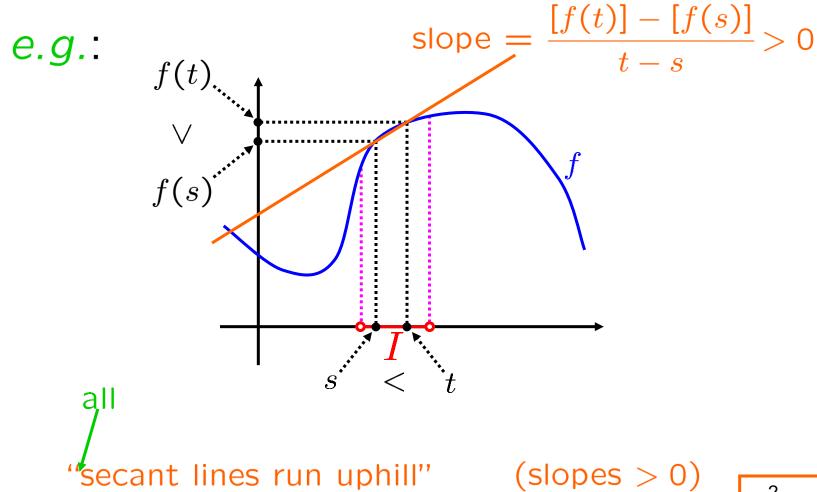
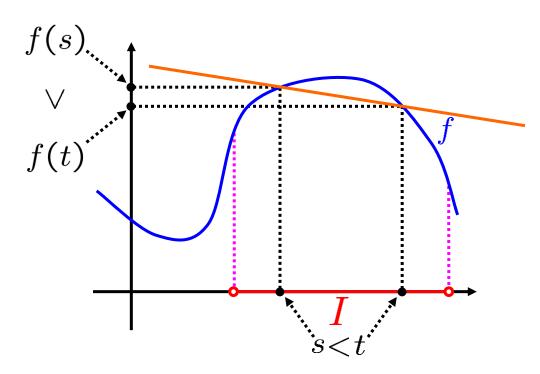
# CALCULUS Intervals of increase/decrease and intervals of concavity

A function f is called **increasing on** I if f(s) < f(t) whenever  $s, t \in I$  and s < t.



A function f is called **increasing on** I if f(s) < f(t) whenever  $s, t \in I$  and s < t.



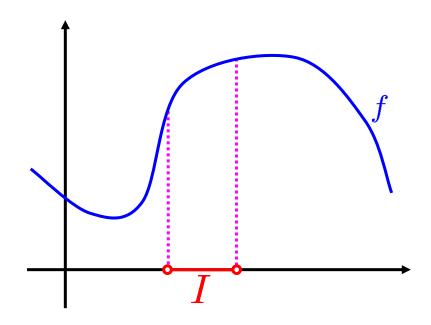


some

"secant line runs downhill"

A function f is called **increasing on** I if f(s) < f(t) whenever  $s, t \in I$  and s < t.

*e.g.*:

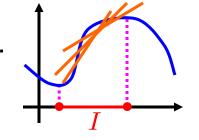


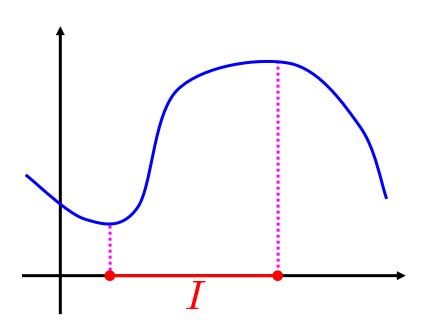
Typical to make the interval as large as possible...

A function f is called **increasing on** I if f(s) < f(t) whenever  $s, t \in I$  and s < t.

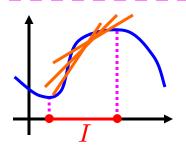
"secant lines run uphill" (slopes > 0)

*e.g.*:



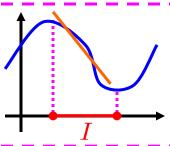


- A function f is called **increasing on** I if f(s) < f(t) whenever  $s, t \in I$  and s < t.
- "secant lines run uphill" (slopes > 0)



A function f is called **decreasing on** I if f(s) > f(t) whenever  $s, t \in I$  and s < t.

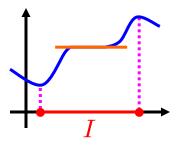
"secant lines run downhill" (slopes < 0)



# (semi-increasing)

A function f is called **nondecreasing on** I if  $f(s) \le f(t)$  whenever  $s, t \in I$  and  $s \le t$ .

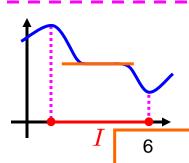
"secant lines don't run downhill" (slopes  $\geq 0$ )



# (semi-decreasing)

A function f is called **nonincreasing on** I if  $f(s) \ge f(t)$  whenever  $s, t \in I$  and  $s \le t$ .

"secant lines don't run uphill" (slopes  $\leq 0$ )



A function f is called **concave up on I** if the secant line segment from (s, f(s)) to (u, f(u))lies above the graph of f, whenever  $s, u \in I$ . e.g.: this is linear in t (f(u))(t-s) + (f(s))(u-s)u-sf(s), for  $t : \rightarrow s$  f(u), for  $t : \rightarrow u$  $\forall t \in (s, u)$ ,  $\frac{(f(u))(t-s)+(f(s))(u-t)}{}$ 

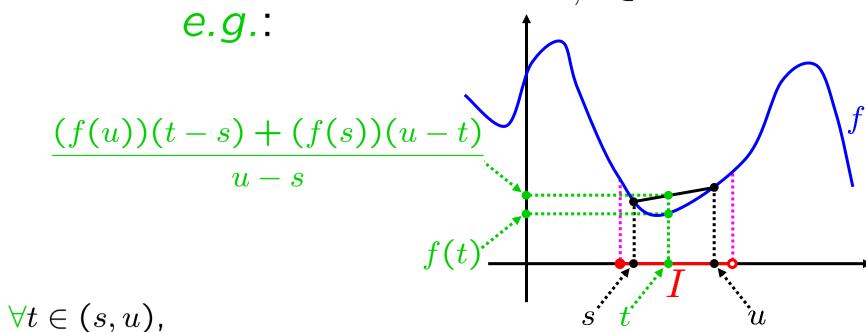
# strictly (convex)

A function f is called concave up on I if

 $\frac{(f(u))(t-s) + (f(s))(u-t)}{> f(t)}$ 

$$\forall t \in (s, u), \quad \frac{(f(u))(t - s) + (f(s))(u - t)}{u - s} > f(t)$$

whenever  $s, u \in I$ .



 $\overline{\mathsf{5.4}}$ 

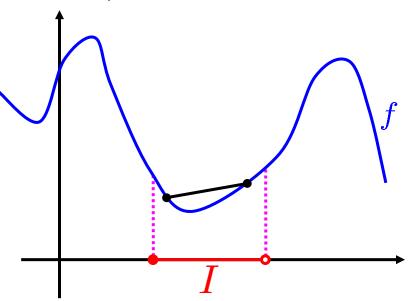
8

strictly (convex)

A function f is called concave up on I if the secant line segment from (s, f(s)) to (u, f(u)) lies above the graph of f,

whenever  $s, u \in I$ .

*e.g.*:

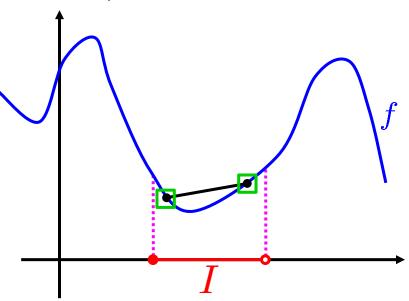


strictly
(convex)
function f is called concave u

A function f is called concave up on I if the secant line segment from (s, f(s)) to (u, f(u)) lies above the graph of f,

whenever  $s, u \in I$ .

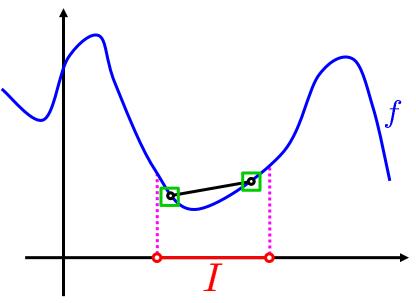
e.g.:



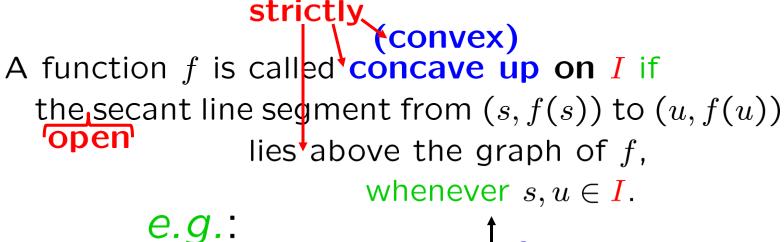
A function f is called concave up on I if the secant line segment from (s, f(s)) to (u, f(u)) lies above the graph of f,

whenever  $s, u \in I$ .

e.g.:



Typical to make the interval as large as possible...



# FACT

Say f diff. at all pts of I.

#### Then:

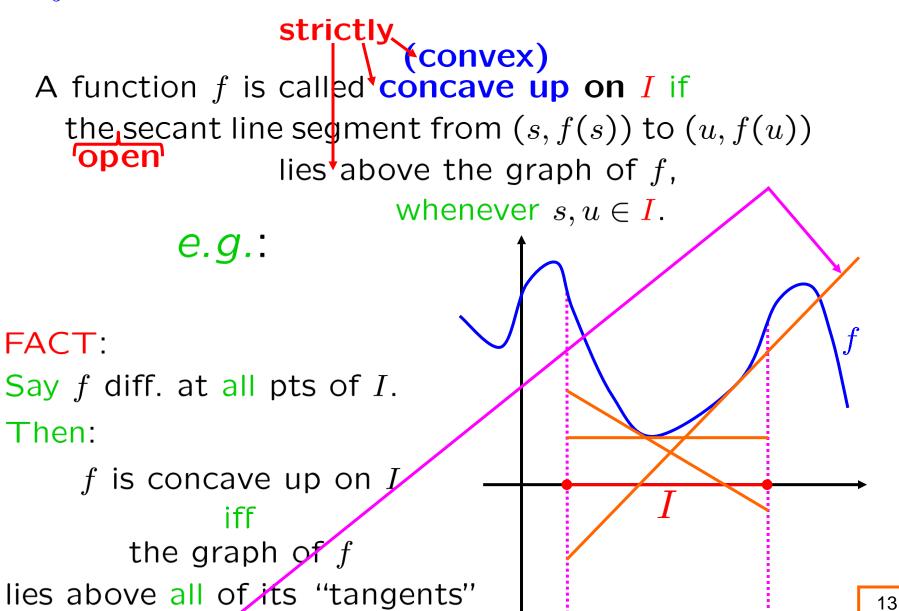
f is concave up on I

on I.

the graph of flies above all of its "tangents"

Typical to make the interval as large as possible. . .

12



cf.  $\S 5.4$ , pp. 100-101, DEFINITION Let I be an interval. strictly (concave) A function f is called concave down on I if the secant line segment from (s, f(s)) to (u, f(u))**open** lies below the graph of f, whenever  $s, u \in I$ . *e.g.*: FACT Say f diff. at all pts of I. Then: f is concave down on Ithe graph of flies below all of its "tangents"

on I.

14

