4603 HW6

1. If \(f + g \) has a limit at \(a \), must it be true that both \(f \) and \(g \) have limits at \(a \)? Prove it, or give a counterexample.

\textit{Solution.} No, for example define \(f : \mathbb{R} \to \mathbb{R} \) by \(f(x) = 0 \) for \(x < 0 \) and \(f(x) = 1 \) for \(x \geq 0 \), and let \(g = -f \). Then \(f + g \equiv 0 \), so \(f + g \) has a limit at 0, but neither \(f \) nor \(g \) has a limit at 0.

2. Define \(f : [0, 1] \to \mathbb{R} \) by

\[
f(x) = \begin{cases}
0, & x \notin \mathbb{Q} \\
\frac{1}{\sqrt{n}}, & x = \frac{n}{m} \in \mathbb{Q} \text{ where } n \neq 0 \text{ and } n, m \text{ have no common divisors}
\end{cases}
\]

Let \(a \in [0, 1] \). Prove that \(\lim_{x \to a} f(x) = f(a) \) if and only if \(a \notin \mathbb{Q} \).

\textit{Solution.} Let \(\epsilon > 0 \) and consider \(S = \{ x \in [0, 1] : f(x) \geq \epsilon \} \). Observe that \(S \) is finite: if \(x \in S \), then \(x \) is rational and can be written \(x = n/m \) in lowest terms with \(1 \leq m \leq 1/\epsilon^2 \) and \(0 \leq n \leq m \). Write \(S = \{x_1, \ldots, x_k\} \) and let \(\delta = \min_{x_j \neq a} |x_j - a| \). Then \(x \in [0, 1] \) and \(0 < |x - a| < \delta \) implies \(x \neq x_j \) for \(j = 1, \ldots, k \), so that \(|f(x) - 0| = f(x) < \epsilon \). This shows \(\lim_{x \to a} f(x) = 0 \). The result follows from definition of \(f \).

3. Let \(f : [a, b] \to \mathbb{R} \) be a bounded function, define \(g : (a, b) \to \mathbb{R} \) by \(g(x) = \sup\{f(y) : y < x\} \), and let \(c \in (a, b) \). Prove that if \(\lim_{x \to c} f(x) = f(c) \), then \(\lim_{x \to c} g(x) = g(c) \).

\textit{Solution.} We recall the following simple fact:

\((*)\) If \(x, y \in (a, b) \) with \(x < y \), then \(f(x) \leq g(y) \).

Assume \(\lim_{x \to c} f(x) = f(c) \). We will consider two cases: \(g(c) = f(c) \) and \(g(c) \neq f(c) \). Assume \(g(c) = f(c) \). Let \(\epsilon > 0 \) and choose \(\delta > 0 \) such that \(|x - c| < \delta \) implies \(|f(x) - f(c)| < \epsilon \). Pick \(u, v \) such that \(c - \delta < u < c < v < c + \delta \). Note that \(f(x) \leq g(c) \) for \(x < c \) and \(f(x) < f(c) + \epsilon \) for \(c \leq x < v \). Thus \(x \in (u, v) \) and \((*) \) imply

\[g(c) - \epsilon = f(c) - \epsilon < f(u) \leq g(x) \leq \max\{g(c), f(c) + \epsilon\} = g(c) + \epsilon. \]

It easily follows that \(\lim_{x \to c} g(x) = g(c) \). Now assume \(g(c) \neq f(c) \) and let \(\epsilon = |f(c) - g(c)| \). Choose \(\delta \) such that \(|x - c| < \delta \) implies \(|f(x) - f(c)| < \epsilon \). Then either \(f(x) > g(c) \) for all \(x \in (c - \delta, c + \delta) \), or \(f(x) < g(c) \) for all \(x \in (c - \delta, c + \delta) \). The former is impossible by \((*) \), so the latter must hold, which implies \(g \) is constant on \((c - \delta, c + \delta) \). It easily follows that \(\lim_{x \to c} g(x) = g(c) \).

\(1\)Since \(c \in (a, b) \), \(\delta > 0 \) can be chosen small enough so that \(|x - c| < \delta \) also implies \(x \in [a, b] \).
4. Let \(f \) and \(g \) be defined as in Problem 3, and let \(c \in (a, b) \). If \(f \) has a limit at \(c \), must \(g \) have a limit at \(c \)? Either prove it, or provide a counterexample.

Solution. No. Define \(f : [-1, 1] \to \mathbb{R} \) by \(f(x) = 0 \) for \(x \neq 0 \) and \(f(0) = 1 \). Then \(g : (-1, 1) \to \mathbb{R} \) has the formula \(g(x) = 0 \) for \(x \leq 0 \) and \(g(x) = 1 \) for \(x > 0 \). So \(f \) has a limit at 0, but \(g \) does not have a limit at 0.

5. Prove that if \(f : [a, b] \to \mathbb{R} \) is increasing, then \(f \) has a limit at \(b \).

Solution. Observe that \(f \) is bounded above by \(f(b) \). Let \(\epsilon > 0 \) and \(L = \sup \{ f(x) : x \in [a, b) \} \).
Pick \(y \in [a, b) \) such that \(f(y) > L - \epsilon \), and let \(\delta = |b - y| \). Then \(x \in [a, b] \) and \(0 < |x - b| < \delta \) implies \(y < x < b \), so that
\[
L - \epsilon < f(y) \leq f(x) \leq L < L + \epsilon.
\]