CALCULUS Sequences

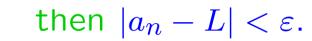
Def'n: A sequence is an ordered list of scalars. visualization? e.g.: $1, 1/2, 1/3, 1/4, \ldots \rightarrow 0$ 1/n o 0, as $n o \infty$ $\lim_{n\to\infty} 1/n = 0$ Sequences are often represented by expressions of n. \rightarrow $(1/n)_{n:\rightarrow 1,2,...}$ 1/2 1/31/4 $1/5^{\circ}$ etc. 1/6. $\S 10.1$

Def'n:
$$\lim_{n\to\infty} a_n = L$$
 is read

the limit of a_n as

n approaches infinity is equal to ${\cal L}$

and means, intuitively:


if n is a very large positive integer,

then a_n is close to L

and means, rigorously:

$$\forall \varepsilon > 0$$
, $\exists N \geq 1$ such that

if
$$n \geq N$$

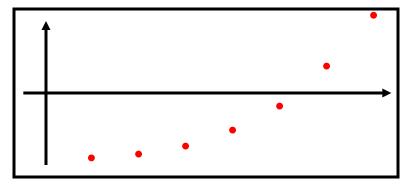
Alternative notation: $a_n \to L$ as $n \to \infty$, $a_1, a_2, a_3, \ldots \to L$

could replace "
$$\geq$$
" with ">" traditional to use " \geq " for integers

Def'n: $\lim_{n\to\infty} a_n = \infty$ is read

the limit of a_n as

n approaches infinity is equal to infinity


and means, intuitively:

if n is a very large positive integer,

then a_n is very positive

and means, rigorously:

$$\forall R>0, \ \exists N\geq 1 \ {\rm such \ that} \qquad \boxed{ \ \ \ \ \ \ \ \ \ \ }$$
 if $n\geq N, \qquad \qquad {\rm then} \ a_n>R.$

Alternative notation: $a_n \to \infty$ as $n \to \infty$, $a_1, a_2, a_3, \ldots \to \infty$

Defin: $\lim_{n\to\infty} a_n = -\infty$ is read

the limit of a_n as n approaches infinity is equal to negative infinity

and means, intuitively:

if n is a very large positive integer, then a_n is very negative \bullet

and means, rigorously:

$$\forall R < \mathbf{0}, \; \exists N \geq \mathbf{1} \; \mathrm{such that}$$

if
$$n \geq N$$
,

then $a_n < R$.

Alternative notation:
$$a_n \to -\infty$$
 as $n \to \infty$, $a_1, a_2, a_3, \ldots \to -\infty$

SKILL intuitive def'ns of lim

Next subtopic: Define the real number e

 $$1 \rightarrow bank$ Goal: Describe e. 6% nominal annual interest, compounded annually one year mark, in bank: \$1.06

\$1
$$\rightarrow$$
 bank 6% nominal annual interest, $\frac{6\%}{2} = 3\% = 0.03$ compounded semi-annually

6 months mark, in bank:
$$(\$1) + (0.03)(\$1)$$

= $\$1.03$

\$1 → bank 6% nominal annual interest, compounded annually one year mark, in bank: \$1.06

Goal: Describe e.

bank
6% nominal annual interest, $\frac{6\%}{2} = 3\% = 0.03$

compounded semi-annually 6 months mark, in bank: \$1.03

\$1 → banknark, in bank:

compounded semi-annually one year mark, in bank:

6% nominal annual interest,

\$1.03

 $$1 \rightarrow bank$

\$1 \rightarrow bank 6% nominal annual interest, compounded annually one year mark, in bank: \$1.06 \$1 \rightarrow bank 6% nominal annual interest, compounded semi-annually 6 months mark, in bank: \$1.03

 $5 \text{ months mark, in bank:} \qquad 1.03

6% nominal annual interest, compounded semi-annually one year mark, in bank: (1)(\$1.03)+(0.03)(\$1.03)= $(1.03)(\$1.03)=\$(1.03)^2$

Adding 3% is the same as multiplying by 1.03.

 $$1 \rightarrow \mathsf{bank}$ Goal: Describe e. 6% nominal annual interest, compounded annually one year mark, in bank: \$1.06 $$1 \rightarrow bank$ 6% nominal annual interest, compounded semi-annually 6 months mark, in bank: \$1.03 $$1 \rightarrow bank$ 6% nominal annual interest,

compounded semi-annually one year mark, in bank: $\$(1.03)^2$ $\$1 \rightarrow \text{bank}$ 6% nominal annual interest, compounded bimonthlyone year mark, in bank:

 $\$(1.03)^2$

 $$1 \rightarrow bank$ 6% nominal annual interest. compounded annually one year mark, in bank: \$1.06

Goal: Describe e.

 $$1 \rightarrow bank$

6% nominal annual interest, compounded semi-annually

6 months mark, in bank: \$1.03 6% nominal annual interest,

compounded semi-annually one year mark, in bank: $\$(1.03)^2$

 $$1 \rightarrow bank$ 6% nominal annual interest, compounded bimonthly one year mark, in bank:

 $$1 \rightarrow bank$

```
$1 \rightarrow bank
6% nominal annual interest,
compounded semi-annually
one year mark, in bank: $(1.03)^2
$1 \rightarrow bank
6% nominal annual interest,
compounded bimonthly
$1 \rightarrow bankark, in bank: $(1.01)^6
```

 $\begin{array}{l} ---- 6\% \text{ nominal-annual-interest, ---} \\ \$1 \rightarrow \text{bank compounded semi-annually} \\ \text{one} 100\% \text{ nominal annual interest,} \\ ----- \text{compounded annually ----} \\ \$1 \rightarrow \text{bank} \\ \end{array}$

6% nominal annual interest, compounded bimonthly one year mark, in bank: \$(1.01)⁶

$$1 \rightarrow bank$ 6% nominal annual interestGoal: Describe e.

6% nominal annual interest, compounded semi-annually ear mark, in bank: \$(1.03)²

one year mark, in bank:
$$\$(1.03)^2$$

 $\$1 \rightarrow \text{bank}$
 $6\% \text{ nominal annual interest,}$
 $\text{compounded bimonthly}$

one year mark, in bank: \$(1.01)⁶

\$1 \rightarrow bank 100% nominal annual interest, compounded semi-annually

one year mark, in bank: \$ (1+

12

 $$1 \rightarrow bank$ 100% nominal annual interest, compounded annually

one year mark, in bank: \$(1+1)

 $$1 \rightarrow bank$ 100% nominal annual interest, compounded semi-annually

one year mark, in bank:

 $\$\left(1+\frac{1}{2}\right)^{2}$

 $\$1 \rightarrow bank$ \$1 → banklominal annual interest,

100% nominal annual interest, one year macompounded quarterly +1) one year mark, in bank:

100% nominal annual interest, compounded semi-annually

one year mark, in bank:

13

 $$1 \rightarrow bank$ 100% nominal annual interest, compounded annually (1+1)

one year mark, in bank: $$1 \rightarrow bank$ 100% nominal annual interest, compounded semi-annually

 $\$\left(1+\frac{1}{2}\right)^{2}$ one year mark, in bank:

100% nominal annual interest, compounded quarterly $\left(1+\frac{1}{4}\right)^{4}$ one year mark, in bank:

 $$1 \rightarrow bank$ 100% nominal annual interest, compounded monthly

 $$1 \rightarrow bank$

\$1 → bank 100% nominal annual interest, compounded quarterly one year mark, in bank: \$(1+

\$1
$$\rightarrow$$
 bank
100% nominal annual interest,

compounded monthly

one vear mark, in bank: \$1 → bank 100% nominal annual interest, compounded quarterly one year mark, in bank: \$(1)

- \$1 → bank 100% nominal annual interest, compounded quarterly
- one year mark, in bank:

$$\$\left(1+\frac{1}{4}\right)^{-1}$$

- \$1 → bank 100% nominal annual interest, compounded monthly
- one year mark, in bank:

$$\$\left(1+\frac{1}{12}\right)^{12}$$

- $$1 \rightarrow bank$
 - 100% nominal annual interest, compounded daily
- one year mark, in bank:

$$\left(1+\frac{1}{365}\right)^{365}$$

- \$1 → bank 100% nominal annual interest, compounded daily
- one year mark, in bank:

$$\$\left(1+\frac{1}{365}\right)^{365}$$

- $\$1 o ext{bank} \ 100\%$ nominal annual interest, compounded n times per year
- one year mark, in bank:
- \$1 → bank 100% nominal annual interest, compounded daily
- one year mark, in bank:

$$\$\left(1+\frac{1}{365}\right)^{365}$$

- \$1 → bank 100% nominal annual interest, compounded daily
- one year mark, in bank:

 $$1 \rightarrow bank$

$$\$\left(1+\frac{1}{365}\right)^{305}$$

- 100% nominal annual interest, compounded n times per year
- one year mark, in bank:

$$\$\left(1+\frac{1}{n}\right)^n$$

- \$1 → bank 100% nominal annual interest, compounded continuously
- one year mark, in bank:

$$\$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$$

\$1 → bank 100% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$

$$e := \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

\$1 → bank 100% nominal annual interest, compounded continuously

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$

\$1 → bank 100% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$

$$e := \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$$

$$\lim_{n \to \infty} n^7 = \infty \qquad x :\to n^7$$

(or any expression of n that $\to \infty$, as $n \to \infty$)

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n^7} \right)^{n^7}$$

100% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$$

$$\begin{array}{c|c}
n & \left(1 + \frac{1}{n}\right)^n \\
\hline
1 & 2 \\
5 & 2.48832 \\
10 & 2.5937425
\end{array}$$

$$\underline{e} := \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

$$\lim_{n \to \infty} n = \infty \qquad x :\to n$$

100 2.7048138 2.7155685 500 1,000 2.7619239

(or any expression of
$$n$$
 that $\to \infty$, as $n \to \infty$)

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

20

 $$1 \rightarrow bank$ unrealistic

100% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)$$

 $$1 \rightarrow bank$

4% nominal annual interest, compounded n times per year

one year mark, in bank:

 $$1 \rightarrow \mathsf{bank}$

4% nominal annual interest, compounded continuously

 $$1 \rightarrow bank$ unrealistic

100% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)$$

 $1 \rightarrow bank$

4% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1 + \frac{0.04}{n}\right)^n$$

 $$1 \rightarrow bank$

bank 4% nominal annual interest,
$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$$
 compounded continuously

 $$1 \rightarrow bank$ unrealistic

100% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$$

$$1 \rightarrow \text{bank}$$

4% nominal annual interest, compounded continuously

, in bank:
$$\displaystyle \lim_{n o \infty} \left(1 + rac{0.04}{n}
ight)^n$$

$$e^{0.04} = \lim_{n \to \infty} \left(1 + \frac{1}{n/0.04} \right)^{n/0.04} e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x}$$

$$x : \to n/0.04$$

$$\frac{0.04}{n}$$

 $$1 \rightarrow bank$ unrealistic

100% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$$

 $$1 \rightarrow bank$

4% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1 + \frac{0.04}{n}\right)^n$$

0.04

n/0.04

 \boldsymbol{n}

25

 $$1 \rightarrow bank$ unrealistic 100% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$$

$$$1 \rightarrow bank$$

4% nominal annual interest, compounded continuously

one year mark, in bank:

$$\lim_{n\to\infty} \left(1 + \frac{0.04}{n}\right)^n$$

The moral:

Most continuous compounding problems (realistic or not) lead to e.

