CALCULUS Properties of the definite integral

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL
$$\int_a^b c(f(x)) \, dx = c \int_a^b f(x) \, dx$$

$$\int_a^b c(f(x)) \, dx = c \int_a^b f(x) \, dx$$
 Assuming $a < b$ and f is contin. on $[a, b]$.

Proof: Let
$$F(\frac{b}{a}):=\int_a^{x_a^b}f(t)\,dt$$
. Then $\frac{d}{dx}[F(x)]=f(x)$.

Then
$$\int_{a}^{b} \frac{\text{ANTIDIFF}}{c(f(x))} dx = [c(F(x))]_{x:\to a}^{x:\to b}$$

$$= [g(F(b))] - [c(F(a))]$$

$$= \left[c\int_{a}^{b} f(t) dt\right] - \left[c\int_{a}^{a} f(t) dt\right]$$

$$= c\int_{a}^{b} f(x) dx. \text{ QED}$$

cf. §7.2, p. 146 THE FUNDAMENTAL THEOREM OF CALCULUS, THEOREM 7.4

If f is continuous on $[a, b]$,

then $\frac{d}{dx} \int_{a}^{x} f(t) dt = [f(t)]_{t \to x} = f(x)$, for $x \in (a, b)$.

. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL
$$\int_a^b c(f(x)) \, dx = c \int_a^b f(x) \, dx$$

$$\int_a^b (f(x)) + (g(x)) dx = \left(\int_a^b f(x) dx\right) + \left(\int_a^b g(x) dx\right)$$

 $\int_{a}^{b} (f(x)) + (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right)$ Similar proof.

$$\int_{a}^{b} \left[c_{1}(f_{1}(x)) + \dots + c_{n}(f_{n}(x)) \right] dx = c_{1} \left[\int_{a}^{b} f_{1}(x) dx \right] + \dots + c_{n} \left[\int_{a}^{b} f_{n}(x) dx \right]$$

$$\int_{a}^{b} \left[c_{1}f_{1} + \dots + c_{n}f_{n} \right] = c_{1} \left[\int_{a}^{b} f_{1} \right] + \dots + c_{n} \left[\int_{a}^{b} f_{n} \right]$$

 \int_{a}^{b} is linear.

If f is continuous on [a,b], then $\frac{d}{dx}\int_a^x f(t)\,dt=[f(t)]_{t:\to x}=f(x)$, for $x\in(a,b)$.

$$\int_{a}^{b} \frac{cx}{c \, dx} = \frac{c(b-a)}{c(b-a)}$$

Suppose c > 0

and
$$a < b$$
.

If not

c.

 $a b - a b$

cf. §7.2, p. 146 THE FUNDAMENTAL THEOREM OF CALCULUS, THEOREM 7.4

If f is continuous on $[a, b]$,

then $\frac{d}{dx} \int_a^x f(t) dt = [f(t)]_{t:\to x} = f(x)$, for $x \in (a,b)$.

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL $\int_{a}^{b} c \, dx = \int_{a}^{b} c(f(x)) \, dx = c \int_{a}^{b} f(x) \, dx$

$$\int_{a}^{b} (f(x)) + (g(x)) dx = \left(\int_{a}^{b} f(x) dx\right) + \left(\int_{a}^{b} g(x) dx\right)$$

$$\int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} (f(x)) - (g(x)) dx = \left(\int_{a}^{b} f(x) dx\right) - \left(\int_{a}^{b} g(x) dx\right)$$

because subtraction is a linear combination, with coefficients +1 and -1.

f. §7.2, p. 146 THE FUNDAMENTAL THEOREM OF CALCULUS, THEOREM 7.4

cf. §7.2, p. 146 THE FUNDAMENTAL THEOREM OF CALCULUS, THEOREM 7.4 If f is continuous on [a,b], then $\frac{d}{dx}\int_a^x f(t)\,dt = [f(t)]_{t:\to x} = f(x)$, for $x\in(a,b)$.

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL

$$\int_{a_{-}}^{b} c \, dx = c(b - a)$$

$$\int_{a_{-}}^{b} (f(x)) + (g(x)) \, dx = \left(\int_{a}^{b} f(x) \, dx \right) + \left(\int_{a}^{b} g(x) \, dx \right)$$

$$\int_{a}^{b} (f(x)) + (g(x)) dx = \left(\int_{a}^{b} f(x) dx\right) + \left(\int_{a}^{b} g(x) dx\right)$$

$$\int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

$$-\frac{1}{a} \int_{a}^{b} (f(x)) - (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) - \left(\int_{a}^{b} g(x) dx \right)$$

Proof:
$$\forall$$
 integers $n \geq 1$, $h_n := \frac{b-a}{n}$

$$\int_{a}^{b} (f(x)) - (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) - \left(\int_{a}^{b} g(x) dx \right)$$

$$q \ge 0 \text{ on } [a, b] \quad \Rightarrow \quad \int_{a}^{b} q(x) dx \ge 0$$

 $R_n S_a^b q = \sum h_n(q(a+jh_n)) \ge 0.$ $\int_{a}^{b} q(x) dx = \lim_{n \to \infty} R_n S_a^b q \ge 0. \text{ QED}$

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL
$$\int_a^b c \, dx = c(b-a)$$

$$\int_{a_{-}}^{b} c \, dx = c(b-a)$$

$$\int_{a_{-}}^{b} (f(x)) + (g(x)) \, dx = \left(\int_{a}^{b} f(x) \, dx\right) + \left(\int_{a}^{b} g(x) \, dx\right)$$

$$\int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} (f(x)) - (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) - \left(\int_{a}^{b} g(x) dx \right)$$

$$q \ge 0 \text{ on } [a, b] \quad \Rightarrow \quad \int_{a}^{b} q(x) dx \ge 0$$

on
$$[a,b]$$
 \Rightarrow $\int_a^b f(x) dx > \int_a^b g(x) dx$

$$f \ge g$$
 on $[a,b]$ \Rightarrow $\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$ Proof: $q := f \ge g \ge 0$ on $[a,b]$, so

$$\left(\int_{a}^{b} f(x) dx\right) - \left(\int_{a}^{b} g(x) dx\right) = \int_{a}^{b} q(x) dx \ge 0.$$
QED

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL
$$\int_{-c}^{b} c dx - c(b-a)$$

$$\int_{a}^{b} c \, dx = c(b-a)$$

$$\int_{a}^{b} (f(x)) + (g(x)) \, dx = \left(\int_{a}^{b} f(x) \, dx\right) + \left(\int_{a}^{b} g(x) \, dx\right)$$

$$\int_{a}^{b} (f(x)) + (g(x)) dx = \int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

$$-\int_{a}^{b} (f(x)) - (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) - \left(\int_{a}^{b} g(x) dx \right)$$

$$g \le f$$
 on $[a,b] \Rightarrow \int_a^b g(x) dx \le \int_a^b f(x) dx$

 $f \geq g$ on $[a,b] \Rightarrow \int_a^b f(x) dx \geq \int_a^b g(x) dx$

$$m \leq f \leq M$$
 on $[a,b]$

$$\Rightarrow m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$$

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL
$$\int_{a}^{b} dx = a(b-a)$$

37.3, p. 15011 PROPERTIES OF THE DEF. INTEGRAL
$$\int_{a}^{b} c \, dx = c(b-a)$$

$$\int_{a}^{b} c \, dx = c(b-a)$$

$$\int_{a}^{b} (f(x)) + (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) + \left(\int_{a}^{b} g(x) dx \right)$$

$$\int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} (f(x)) dx = \left(\int_{a}^{b} f(x) dx \right) - \left(\int_{a}^{b} g(x) dx \right)$$

$$\int_{a}^{c} f(x) dx = \left[\int_{a}^{b} f(x) dx \right] + \left[\int_{b}^{c} f(x) dx \right]$$

$$f \ge g \text{ on } [a, b] \quad \Rightarrow \quad \int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

$$m \leq f \leq M$$
 on $[a,b]$

$$\Rightarrow m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$$

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL

$$\int_{a}^{b} (f(x)) + (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) + \left(\int_{a}^{b} g(x) dx \right)$$

$$\int_{a}^{b} (f(x)) + (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) + \left(\int_{a}^{b} g(x) dx \right)$$

$$\int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

the "cocycle" identity
$$\int_{a}^{c} f(x) dx = \left[\int_{a}^{b} f(x) dx \right] + \left[\int_{b}^{c} f(x) dx \right]$$

$$\nearrow F'(x) = f(x)$$

cocycle identity:

$$[F(x)]_x^x \xrightarrow{b}_a^c = ([F(x)]_x^x \xrightarrow{b}_a^b) + ([F(x)]_x^x \xrightarrow{b}_a^c)$$

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INTEGRAL

$$\int_{a}^{b} (f(x)) + (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) + \left(\int_{a}^{b} g(x) dx \right)$$

$$\int_{a}^{b} c(f(x)) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} is \text{ linear.}$$

the "cocycle" identity
$$\int_{a}^{c} f(x) dx = \left[\int_{a}^{b} f(x) dx \right] + \left[\int_{b}^{c} f(x) dx \right]$$

cf. §7.3, p. 150ff PROPERTIES OF THE DEF. INT

$$\int_{a}^{b} (f(x)) + (g(x)) dx = \left(\int_{a}^{b} f(x) dx \right) + \left(\int_{a}^{b} g(x) dx \right)$$

 $\int_a^b c(f(x)) dx = c \int_a^b f(x) dx$ \int_{a}^{b} is linear. Linear, but not multiplicative: $\frac{d}{dx}$, \sum_{a} , \int_{a}^{b} , $[\bullet]_{x}^{x} \xrightarrow{b}_{a}^{b}$, \triangle

$$\frac{d}{dx}([f(x)][g(x)]) \neq \left[\frac{d}{dx}(f(x))\right] \left[\frac{d}{dx}(g(x))\right], \text{ (differentiation by parts)}$$

$$\sum a_j b_j \neq \left[\sum a_j\right] \left[\sum b_j\right], \text{ summation by parts}$$

$$\int [f(x)][g(x)] dx \neq \left[\int f(x) dx \right] \left[\int g(x) dx \right], \text{ by parts}$$

$$\int_{a}^{b} [f(x)][g(x)] dx \neq \left[\int_{a}^{b} f(x) dx \right] \left[\int_{a}^{b} g(x) dx \right] \text{ integration by parts}$$

$$\int_{a}^{b} [f(x)][g(x)] dx \neq \left[\int_{a}^{b} f(x) dx\right] \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) = \int_{a}^{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) = \int_{a}^{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) dx \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) f(x) \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) f(x) \left[\int_{a}^{b} g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x}^{x} \xrightarrow{b} f(x) f(x) \left[\int_{a}^{b} g(x) dx\right] \text{ integration for all a finite for all a fin$$

Linear, and multiplicative:
$$\lim_{x \to a} [f(x)][g(x)] = [\lim_{x \to a} f(x)][\lim_{x \to a} g(x)]$$
$$[((f(x)(g(x))]_{x \to a} = ([f(x)]_{x \to a})([g(x)]_{x \to a})$$

Linear, but not multiplicative:
$$\frac{d}{dx}$$
, \sum , \int , \int_a^b , $[\bullet]_x^{x:\to b}$, \triangle

$$\frac{d}{dx}([f(x)][g(x)]) \neq \left[\frac{d}{dx}(f(x))\right] \left[\frac{d}{dx}(g(x))\right], \text{ (differentiation by parts)}$$

$$\sum a_j b_j \neq \left[\sum a_j\right] \left[\sum b_j\right], \text{ summation by parts}$$

$$\int [f(x)][g(x)] dx \neq \left[\int f(x) dx\right] \left[\int g(x) dx\right], \text{ integration by parts}$$

$$\int_a^b [f(x)][g(x)] dx \neq \left[\int_a^b f(x) dx\right] \left[\int_a^b g(x) dx\right] \text{ integration by parts}$$

$$[(f(x))(g(x))]_{x:\to a}^{x:\to b} \neq ([f(x)]_{x:\to a}^{x:\to b})([g(x)]_{x:\to a}^{x:\to b}) \text{ product rule (eval. by parts)}$$

 $\triangle[a_nb_n] \neq (\triangle a_n)(\triangle b_n)$ (differencing by parts)

product rule

EXAMPLE: Use the properties of the integral to evaluate $\int_0^4 (5 - 8x^2) dx$. $\int_0^4 (5 - 8x^2) dx = 5 \left(\int_0^4 1 dx \right) - 8 \left(\int_0^4 x^2 dx \right) \left(\int_0^4 x dx \right)^2$

 \int_a^b is linear,

integral to evaluate
$$\int_0^4 (5-8x^2) dx$$
.

 $= 5\left([x]_{x \to 0}^{x \to 4} \right) - 8\left(\left[\frac{x^3}{3} \right]_{x \to 0}^{x \to 4} \right)$

 $= 5 \left([x]_{x \to 0}^{x \to 4} \right) - 8 \left(\frac{[x^3]_{x \to 0}^{x \to 4}}{3} \right)$

- $\int_{0}^{4} (5 8x^{2}) dx = 5 \left(\int_{0}^{4} 1 dx \right) 8 \left(\int_{0}^{4} x^{2} dx \right)$

 $= 5(4-0) - 8\left(\frac{4^3-0^3}{3}\right) = -\frac{452}{3}$

 $([x]_{x:\to 0}^{x:\to 4})^3$

- Definite integration

 $[\bullet]_{x \mapsto a}^{x \mapsto b}$ is also linear, §7.3 but not multiplicative . . . EXAMPLE: Assume $\int_{2}^{f} f(x) dx = 9$ and $\int_{4}^{f} f(x) dx = 12$. Compute $\int_{A}^{2} f(x) dx$.

the "cocycle" identity
$$\left(\int_{2}^{4} f(x) dx\right) + \left(\int_{4}^{7} f(x) dx\right) = \int_{2}^{7} f(x) dx$$

$$\int_{2}^{4} f(x) dx = 9 - 12 = -3$$

$$\int_{4}^{2} f(x) dx = -\int_{2}^{4} f(x) dx = -(-3) = 3$$

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx, \quad \text{if } a < b$$
7.3

es of integration

EXAMPLE: Compute $\int_{0}^{7\pi/2} |\cos x| dx$.

Where positive & negative on $[0, 7\pi/2]$?

EXAMPLE: Compute
$$\int_0^{7\pi/2} |\cos x| \, dx$$
.

$$\left[\int_{0}^{\pi/2} |\cos x| \, dx \right] + \left[\int_{\pi/2}^{3\pi/2} |\cos x| \, dx \right] +$$

$$\left[\int_{3\pi/2}^{5\pi/2} |\cos x| \, dx\right] + \left[\int_{5\pi/2}^{7\pi/2} |\cos x| \, dx\right]$$

EXAMPLE: Compute $\int_{0}^{7\pi/2} |\cos x| dx$.

$$c \mid dx$$
.

$$\left[\int_{0}^{\pi/2} |\cos x| \, dx \right] + \left[\int_{\pi/2}^{3\pi/2} |\cos x| \, dx \right] + \left[\int_{5\pi/2}^{7\pi/2} |\cos x| \, dx \right] + \left[\int_{5\pi/2}^{7\pi/2} |\cos x| \, dx \right]$$

$$[J3\pi/2]$$

$$\left[\int_{0}^{\pi/2} (\cos x) \, dx \right] + \left[\int_{\pi/2}^{3\pi/2} (-\cos x) \, dx \right] +$$

$$\begin{bmatrix}
\int_{3\pi/2}^{5\pi/2} (\cos x) \, dx \\
\end{bmatrix} + \begin{bmatrix}
\int_{5\pi/2}^{7\pi/2} (-\cos x) \, dx \\
\end{bmatrix}$$

$$y = \cos x$$

$$\frac{3\pi}{2}$$

$$\frac{\pi}{2}$$

$$\pi$$

$$2\pi$$

$$\frac{5\pi}{2}$$

$$3\pi$$

$$4\pi$$

EXAMPLE: Compute
$$\int_0^{7\pi/2} |\cos x| dx$$
.

$$\left[\int_0^{\pi/2} (\cos x) \, dx \right] + \left[\int_{\pi/2}^{3\pi/2} (-\cos x) \, dx \right] +$$

$$\left[\int_0^{\infty} (\cos x) \, dx \right] + \left[\int_{\pi/2}^{\pi/2} (-\cos x) \, dx \right] + \left[\int_{5\pi/2}^{7\pi/2} (-\cos x) \, dx \right]$$

$$\left[\int_{3\pi/2}^{5\pi/2} (\cos x) \, dx \right] + \left[\int_{5\pi/2}^{7\pi/2} (-\cos x) \, dx \right]$$

$$\left[\int_{0}^{\left[\sin x\right]_{x:\to 0}^{x:\to \pi/2}} x \right] + \left[\int_{\pi/2}^{3\pi/2} (-\cos x) \, dx \right] + \left[\int_{5\pi/2}^{7\pi/2} (-\cos x) \, dx \right] + \left[\int_{5\pi/2}^{7\pi/2} (-\cos x) \, dx \right]$$

EXAMPLE: Compute $\int_{0}^{7\pi/2} |\cos x| dx$.

$$\int_{0}^{\pi/2} (\cos x) \, dx \bigg] + \bigg[\int_{\pi/2}^{3\pi/2} (-\cos x) \, dx \bigg] + \bigg[\int_{\pi/2}^{\pi/2} (-\cos x) \, dx \bigg] + \bigg[\int_{\pi/2$$

 $[\sin x]_{x:\to 0}^{x:\to \pi/2} + [-\sin x]_{x:\to \pi/2}^{-(-1)} +$

$$\int_{C}$$

$$\int_{0}^{3\pi}$$

$$\int_0^t$$

 $\left[\int_{3\pi/2}^{5\pi/2} (\cos x) \, dx \right] + \left[\int_{5\pi/2}^{7\pi/2} (-\cos x) \, dx \right]$

 $[\sin^1_{\mathbf{x}}]_{x:\to 3\pi/2}^{x:\to 5\pi/2} + [-\sin^1_{\mathbf{x}}]_{x:\to 5\pi/2}^{x:\to 7\pi/2}$

EXAMPLE: A particle moves along a line so that its velocity at time t is $v(t) = t^2 + 2t - 15$ (measured in miles per hour).

- (a) Find the displacement of the particle during the time period $1 \le t \le 4$.
- (b) Find the distance traveled during the time period $1 \le t \le 4$.

(a)
$$\int_{1}^{4} v(t) dt$$

(b)
$$\int_{1}^{4} v(t) dt$$

EXAMPLE: A particle moves along a line so that its velocity at time t is $v(t) = t^2 + 2t - 15$ (measured in miles per hour). (a) Find the displacement of the particle during the time period 1 < t < 4.

(b) Find the distance traveled during the time period $1 \le t \le 4$.

(a)
$$\int_{1}^{4} v(t) dt = \int_{1}^{4} t^{2} + 2t - 15 dt$$

$$= \left[\frac{t^3}{2} + t^2 - 15t\right]^{t:\to 4}$$

 $= \left[\frac{t^3}{3} + t^2 - 15t\right]_{t = 1}^{t = 4}$ LINEARITY OF $\begin{bmatrix} \bullet \end{bmatrix}_{x} \xrightarrow{b} \\ = \left(\frac{4^3 - 1^3}{3} \right) + (4^2 - 1^2) - 15(4 - 1)$

$$= \frac{63}{3} + (16 - 1) - 15(3)$$
$$= 21 + 15 - 45$$

$$= 36 - 45$$

$$= -9$$

EXAMPLE: A particle moves along a line so that its velocity at time t is $v(t) = t^2 + 2t - 15$ (measured in miles per hour).

- (a) Find the displacement of the particle during the time period $1 \le t \le 4$.
- (b) Find the distance traveled during the time period $1 \le t \le 4$.

(a)
$$\int_{1}^{4} v(t) dt = -9$$
 Position at $t = 4$ is 9 units to the left of position at $t = 1$.

EXAMPLE: A particle moves along a line so that its velocity at time t is $v(t) = t^2 + 2t - 15$ (measured in miles per hour). (a) Find the displacement of the particle during the time period 1 < t < 4.

(b) Find the distance traveled during the time period $1 \le t \le 4$.

It'll turn out that the distance traveled is > 9.

Position at t = 4

$$v(t) = (t-3)(t+5) \quad \begin{array}{c} \text{moving left} \\ t = 1 \text{ to } t = 3 \end{array} \quad \begin{array}{c} \text{moving right} \\ t = 3 \text{ to } t = 4 \end{array}$$

EXAMPLE: A particle moves along a line so that its velocity at time t is $v(t) = t^2 + 2t - 15$ (measured in miles per hour). (a) Find the displacement of the particle during the time period $1 \le t \le 4$.

(b) Find the distance traveled during the time period $1 \le t \le 4$.

(a)
$$\int_{1}^{4} v(t) dt = -9$$
 Position at $t = 4$ is 9 units to the left of position at $t = 1$.

(b)
$$\int_{1}^{4} |v(t)| dt = \left[\int_{1}^{3} |v(t)| dt \right] + \left[\int_{3}^{4} |v(t)| dt \right]$$
 COCYCLE IDENTITY
$$= \left[\int_{1}^{3} -(v(t)) dt \right] + \left[\int_{3}^{4} (v(t)) dt \right]$$

$$= \left[\int_{1}^{3} -(t^{2} + 2t - 15) dt \right] + \left[\int_{3}^{4} (t^{2} + 2t - 15) dt \right]$$

$$= \int_{1}^{6} (t^{2} + 2t - 15) dt + \left[\int_{3}^{4} (t^{2} + 2t - 15) dt \right]$$

$$= \int_{1}^{6} (t^{2} + 2t - 15) dt$$

neg

26

v(t) = (t - 3)(t + 5)§8.1

(b) Find the distance traveled during the time period $1 \le t \le 4$.

Position at t = 4 is 9 units to the left of

(measured in miles per hour).

its velocity at time t is $v(t) = t^2 + 2t - 15$

during the time period 1 < t < 4.

(a)
$$\int_{1}^{4} v(t) dt = -9$$
 is 9 units to the left of position at $t = 4$ is 9 units to the left of position at $t = 1$.

EXAMPLE: A particle moves along a line so that

(a) Find the displacement of the particle

$$= \left[\int_{1}^{3} -(t^{2} + 2t - 15) dt \right] + \left[\int_{3}^{4} (t^{2} + 2t - 15) dt \right]$$

$$= \left[\left[\frac{t^{3}}{3} + t^{2} - 15t \right]_{t:\to 1}^{t:\to 3} + \left[\frac{t^{3}}{3} + t^{2} - 15t \right]_{t:\to 3}^{t:\to 4} + \left[\frac{t^{3}}{3} + t^{2} - 15t \right]_{t:\to 3}^{t:\to 4}$$

 $= \left[\int_1^3 -(v(t)) dt \right] + \left[\int_3^4 (v(t)) dt \right]$

EXAMPLE: A particle moves along a line so that its velocity at time t is $v(t) = t^2 + 2t - 15$ (measured in miles per hour). (a) Find the displacement of the particle

during the time period 1 < t < 4. (b) Find the distance traveled

during the time period $1 \le t \le 4$. Position at t=4

(a) $\int_{1}^{4} v(t) dt = -9$ is 9 units to the left of is 9 units to position at t = 1.

(b)
$$\int_{1}^{4} |v(t)| dt = -\left[\frac{t^{3}}{3} + t^{2} - 15t\right]_{t:\to 1}^{t:\to 3} + \left[\frac{t^{3}}{3} + t^{2} - 15t\right]_{t:\to 3}^{t:\to 4}$$

 $= -\left[\left(\frac{3^3}{3} + 3^2 - 15 \cdot 3 \right) - \left(\frac{1^3}{3} + 1^2 - 15 \cdot 1 \right) \right]$

$$= -\left[\left(\frac{1}{3} + 3^{2} - 15 \cdot 3 \right) - \left(\frac{1}{3} + 1^{2} - 15 \cdot 1 \right) \right]$$

$$+ \left[\left(\frac{4^{3}}{3} + 4^{2} - 15 \cdot 4 \right) - \left(\frac{3^{3}}{3} + 3^{2} - 15 \cdot 3 \right) \right]$$

$$= -\left[\frac{1}{3} + t^{2} - 15t \right]_{t:\to 1} + \left[\frac{1}{3} + t^{2} - 15t \right]_{t:\to 3}$$

EXAMPLE: A particle moves along a line so that its velocity at time t is $v(t) = t^2 + 2t - 15$ (measured in miles per hour). (a) Find the displacement of the particle during the time period 1 < t < 4.

(b) Find the distance traveled during the time period
$$1 \le t \le 4$$
.

(a)
$$\int_{1}^{4} v(t) dt = -9$$
 Position at $t = 4$ is 9 units to the left of position at $t = 1$.

(b)
$$\int_{1}^{4} |v(t)| dt = -\left[\frac{t^{3}}{3} + t^{2} - 15t\right]_{t:\to 1}^{t:\to 3} + \left[\frac{t^{3}}{3} + t^{2} - 15t\right]_{t:\to 3}^{t:\to 4}$$

$$= -\left[\left(\frac{3^3}{3} + 3^2 - 15 \cdot 3 \right) - \left(\frac{1^3}{3} + 1^2 - 15 \cdot 1 \right) \right]$$

$$+ \left[\left(\frac{4^3}{3} + 4^2 - 15 \cdot 4 \right) - \left(\frac{3^3}{3} + 3^2 - 15 \cdot 3 \right) \right]$$
SKILL
The regular late and regard right.

moving left moving right compute displacement t=1 to t=3 to t=4 and distance traveled $=-\left[-\frac{40}{3}\right]+\left[\frac{13}{3}\right]=\frac{53}{3}\doteq17.667$

EXAMPLE:

(a) Compute
$$\int_{-3}^{3} -\sqrt{9-x^2} \, dx$$
. (b) Compute $\int_{3}^{-3} -\sqrt{9-x^2} \, dx$.

EXAMPLE:

(a) Compute
$$\int_{-3}^{3} -\sqrt{9-x^2} \, dx$$
. (b) Compute $\int_{3}^{-3} -\sqrt{9-x^2} \, dx$.

(a)
$$\int_{-3}^{3} -\sqrt{9-x^2} \, dx = -9\pi/2$$

$$\int_{-3}^{3} -\sqrt{9 - x^2} \, dx = -9\pi/2$$

EXAMPLE:

(a) Compute
$$\int_{-3}^{3} -\sqrt{9-x^2} \, dx$$
. (b) Compute $\int_{3}^{-3} -\sqrt{9-x^2} \, dx$.

(a)
$$\int_{-3}^{3} -\sqrt{9-x^2} \, dx = -9\pi/2$$

Properties of integration

(b)
$$\int_{3}^{-3} -\sqrt{9 - x^2} \, dx = -\int_{-3}^{3} -\sqrt{9 - x^2} \, dx = 9\pi/2$$

$$\int_{b}^{a} f(x) \, dx := - \int_{a}^{b} f(x) \, dx, \quad \text{if } a < b$$

SKILLProperties of integration

Whitman problems §7.3, p. 154, #1-6

