CALCULUS
 Volume by slices and the disk and washer methods, problems

EXAMPLE: A wedge shape is cut out of a right circular cylinder of radius 7 by two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° along a diameter of the cylinder. Find the volume of the wedge.

EXAMPLE:A wedge shape is cut out of a right circular cylinder of radius 7 by two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° along a diameter of the cylinder. Find the volume of the wedge.

EXAMPLE: A wedge shape is cut out of a right circular cylinder of radius 7 by two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° along a diameter of the cylinder. Find the volume of the wedge.

Solution:

EXAMPLE:A wedge shape is cut out of a right circular cylinder of radius 7 by two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° aldng a diameter of the cylinder. Find the volume of the wedge:

EXAMPLE: A wedge shape is cut out of a right circular cylinder of radius 7 Dy two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° along a diameter of the cylinder. Find the volume of the wedge.

EXAMPLE: A wedge shape is cut out of a right circular cylinder of radius 7 by two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° along a diameter of the cylinder. Find the volume of the wedge.

EXAMPLE:A wedge shape is cut out of a right circular cylinder of radius 7 by two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° along a diameter of the cylinder. Find the volume of the wedge.

EXAMPLE:A wedge shape is cut out of a right circular cylinder of radius 7 by two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° along a diameter of the cylinder. Find the volume of the wedge.

Solution:

Goal: $\int_{0}^{7} A(u) d u=2 \int_{0}^{7} u \sqrt{49-u^{2}} d u$
$0 \leq \stackrel{u}{u} \leq 7$

EXAMPLE:A wedge shape is cut out of a right circular cylinder of radius 7 by two cuts. One cut is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 45° along a diameter of the cylinder. Find the volume of the wedge.

Solution:

EXAMPLE:Find the volume of the solid obtained by revolving the region bdd by $y=2-x^{2}$ and $y=0$ about the x-axis.

SYMMETRY
$\int_{-\sqrt{2}}^{\sqrt{2}} \pi\left(2-x^{2}\right)^{2} d x=2 \int_{0}^{\sqrt{2}} \pi\left(2-x^{2}\right)^{2} d x$
$=2 \pi^{-} \int_{0}^{\sqrt{2}} 4-4 x^{2}+x^{4} d x$
$=2 \pi\left[4 \sqrt{2}-\frac{4(\sqrt{2})^{3}}{3}+\frac{(\sqrt{2})^{5}}{5}\right]$

EXAMPLE:Find the volume of the solid obtained by revolving the region bdd by $y=2-x^{2}$ and $y=1$ about the x-axis.

Volume $=\int_{-1}^{1} \pi\left(2-x^{2}\right)^{2}=\pi(1)^{2} d x$

$$
\begin{aligned}
& =\pi^{2} \int_{-1}^{1}\left(2-x^{2}\right)^{2}-1 d x \\
& =2 \pi \int_{0}^{1}\left(2-x^{2}\right)^{2}-1 d x \\
& =2 \pi \int_{0}^{1}\left(4-4 x^{2}+x^{4}\right)-1 d x
\end{aligned}
$$

EXAMPLE:Find the volume of the solid obtained by revolving the region bdd by $y=2-x^{2}$ and $y=1$ about the x-axis.

-----------1-------------------------------------
$\begin{aligned} \text { Volume } & =2 \pi \int_{0}^{1}\left(4-4 x^{2}+x^{4}\right)-1 d x \\ & =2 \pi \int_{0}^{1} 3-4 x^{2}+x^{4} d x\end{aligned}$

$$
=2 \pi \int_{0}^{1}\left(4-4 x^{2}+x^{4}\right)-1 d x
$$

EXAMPLE:Find the volume of the solid obtained by revolving the region bdd by $y=2-x^{2}$ and $y=1$ about the x-axis.

Volume $=2 \pi \int_{0}^{1}\left(4-4 x^{2}+x^{4}\right)-1 d x$

$$
\begin{aligned}
& =2 \pi \int_{0}^{1} 3-4 x^{2}+x^{4} d x \\
& =2 \pi\left[3 x-\frac{4 x^{3}}{3}+\frac{x^{5}}{5}\right]_{x: \rightarrow 0}^{x: \rightarrow 1}=2 \pi\left[3-\frac{4}{3}+\frac{1}{5}\right]
\end{aligned}
$$

EXAMPLE: Find the volume of the solid obtained by revolving the region bounded by

$$
y=2 x^{2} \quad \text { and } \quad y=20-3 x^{2}
$$

about the x-axis.

$$
\int_{-2}^{2}\left[\pi\left(20-3 x^{2}\right)^{2}-\pi\left(2 x^{2}\right)^{2}\right] d x
$$

$\left[2 x^{2}=20-3 x^{2}\right]$ iff $[x=2$ or $x=-2]$

EXAMPLE: Set up an integral that computes the volume the volume of the solid obtained by revolving the region bounded by

$$
y=x^{4} \quad \text { and } \quad y=8 x
$$

about the line $x=3$. Don't evaluate the integral.

EXAMPLE: Find the volume of the solid obtained by revolving the region in the first quadrant bounded by $y=\sqrt[3]{x} \quad$ and $\quad y=2 x$
about the line $x=-1$.

EXAMPLE: Describe a solid whose volume is $\pi \int_{4}^{8} e^{2 x} d x$.

$$
\pi \int_{4}^{8} e^{2 x} d x=\int_{4}^{8} \pi\left(e^{x}\right)^{2} d x
$$

is the volume of the solid obtained by revolving, about the x-axis,
the region bounded by

$$
y=e^{x}, y=0, x=4 \text { and } x=8
$$

Difficult to draw this with a uniform scale on the y-axis.
SKILL

EXAMPLE: Describe a solid whose volume is

is the volume of the solid obtained by revolving,
about the x-axis,
the region bounded by

$$
y=3+\sin ^{2} x, y=2, x=0 \text { and } x=\pi
$$

EXAMPLE: Describe a solid whose volume is $\pi \int_{3}^{7} y^{4}-9 d y$ $\pi \int_{3}^{7} y^{4}-9 d y=\int_{3}^{7} \pi\left(y^{2}\right)^{2}-\pi 3^{2} d y$
is the volume of the solid obtained by revolving, about the y-axis,
the region bounded by

$$
x=y^{2}, x=3, y=3 \text { and } y=7
$$

