## CALCULUS Polynomials and rational functions

We do not typically write

$$4x^2 + 3 + 6x + 5 + 2x + x^2 - 10 + 8 - x$$

### Instead:

$$(4+1)x^2 + (6+2-1)x + (3+5-10+8)$$
  
=  $5x^2 + 7x + 6$  (decreasing degree)  
=  $6 + 7x + 5x^2$  (increasing degree)

SKILL: Collecting like terms

Problem: Expand and collect terms in

$$(3+t+4t^2)(5t^7-1)+(t+4)(t+t^8)$$

$$(20+1)t^{9} + (5+4)t^{8} + (15)t^{7} +$$

$$( )t^{6} + ( )t^{5} + ( )t^{4} +$$

$$+( )t^{3} + (-4+1)t^{2} + (-1+4)t + (-3)$$

Count terms:  $3 \cdot 2 + 2 \cdot 2 = 10$ 

Problem: Expand and collect terms in

$$(3+t+4t^{2})(5t^{7}-1)+(t+4)(t+t^{8})$$

$$= (20+1)t^{9}+(5+4)t^{8}+(15)t^{7}+$$

$$(-4+1)t^{2}+(-1+4)t+(-3)$$

$$= 21t^{9}+9t^{8}+15t^{7}-3t^{2}+3t-3)t+(-3)$$

Problem: Expand and collect terms in

$$(3+t+4t^2)(5t^7-1)+(t+4)(t+t^8)$$

$$= (20+1)t^{9} + (5+4)t^{8} + (15)t^{7} +$$
$$(-4+1)t^{2} + (-1+4)t + (-3)$$

$$= 21t^9 + 9t^8 + 15t^7 - 3t^2 + 3t - 3$$

SKILL: Expand and collect terms

Note: Answer is a linear combination of  $t^9$ ,  $t^8$ ,  $t^7$ ,  $t^6$ ,  $t^5$ ,  $t^4$ ,  $t^3$ ,  $t^2$ , t, 1.

Def: A polynomial in t is a finite linear comb. of 1, t,  $t^2$ , . . .

$$21t^9 + 9t^8 + 15t^7 - 3t^2 + 3t - 3$$

SKILL: Expand and collect terms

Note: Answer is a linear combination of  $t^9$ ,  $t^8$ ,  $t^7$ ,  $t^6$ ,  $t^5$ ,  $t^4$ ,  $t^3$ ,  $t^2$ , t, 1.

SKILL 
$$(20+1)t^9 + (5+4)t^8 + (15)t^7 + (-4+1)t^2 + (-1+4)t + (-3)$$

$$(3+t+4t^2)(5t^7-1)$$
  
  $+(t+4)(t+t^8)$ 

Polynomial in t? YES Why or why not?

## SKILL recognize poly

not def'd at 
$$q = -1$$
$$\underline{(q+1)(q+2)}$$

q+1

Polynomial in q? NO Why or why not? Domain of a polynomial  $= \mathbb{R}$ 

Def: A polynomial in t is a finite linear comb. of 1. t.  $t^2$ . . . .

e.g.: 
$$5 + 3t - 2t^2$$
  
 $4 + t^{1,000,000}$   
 $3 + 5t^2 - 19t^5$ 

Defs: polynomial in x polynomial in u polynomial in q etc. polynomial

e.g.: 
$$5 + 3 \cdot -2 \cdot ^{2}$$
  
 $4 + \cdot ^{1,000,000}$   
 $3 + 5 \cdot ^{2} - 19 \cdot ^{5}$ 

SKILL 
$$(20+1)t^9 + (5+4)t^8 + (15)t^7 + (-4+1)t^2 + (-1+4)t + (-3)$$

$$(3+t+4t^2)(5t^7-1)$$
  
+ $(t+4)(t+t^8)$ 

Polynomial in t? YES

SKILL recognize poly

not def'd at 
$$q = -1$$
$$\frac{(q+1)(q+2)}{q+1}$$

Polynomial in q? NO

Def: A polynomial in t is a finite linear comb. of 1, t,  $t^2$ , . . .

Defs: polynomial in x polynomial in u polynomial in q etc. polynomial

polynomial in q etc. polynomial

SKILL 
$$(20+1)t^9 + (5+4)t^8 + (15)t^7 + (-4+1)t^2 + (-1+4)t + (-3)$$

$$(3+t+4t^2)(5t^7-1)$$
  
+ $(t+4)(t+t^8)$ 

Polynomial in t? YES

## SKILL recognize poly

not def'd at 
$$q = -1$$

$$\frac{(q+1)(q+2)}{q+1}$$

Polynomial in q? NO Rational in q? YES

Def: A polynomial in t is a finite linear comb. of 1, t,  $t^2$ , . . .

Defs: polynomial in x polynomial in u polynomial in q etc. polynomial

Def: A rational fn is a quotient of two polys.

Defs: rat'l expr. of t rat'l expr. of v rat'l expr. of b rat'l expr. of x etc.

Def: A polynomial in t is a finite linear comb. of 1, t,  $t^2$ , ...

Defs: polynomial in xpolynomial in u polynomial in q etc. polynomial

Def: A rational fn is a

 $\frac{7+2t^9+4t^{10}}{(1-t)(4+t)}$  domain? quotient of two polys. Defs: rat'l expr. of t

rat'l expr. of v

e.g.: 
$$\frac{5+3x-2x^2}{4+x^{1,000,000}}$$

$$4 + x^{1,000,000}$$

 $\left[\frac{4}{w} - \frac{2w^2 - 7w}{w^7 + 4}\right] / \left[\frac{7}{w^3} - \frac{(1+w)(2w^2 - 7w)}{w^7}\right] \text{ rat'l expr. of } b$ 

§1.3 Rational expr of w? Why or why not?

$$\frac{4w^{14} - 2w^{10} + 7w^9 + 16w^7}{w(w^7 + 4)(7w^4 - 2w^3 + 5w^2 + 7w)} = \dots \underbrace{\text{simplify rat'l fn}}_{\text{simplify rat'l fn}} \\ \frac{4w^7 - 2w^3 + 7w^2 + 16}{w(w^7 + 4)} \begin{bmatrix} w^7 \\ 7w^4 - 2w^3 + 5w^2 + 7w \end{bmatrix}$$

$$\frac{\text{collect terms}}{(4w^7 + 16) - (2w^3 - 7w^2)} \\ w(w^7 + 4) \end{bmatrix} \begin{bmatrix} (7w^4) - (2w^3 + (-7 + 2)w^2 - 7w) \\ w(w^7 + 4) \end{bmatrix}$$

$$\frac{\text{expand}}{w(w^7 + 4)} \begin{bmatrix} (7w^4) - (2w^3 + (-7 + 2)w^2 - 7w) \\ w(w^7 + 4) \end{bmatrix} \\ \frac{\text{expand}}{w(w^7 + 4)} \begin{bmatrix} (7w^4) - (2w^3 + (-7 + 2)w^2 - 7w) \\ w(w^7 + 4) \end{bmatrix} \\ \frac{\text{expand}}{w(w^7 + 4)} \begin{bmatrix} (7w^4) - (2w^2 - 7w) \\ w(w^7 + 4) \end{bmatrix} \\ \frac{\text{expand}}{w^7} \begin{bmatrix} (1+w)(2w^2 - 7w) \\ w^7 \end{bmatrix} \\ \frac{\text{expand}}{w^7 + 4} \end{bmatrix}$$

$$\frac{\text{expand}}{w^7 + 4} \begin{bmatrix} (1+w)(2w^2 - 7w) \\ w^7 \end{bmatrix} \underbrace{\text{expand}}_{\text{recognize}} \underbrace{\text{expand}}_{\text{expand}} \underbrace{\text{expand}}_{\text{recognize}} \underbrace{\text{expand}}_{\text{expand}} \underbrace{\text{expand}}_{\text{exp$$

§1.3 Rational expr of w? YESN or why not? rat'l for

11

Let P(x) be a polynomial in x.

degree of P(x) :=highest power of x appearing in P(x)e.g.:  $3x + 4x^5 - 2x + 7$  has degree 5

Constant means degree 0 Constant polynomials: 2, 7, -8, 0,  $\pi$ , etc.

Linear means degree 1

Linear polynomials: 2x + 5,  $ex - \sqrt{2}$ ,  $\pi x$ , etc. Quadratic means degree 2

Quadratic polynomials:  $-7x^2 - 4x + 8$ , etc.

Cubic means degree 3 Cubic polynomials:  $2x^3 - \pi x^2 + 6x + 1$ , etc.

Quartic means degree 4 Quartic polynomials:  $8x^4 - 4x^3 + 2x^2 + 4x + 6$ , etc.

Quintic polynomials:  $6x^{2} - 4x^{2} + 2x^{2} + 4x^{2} + 6$ , etc. Quintic means degree 5

Quintic polynomials:  $4x^{5} - \pi x^{4} + 2x^{3} - ex^{2} + 12$ 

 $\frac{1.3}{5x-8}$ , etc.

A degree six (sextic) polynomial:  $-8x^{5} + 7x^{4} - 6x^{3} + 5x^{2} - 4x + 3$ **Constant term** Linear term Quadratic term **Cubic term** Quartic term Identify terms of poly Quintic term

The **coefficients** are the numbers. . .

Degree six term

A degree six (sextic) polynomial:



**Leading coefficient** := the coefficient on the highest degree term.

The **coefficients** are the numbers...

A degree six (sextic) polynomial:

$$9x^6 - 8x^5 + 7x^4 - 6x^3 + 5x^2 - 4x + 3$$

SKILL Identify leading coefficient of poly

L'eading coefficient := the coefficient on the highest degree term.

15

A polynomial is monic if its leading coeff. is 1,

§1.3 e.g.,  $x^2 + 5x - 4$ ,  $x^3 - 4x^2 + 7x - 2$ , etc.

A degree six (sextic) polynomial:

$$9x^6 - 8x^5 + 7x^4 - 6x^3 + 5x^2 - 4x + 3$$

SKILL Identify leading term of poly

Leading term := the highest degree term

A polynomial is monic if its leading coeff. is 1,

§1.3 e.g.,  $x^2 + 5x - 4$ ,  $x^3 - 4x^2 + 7x - 2$ , etc.

16

## Heierarchy of functions and expressions

transcendental = non-algebraice.g., sin x

algebraic (closed under 
$$+$$
,  $-$ ,  $\times$ ,  $\div$ ,  $\sqrt[n]{}$ )

e.g., 
$$\sqrt[4]{\sqrt[5]{x^3-x}} + \sqrt[7]{\frac{x^5-2x}{3x+8}}$$
 rational except for a single  $\sqrt{\phantom{a}}$ , e.g.,  $\sqrt{x^2+1}-x$ 

rational (closed under 
$$+$$
,  $-$ ,  $\times$ ,  $\div$ )
$$e.g., \frac{x^2 - 4x + 3}{2x + 7} - \frac{1}{x^2 + 1}$$

polynomial (closed under 
$$+$$
,  $-$ ,  $\times$ )  
 $e.g.$ ,  $2x^2 - 4x + 5$   
constant, linear, quadratic, etc.

## Heierarchy of functions and expressions

transcendental = non-algebraic algebraic = evaluable by +, -,  $\times$ ,  $\div$ , n/rational = evaluable by +, -,  $\times$ ,  $\div$ , n/polynomial = evaluable by +, -,  $\times$ 

poly 
$$\Rightarrow$$
 rat'l  $\Rightarrow$  algebraic  $\not\Rightarrow$  transcendental rational = evaluable by  $+$ ,  $-$ ,  $\times$ ,  $\div$ 

polynomial = evaluable by  $+, -, \times$ 

Heierarchy of functions and expressions transcendental = non-algebraic algebraic = evaluable by +, -,  $\times$ ,  $\div$ ,  $\sqrt[n]{}$  rational = evaluable by +, -,  $\times$ ,  $\div$  polynomial = evaluable by +, -,  $\times$ 

poly  $\Rightarrow$  rat'l  $\Rightarrow$  algebraic  $\not\Rightarrow$  transcendental

algebraic is the opposite of transcendental

Next: division & synthetic division

Problem: Divide 
$$2x^5 + 4x^4 - 28x^3 + 4x^2 + 2x - 1$$
  
by  $x^3 - 4x^2 + 5x - 2$ .

MULTIPLY 
$$2x^2 + 12x + 10$$
  
 $x^3 - 4x^2 + 5x - 2$   $2x^5 + 4x^4 - 28x^3 + 4x^2 + 2x - 1$   
SUBTRACT  $2x^5 - 8x^4 + 10x^3 - 4x^2$   
 $12x^4 - 38x^3 + 8x^2 + 2x$   
SUBTRACT  $12x^4 - 48x^3 + 60x^2 - 24x$   
 $10x^3 - 52x^2 + 26x - 1$   
SUBTRACT  $10x^3 - 40x^2 + 50x - 20$   
 $-12x^2 - 24x + 19$ 

Problem: Divide  $2x^5 + 4x^4 - 28x^3 + 4x^2 + 2x - 1$ by  $x^3 - 4x^2 + 5x - 2$ .

$$(x^{3} - 4x^{2} + 5x - 2)(2x^{2} + 12x + 10)$$

$$-12x^{2} - 24x + 19$$

Spp

Problem: Divide  $3x^3 - x^2 - 6x + 1$  by x - 2.



4x + 1

4x - 8

Problem: Divide  $3x^3 - x^2 - 6x + 1$  by x - 2.

$$\begin{array}{r}
3x^2 + 5x + 4 \\
x - 2 \overline{\smash)3x^3 - x^2 - 6x + 1} \\
\underline{3x^3 - 6x^2} \\
5x^2 - 6x \\
5x^2 - 10x
\end{array}$$

Synthetic division:

9 ALTERNATE FORMATTING

Problem: Divide  $3x^3 - x^2 - 6x + 1$ by x-2.

by 
$$x-2$$
.

$$x-2 \overline{\smash)3x^2+5x+4}$$
Synthetic division:
$$x-2 \overline{\smash)3x^3-x^2-6x+1}$$

$$3x^3-6x^2$$

$$2 \overline{\smash)3x^3-6x^2}$$

$$2 \overline{\smash)3x^3-1}$$

$$\frac{3x^{3} - 6x^{2}}{5x^{2} - 6x}$$

$$\frac{5x^{2} - 10x}{4x + 1}$$

$$\begin{array}{c|c}
-6x \\
-10x \\
\hline
4x + 1 \\
4x - 8
\end{array}$$

synthetic division of x-a into polynomial

$$3x^{2} - x^{2} - 6x + 1]_{x:\to 2} = [(x-2)(3x^{2} + 5x + 4) + 9]_{x:\to 2}$$

$$= 0 + 9$$

$$= 9$$

 $[3x^3 - x^2 - 6x + 1]_{x:\to 2} = [(x-2)(3x^2 + 5x + 4) + 9]_{x:\to 2}$ 

Dividing x-2 into p(x), remainder is  $[p(x)]_{x\to 2} = p(2)$ .

Dividing x-a into p(x), remainder is p(a). Spp

24

Dividing x - a into p(x), remainder is p(a). x - a divides evenly into p(x) iff p(a) = 0

Dividing x - a into p(x), remainder is p(a).

Dividing x-a into p(x), remainder is p(a).

$$x-a$$
 into  $p(x)$ , remainder is  $p(a)$ .  $x-a$  divides evenly into  $p(x)$  iff  $p(a)=0$  i.e., iff  $a$  is a root of  $p$  (or zero)

Exercise: Factor 
$$x-4$$
 out of 
$$x^5-10x^4+21x^3+68x^2-272x+192$$
 as many times as possible.

$$x^{5} - 10x^{4} + 21x^{3} + 68x^{2} - 272x + 192$$
$$= (x - 4)(x^{4} - 6x^{3} - 3x^{2} + 56x - 48)$$

Dividing x-a into p(x), remainder is p(a).

Dividing 
$$x-a$$
 into  $p(x)$ , remainder is  $p(a)$ .  $x-a$  divides evenly into  $p(x)$  iff  $p(a)=0$  i.e., iff  $p(a)=0$  (or zero)

Exercise: Factor x-4 out of  $x^5 - 10x^4 + 21x^3 + 68x^2 - 272x + 192$ as many times as possible.

$$x^{5} - 10x^{4} + 21x^{3} + 68x^{2} - 272x + 192$$

$$= (x - 4)(x^{4} - 6x^{3} - 3x^{2} + 56x - 48)$$

$$= (x - 4)^{2}(x^{3} - 2x^{2} - 11x + 12)$$

Dividing x-a into p(x), remainder is p(a).

Dividing 
$$x-a$$
 into  $p(x)$ , remainder is  $p(a)$ .  $x-a$  divides evenly into  $p(x)$  iff  $p(a)=0$  i.e., iff  $p(a)=0$  (or zero)

Exercise: Factor x-4 out of  $x^5 - 10x^4 + 21x^3 + 68x^2 - 272x + 192$ as many times as possible.

$$x^{5} - 10x^{4} + 21x^{3} + 68x^{2} - 272x + 192$$
$$= (x - 4)^{3}(x^{2} + 2x - 3)$$

Polynomial division Dividing x-a into p(x), remainder is p(a).

x-a divides evenly into p(x) iff p(a)=0*i.e.*, iff  $\bar{a}$  is a root of p(or zero)

Exercise: Factor x - 4 out of  $x^5 - 10x^4 + 21x^3 + 68x^2 - 272x + 192$ as many times as possible.

 $|21 \neq 0|$  $x^5 - 10x^4 + 21x^3 + 68x^2 - 272x + 192$  $=(x-4)^3(x^2+2x-3)$ 



of x-a from poly

Dividing x - a into p(x), remainder is p(a). x - a divides evenly into p(x) iff p(a) = 0  $i \in \inf_{x \in A} a$  is a root of a

i.e., iff 
$$a$$
 is a root of  $p$  (or zero)

Exercise: Factor  $x - 4$  out of

exercise: Factor x-4 out of  $x^5-10x^4+21x^3+68x^2-272x+192$  as many times as possible.



Spp

 $=(x-4)^3(x^2+2x-3)$ 

Dividing x-a into p(x), remainder is p(a). x-a divides evenly into p(x) iff p(a)=0

i.é., iff 
$$a$$
 is a root of  $p$  (or zero)

Exercise: Factor  $x - 4$  out of
$$x^5 - 10x^4 + 21x^3 + 68x^2 - 272x + 192$$

 $x^5 - 10x^4 + 21x^3 + 68x^2 - 272x + 192$ as many times as possible. Note: x = 4 is a root of

Note: 
$$x = 4$$
 is a root of  $x^5 - 10x^4 + 21x^3 + 68x^2 - 272x + 192$  of multiplicity 3.

SKILL

Find the multiplicity of a root of a poly Repeated factoring of x-a from poly

$$x^5 - 10x^4 + 21x^3 + 68x^2 - 272x + 192$$
  
=  $(x - 4)^3(x^2 + 2x - 3)$ 

#### SKILL Find domain Whitman problems §1.3, p. 13, #1-12

# SKILL Find domain of composite Whitman problems §1.3, p. 13, #13

SKILL words to fn & find domain Whitman problems §1.3, p. 13, #14-15

