} - x} \right) = \lim_{x \to -3} \frac{x^2 + 6x + 5 - x^2}{\sqrt{x^2 + 6x + 5} - x} = \lim_{x \to -3} \frac{6x + 5}{\sqrt{x^2 + 6x + 5} - x} = \lim_{x \to -3} \frac{6(\sqrt{x^2 + 6x + 5} - x)}{6x + 5} = \lim_{x \to -3} \frac{\sqrt{x^2 + 6x + 5} - x}{1} = 0. \]

\[\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 + 6x + 5} = \lim_{x \to -\infty} \sqrt{x^2(1 + \frac{6}{x} + \frac{5}{x^2})} = \lim_{x \to -\infty} x \sqrt{1 + \frac{6}{x} + \frac{5}{x^2}} = \lim_{x \to -\infty} x \sqrt{1 + \frac{6}{x} + \frac{5}{x^2}} = -\infty. \]

\[\lim_{x \to -3} \frac{x + 3}{\sqrt{x^2 + 6x + 5}} = \lim_{x \to -3} \frac{x + 3}{|x + 3|} = \lim_{x \to -3} \frac{x + 3}{-(x + 3)} = -1. \]

\[\lim_{x \to -3} (f(x) + x) = \lim_{x \to -3} \sqrt{x^2 + 6x + 5} + x = \lim_{x \to -3} \left(\sqrt{x^2 + 6x + 5} + x \right) = \lim_{x \to -3} \left(\frac{(\sqrt{x^2 + 6x + 5} + x)(\sqrt{x^2 + 6x + 5} - x)}{\sqrt{x^2 + 6x + 5} - x} \right) = \lim_{x \to -3} \frac{x^2 + 6x + 5 - x^2}{\sqrt{x^2 + 6x + 5} - x} = \lim_{x \to -3} \frac{6x + 5}{\sqrt{x^2 + 6x + 5} - x} = \lim_{x \to -3} \frac{6(\sqrt{x^2 + 6x + 5} - x)}{6x + 5} = \lim_{x \to -3} \frac{\sqrt{x^2 + 6x + 5} - x}{1} = 0. \]
0500-16. Let $f(x) = \sqrt{x^2 + 6x + 5}$.

(c) Find all max intervals of incr/decr for f.

ANSWER: $\text{dom}[f] = (-\infty, -5] \cup [-1, \infty)$

\[
f(x) = \left(x^2 + 6x + 5\right)^{1/2}
\]

\[
f'(x) = \left(1/2\right)\left(x^2 + 6x + 5\right)^{-1/2}(2x + 6)
\]

\[
= \frac{x + 3}{\sqrt{x^2 + 6x + 5}}
\]

is negative on $x < -5$

and positive on $-1 < x$.

f is decreasing on $(-\infty, -5]$ and increasing on $[-1, \infty)$.
\[f(x) = \sqrt{x^2 + 6x + 5}. \]

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(\text{dom}[f] = (-\infty, -5] \cup [-1, \infty) \)

\[f'(x) = \frac{x + 3}{\sqrt{x^2 + 6x + 5}} = \frac{x + 3}{(x^2 + 6x + 5)^{1/2}} \]

\[f''(x) = \]

\[\frac{\left[(x^2 + 6x + 5)^{1/2} \right] [1] - [x + 3] \left[(1/2) (x^2 + 6x + 5)^{-1/2} (2x + 6) \right]}{x^2 + 6x + 5} \]

\[= \frac{[x^2 + 6x + 5] [1] - [x + 3] [(1/2)(2x + 6)]}{(x^2 + 6x + 5)^{3/2}} \]
0500-16. Let \(f(x) = \sqrt{x^2 + 6x + 5} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(\text{dom}[f] = (-\infty, -5] \cup [-1, \infty) \)

d. \(f''(x) = \frac{\left[x^2 + 6x + 5\right][1] - [x + 3][(1/2)(2x + 6)]}{\left(x^2 + 6x + 5\right)^{3/2}} \)

\[
= \frac{\left[x^2 + 6x + 5\right] - [x + 3][x + 3]}{\left(x^2 + 6x + 5\right)^{3/2}}
\]

\[
= \frac{\left[x^2 + 6x + 5\right] - [x^2 + 6x + 9]}{\left(x^2 + 6x + 5\right)^{3/2}}
\]
Let \(f(x) = \sqrt{x^2 + 6x + 5} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(\text{dom}[f] = (-\infty, -5] \cup [-1, \infty) \)

d. \(f''(x) = \frac{\left[x^2 + 6x + 5 \right] - \left[x^2 + 6x + 9 \right]}{(x^2 + 6x + 5)^{3/2}} \)

\[
= \frac{-4}{(x^2 + 6x + 5)^{3/2}}
\]

is negative on \(x < -5 \) and on \(-1 < x \).

\(f \) is concave down on \((-\infty, -5] \) and on \([-1, \infty) \).
0500-16. Let $f(x) = \sqrt{x^2 + 6x + 5}$.

e. Sketch the graph of f.

ANSWER: e.
Let \(f(x) = x - \sin x \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-17. Let $f(x) = x - \sin x$.

a. Describe the symmetries, if any, of f.
b. Find all max intervals of pos/neg for f.

Also:
(i) What is the domain of f?
(ii) Find all x- and y-intercepts of f.
(iii) Find all vert/horiz asymptotes of f.

ANSWER:
a. f is odd. Note: $f(x + 2\pi) = (f(x)) + 2\pi$
b. (i) $\text{dom}[f] = \mathbb{R} \supseteq [0, \infty)$
(ii) deferred until after c.
max intervals of pos/neg for f
also deferred until after c.
(iii) vertical/horizontal asymptotes: none
0500-17. Let \(f(x) = x - \sin x \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

c. \(f'(x) = 1 - \cos x \)

is positive on \(n\pi < x < (n + 1)\pi, \forall n \in \mathbb{Z} \).

\(f \) is increasing on \(\mathbb{R} \).

b. (ii) \(f(0) = 0 \) is the \(y \)-intercept.

So, because \(f \) is increasing on \(\mathbb{R} \),

\(f \) is positive on \((0, \infty) \)

and \(f \) is negative on \((-\infty, 0) \).

Then \(f(x) = 0 \) iff \(x = 0 \).

\(x \)-intercepts: 0
0500-17. Let \(f(x) = x - \sin x \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[
f'(x) = 1 - \cos x
\]

d. \(f''(x) = \sin x \)

is positive on \(2n\pi < x < (2n + 1)\pi, \ \forall n \in \mathbb{Z} \), and negative on \((2n - 1)\pi < x < 2n\pi, \ \forall n \in \mathbb{Z} \).

\(f \) is concave up on \((2n\pi, (2n + 1)\pi), \ \forall n \in \mathbb{Z} \), and concave down on \(((2n - 1)\pi, 2n\pi), \ \forall n \in \mathbb{Z} \).
0500-17. Let $f(x) = x - \sin x$.

e. Sketch the graph of f.

ANSWER:

e.
0500-18. Let \(f(x) = 2xe^{-x^2/2} \).

a. **Describe** the symmetries, if any, of \(f \).

b. **Find all** max intervals of pos/neg for \(f \).

 Also:

 (i) **What** is the domain of \(f \)?

 (ii) **Find all** \(x \)- and \(y \)-intercepts of \(f \).

 (iii) **Find all** vert/horiz asymptotes of \(f \).

c. **Find all** max intervals of incr/decr for \(f \).

d. **Find all** max intervals of cc up/cc dn for \(f \).

e. **Sketch** the graph of \(f \).
Let \(f(x) = 2xe^{-x^2/2} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?

(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

(iii) Find all vert/horiz asymptotes of \(f \).

ANSWER:

a. \(f \) is odd.

b. (i) \(\text{dom}[f] = \mathbb{R} \supseteq [0, \infty) \)

(ii) \(f(0) = 0 \) is the \(y \)-intercept.

\(x \)-intercepts: \([f(x) = 0] \iff [x = 0] \)

\(f \) is positive on \((0, \infty)\).

odd gives: \(f \) is negative on \((-\infty, 0)\).

(iii) vertical asymptotes: none

horizontal asymptotes: \(y = 0 \)
Let \(f(x) = 2xe^{-x^2/2} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

c. \[
f'(x) = [2] \left[e^{-x^2/2} \right] + [2x] \left[e^{-x^2/2} (-x) \right]
\]

\[
= 2 \left[1 - x^2 \right] \left[e^{-x^2/2} \right]
\]

\[
= -2 \left[(x + 1)(x - 1) \right] \left[e^{-x^2/2} \right]
\]

is negative on \(x < -1 \),

and positive on \(-1 < x < 1 \),

and negative on \(1 < x \).

\(f \) is decreasing on \((-\infty, -1]\),

and increasing on \([-1, 1]\),

and decreasing on \([1, \infty)\).
0500-18. Let \(f(x) = 2xe^{-x^2/2} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f'(x) = 2 \left[1 - x^2 \right] e^{-x^2/2} \)

\[
f''(x) = 2 \left[-2x \right] e^{-x^2/2} + 2 \left[1 - x^2 \right] \left(e^{-x^2/2} \right) (-x)
\]

\[
= 2 \left[-2x - x + x^3 \right] e^{-x^2/2}
\]

\[
= 2 \left[x^3 - 3x \right] e^{-x^2/2}
\]

\[
= 2 \left[x(x^2 - 3) \right] e^{-x^2/2}
\]

\[
= 2 \left[(x + \sqrt{3})x(x - \sqrt{3}) \right] e^{-x^2/2}
\]
0500-18. Let \(f(x) = 2xe^{-x^2/2} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER:

\[f''(x) = 2 \left[(x + \sqrt{3}) x (x - \sqrt{3}) \right] \left[e^{-x^2/2} \right] \]

is negative on \(x < -\sqrt{3} \)
and positive on \(-\sqrt{3} < x < 0 \)
and negative on \(0 < x < \sqrt{3} \)
and positive on \(\sqrt{3} < x \).

\(f \) is concave down on \((-\infty, -\sqrt{3}]\)
and concave up on \([-\sqrt{3}, 0]\)
and concave down on \([0, \sqrt{3}]\)
and concave up on \([\sqrt{3}, \infty]\).
0500-18. Let $f(x) = 2xe^{-x^2/2}$.

e. Sketch the graph of f.

ANSWER:

e.
0500-19. Let \(f(x) = \frac{x^2 + 3x + 4}{x + 3} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \). Also:
 (i) What is the domain of \(f \)?
 (ii) Find all \(x \)- and \(y \)-intercepts of \(f \).
 (iii) Find all vert/horiz asymptotes of \(f \).

c. Find all max intervals of incr/decr for \(f \).

d. Find all max intervals of cc up/cc dn for \(f \).

e. Sketch the graph of \(f \).
0500-19. Let \(f(x) = \frac{x^2 + 3x + 4}{x + 3} \).

a. Describe the symmetries, if any, of \(f \).

b. Find all max intervals of pos/neg for \(f \).

Also:

(i) What is the domain of \(f \)?

(ii) Find all \(x \)- and \(y \)-intercepts of \(f \).

ANSWER:

a. NO symmetries

b. \(3^2 - 4(1)(4) < 0 \), so \(x^2 + 3x + 4 \) has no real roots.

\[\forall x \in \mathbb{R}, \quad x^2 + 3x + 4 > 0 \]

(i) \(\text{dom}[f] = \mathbb{R} \setminus \{-3\} \)

(ii) \(f(0) = 4/3 \) is the \(y \)-intercept.

\[\forall x \in \text{dom}[f], \ f(x) \neq 0, \text{ so no } x \text{-intercepts} \]

\(f(x) \) is negative on \(x < -3 \) and positive on \(-3 < x \).
0500-19. Let $f(x) = \frac{x^2 + 3x + 4}{x + 3}$.

b. Find all max intervals of pos/neg for f. Also:
 (iii) Find all vert/horiz asymptotes of f.

ANSWER: $f(x)$ is negative on $x < -3$ and positive on $-3 < x$.

b. (iii)

$$\lim_{x \to -\infty} f(x) = -\infty \quad \lim_{x \to \infty} f(x) = \infty$$

f has no horizontal asymptotes.

$$\lim_{x \to -3^-} f(x) = -\infty \quad \lim_{x \to -3^+} f(x) = \infty$$

$x = -3$ is the only vertical asymptote for f.
Let \(f(x) = \frac{x^2 + 3x + 4}{x + 3} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

\[
f'(x) = \frac{[x + 3][2x + 3] - [x^2 + 3x + 4][1]}{(x + 3)^2}
\]

\[
= \frac{[2x^2 + 9x + 9] - [x^2 + 3x + 4]}{(x + 3)^2}
\]

\[
= \frac{x^2 + 6x + 5}{(x + 3)^2} = \frac{(x + 5)(x + 1)}{(x + 3)^2}
\]
0500-19. Let \(f(x) = \frac{x^2 + 3x + 4}{x + 3} \).

c. Find all max intervals of incr/decr for \(f \).

ANSWER:

\[
\text{dom}[f] = \mathbb{R} \setminus \{-3\}
\]

\[
f'(x) = \frac{x^2 + 6x + 5}{(x + 3)^2} = \frac{(x + 5)(x + 1)}{(x + 3)^2}
\]

is positive on \(x < -5 \)

and negative on \(-5 < x < -3 \)

and negative on \(-3 < x < -1 \)

and positive on \(-1 < x \).

\(f \) is increasing on \((-\infty, -5] \)
and decreasing on \([-5, -3) \)
and decreasing on \((-3, -1] \)
and increasing on \([-1, \infty) \).
Let \(f(x) = \frac{x^2 + 3x + 4}{x + 3} \).

d. Find all max intervals of cc up/cc dn for \(f \).

ANSWER: \(f'(x) = \frac{x^2 + 6x + 5}{(x + 3)^2} \)

\[
f''(x) = \frac{[(x + 3)^2][2x + 6] - [x^2 + 6x + 5][2(x + 3)][1]}{(x + 3)^3}
\]

\[
= \frac{[x + 3][2x + 6] - [x^2 + 6x + 5][2]}{(x + 3)^3}
\]

\[
= \frac{2x^2 + 12x + 18 - [2x^2 + 12x + 10]}{(x + 3)^3}
\]

\[
= \frac{8}{(x + 3)^3}
\]
Let \(f(x) = \frac{x^2 + 3x + 4}{x + 3} \).

\[f'(x) = \frac{x^2 + 6x + 5}{(x + 3)^2} \quad \text{dom}[f] = \mathbb{R} \setminus \{-3\} \]

\[f''(x) = \frac{8}{(x + 3)^3} \]

is negative on \(x < -3 \)
and positive on \(-3 < x \).

\(f \) is concave down on \((-\infty, -3) \)
and concave up on \((-3, \infty) \).
0500-19. Let \(f(x) = \frac{x^2 + 3x + 4}{x + 3} \).

e. Sketch the graph of \(f \).

ANSWER:

e.