CALCULUS Intervals of increase/decrease and intervals of concavity

A function f is called **increasing on** I if f(s) < f(t) whenever $s, t \in I$ and s < t.

A function f is called **increasing on** I if f(s) < f(t) whenever $s, t \in I$ and s < t.

some

"secant line runs downhill"

A function f is called **increasing on** I if f(s) < f(t) whenever $s, t \in I$ and s < t.

e.g.:

Typical to make the interval as large as possible...

A function f is called **increasing on** I if f(s) < f(t) whenever $s, t \in I$ and s < t.

"secant lines run uphill" (slopes > 0)

e.g.:

- A function f is called **increasing on** I if f(s) < f(t) whenever $s, t \in I$ and s < t.
- "secant lines run uphill" (slopes > 0)

A function f is called **decreasing on** I if f(s) > f(t) whenever $s, t \in I$ and s < t.

"secant lines run downhill" (slopes < 0)

(semi-increasing)

A function f is called **nondecreasing on** I if $f(s) \le f(t)$ whenever $s, t \in I$ and $s \le t$.

"secant lines don't run downhill" (slopes ≥ 0)

(semi-decreasing)

A function f is called **nonincreasing on** I if $f(s) \ge f(t)$ whenever $s, t \in I$ and $s \le t$.

"secant lines don't run uphill" (slopes ≤ 0)

A function f is called **concave up on I** if the secant line segment from (s, f(s)) to (u, f(u))lies above the graph of f, whenever $s, u \in I$. e.g.: this is linear in t (f(u))(t-s) + (f(s))(u-s)u-sf(s), for $t : \rightarrow s$ f(u), for $t : \rightarrow u$ $\forall t \in (s, u)$, $\frac{(f(u))(t-s)+(f(s))(u-t)}{}$

strictly (convex)

A function f is called concave up on I if

 $\frac{(f(u))(t-s) + (f(s))(u-t)}{> f(t)}$

$$\forall t \in (s, u), \quad \frac{(f(u))(t - s) + (f(s))(u - t)}{u - s} > f(t)$$

whenever $s, u \in I$.

 $\overline{\mathsf{5.4}}$

8

strictly (convex)

A function f is called concave up on I if the secant line segment from (s, f(s)) to (u, f(u)) lies above the graph of f,

whenever $s, u \in I$.

e.g.:

strictly
(convex)
function f is called concave u

A function f is called concave up on I if the secant line segment from (s, f(s)) to (u, f(u)) lies above the graph of f,

whenever $s, u \in I$.

e.g.:

A function f is called concave up on I if the secant line segment from (s, f(s)) to (u, f(u)) lies above the graph of f,

whenever $s, u \in I$.

e.g.:

Typical to make the interval as large as possible...

FACT

Say f diff. at all pts of I.

Then:

f is concave up on I

on I.

the graph of flies above all of its "tangents"

Typical to make the interval as large as possible. . .

12

cf. $\S 5.4$, pp. 100-101, DEFINITION Let I be an interval. strictly (concave) A function f is called concave down on I if the secant line segment from (s, f(s)) to (u, f(u))**open** lies below the graph of f, whenever $s, u \in I$. *e.g.*: FACT Say f diff. at all pts of I. Then: f is concave down on Ithe graph of flies below all of its "tangents"

on I.

14

