54.a. Let \(A, B \subseteq \mathbb{R} \), let \(f : A \to \mathbb{R} \) and let \(g : B \to \mathbb{R} \). Let \(x \in A \cap B \). Assume that \(x \) is an accumulation point of \(A \cap B \). Assume that \(f \) and \(g \) are both differentiable at \(x \). Show that \(f + g \) is differentiable at \(x \) and that \((f + g)'(x) = [f'(x)] + [g'(x)]\).

Proof: We wish to show that \(SS^{x}_{f+g}(y) \to [f'(x)] + [g'(x)] \), as \(y \to x \). As \(y \to x \), we have both \(SS^{x}_{f}(y) \to [f'(x)] \) and \(SS^{x}_{g}(y) \to [g'(x)] \), so, by additivity of limits, it suffices to show, for all \(y \in (A \cap B) \setminus \{x\} \), that \(SS^{x}_{f+g}(y) = [SS^{x}_{f}(y)] + [SS^{x}_{g}(y)] \).

For all \(y \in (A \cap B) \setminus \{x\} \), we have

\[
SS^{x}_{f+g}(y) = \frac{[(f + g)(y)] - [(f + g)(x)]}{y - x} = \frac{[f(y)] + [g(y)] - [f(x)] - [g(x)]}{y - x} = \left[\frac{[f(y)] - [f(x)]}{y - x} \right] + \left[\frac{[g(y)] - [g(x)]}{y - x} \right] = [SS^{x}_{f}(y)] + [SS^{x}_{g}(y)].
\]

b. Let \(A \subseteq \mathbb{R} \), let \(f : A \to \mathbb{R} \) and let \(c \in \mathbb{R} \). Let \(x \in A \). Assume that \(x \) is an accumulation point of \(A \). Assume that \(f \) is differentiable at \(x \). Show that \(cf \) is differentiable at \(x \) and that \((cf)'(x) = c \cdot [f'(x)]\).

Proof: We wish to show that \(SS^{x}_{cf}(y) \to c \cdot [f'(x)] \), as \(y \to x \). As \(y \to x \), we have \(SS^{x}_{f}(y) \to [f'(x)] \), so, because limits respect scalar multiplication, it suffices to show, for all \(y \in A \setminus \{x\} \), that \(SS^{x}_{cf}(y) = [SS^{x}_{f}(y)] \).

For all \(y \in A \setminus \{x\} \), we have

\[
SS^{x}_{cf}(y) = \frac{[(cf)(y)] - [(cf)(x)]}{y - x} = \frac{[c \cdot [f(y)]] - [c \cdot [f(x)]]}{y - x} = c \cdot \left[\frac{[f(y)] - [f(x)]}{y - x} \right] = c \cdot [SS^{x}_{f}(y)].
\]

55. Define \(r : \mathbb{R} \setminus \{0\} \to \mathbb{R} \) by \(r(x) = x^{-1} \). Let \(x \in \mathbb{R} \setminus \{0\} \). Show that \(r \) is differentiable at \(x \) and that \(r'(x) = -x^{-2} \).

Proof: We have \(r(x) = x^{-1} = 1/x \). For all \(y \in \mathbb{R} \setminus \{0, x\} \), we have \(r(y) = y^{-1} = 1/y \), so

\[
SS^{x}_{r}(y) = \frac{[r(y)] - [r(x)]}{y - x} = \frac{[1/y] - [1/x]}{y - x} = \frac{[(x - y)/xy]}{y - x} = \frac{-y^{-2}}{1} = -1/xy.
\]

Then \(SS^{x}_{r}(y) \to \frac{-1}{x^2} \), as \(y \to x \). Then \(r \) is differentiable at \(x \) and \(r'(x) = -\frac{1}{x^2} = -x^{-2} \).

53. Let \(A \subseteq \mathbb{R} \) be connected. Let \(f : A \to \mathbb{R} \) be continuous. Let \(x, y, z \in A \). Assume that \(x < y < z \) and that \(f(x) > f(y) \leq f(z) \). Show that \(f \) is not one-to-one.
Proof: Assume that \(f \) is one-to-one. We aim for a contradiction.

Since \(y < z \), it follows that \(y \neq z \). So, since \(f \) is one-to-one, we conclude that \(f(y) \neq f(z) \). So, since \(f(y) \leq f(z) \), we see that \(f(y) < f(z) \). Let \(u := f(y) \). Then \(u < f(z) \). By assumption, \(f(x) > f(y) \), i.e., \(f(y) < f(x) \). That is, \(u < f(x) \).

Let \(w := \min\{f(x), f(z)\} \). Then \(w \leq f(x) \) and \(w \leq f(z) \). Recall that \(u < f(x) \) and that \(u < f(z) \). So, since \(w \in \{f(x), f(z)\} \), it follows that \(u < w \). Let \(v := (u + w) / 2 \). Then \(u < v < w \). Then \(f(y) = u < v < w \leq f(x) \) and that \(f(y) = u < v < w \leq f(z) \).

Since \(f(y) < v < f(x) \), by the Intermediate Value Theorem, choose \(s \in (x, y) \) such that \(f(s) = v \). Since \(f(y) < v < f(z) \), by the Intermediate Value Theorem, choose \(t \in (y, z) \) such that \(f(t) = v \). Then \(x < s < y < t < z \). In particular, \(s \neq t \). So, since \(f(s) = v = f(t) \), we see that \(f \) is not one-to-one, contradiction.

51. Let \(\{y_n\}_{n \in \mathbb{N}} \) be a sequence in \(\mathbb{R} \). Let \(z \in \mathbb{R} \). Assume that \(y_n \to z \) as \(n \to \infty \). Assume, for all \(n \in \mathbb{N} \), that \(y_n \leq 0 \). Show that \(z \leq 0 \).

Proof: Assume that \(z > 0 \). We aim for a contradiction.

Let \(\varepsilon := z \). Choose \(N \in \mathbb{N} \) such that, for all integers \(n \geq N \), we have: \(|y_n - z| < \varepsilon \). Then, as \(N \geq N \), we see that \(|y_N - z| < \varepsilon \). Then \(z - \varepsilon < y_N < z + \varepsilon \). Recall, for all \(n \in \mathbb{N} \), that \(y_n \leq 0 \). Then \(y_N \leq 0 \). Then \(0 = z - z < z - \varepsilon < y_N \leq 0 \), so \(0 < 0 \), contradiction.

52. Let \(S \subseteq \mathbb{R} \). Let \(a, b \in \mathbb{R} \). Assume that \(S \neq \emptyset \) and that \(a \leq S \leq b \). Show that \(a \leq \inf S \leq \sup S \leq b \).

Proof: Since \(a \leq S \), it follows that \(a \leq \inf S \). Since \(b \geq S \), it follows that \(b \geq \sup S \). It remains to show that \(\inf S \leq \sup S \).

Since \(S \neq \emptyset \), choose \(x \in S \). Since \(\inf S \leq S \), we get \(\inf S \leq x \). Since \(\sup S \geq S \), we get \(\sup S \geq x \). Then \(\inf S \leq x \leq \sup S \).

47. Let \(E \subseteq \mathbb{R} \) be bounded and let \(\delta > 0 \). Show that there exist \(n \in \mathbb{N} \) and \(S_1, \ldots, S_n \subseteq \mathbb{R} \) such that

\[
\begin{align*}
(i) & \text{ for all } j \in \{1, \ldots, n\}, \text{ we have: } \operatorname{diam}(S_j) \leq \delta; \\
(ii) & E \subseteq S_1 \cup \cdots \cup S_n.
\end{align*}
\]

(Recall that, for all \(S \subseteq \mathbb{R} \), that we define \(\operatorname{diam}(S) := \sup\{y - x | x, y \in S\} \).

Proof: Choose \(a, b \in \mathbb{R} \) such that \(a \leq E \leq b \). Choose \(n \in \mathbb{N} \) such that \(n > (a - b)/\delta \). Let \(\delta_0 := (a - b)/n \). Then \(\delta_0 < \delta \). For all integers \(j \in [1, n] \), let \(E_j := [a + (j - 1)\delta_0, a + j\delta_0] \). Then, for all integers \(j \in [1, n] \), \(\operatorname{diam}(E_j) = \delta_0 < \delta \). We wish to prove \(E \subseteq S_1 \cup \cdots \cup S_n \).

We have \(S_1 \cup \cdots \cup S_n = [a, a + n\delta_0] = [a, a + (b - a)] = [a, b] \). By the choice of \(a \) and \(b \), we have \(E \subseteq [a, b] \). Then \(E \subseteq [a, b] = S_1 \cup \cdots \cup S_n \), as desired.

48. Let \(n \in \mathbb{N} \) and let \(E_1, \ldots, E_n \subseteq \mathbb{R} \) be bounded sets. Show that \(E := E_1 \cup \cdots \cup E_n \) is bounded.

Proof: Let \(E := E_1 \cup \cdots \cup E_n \). We wish to show that \(E \) is bounded.
For all integers \(j \in [1, n] \), choose \(a_j, b_j \in \mathbb{R} \) such that \(a_j \leq E_j \leq b_j \). We define \(a := \min\{a_1, \ldots, a_n\} \) and \(b := \max\{b_1, \ldots, b_n\} \). We wish to show that \(a \leq E \leq b \). That is, we wish to show that \(E \subseteq [a, b] \). It suffices to show, for all integers \(j \in [1, n] \), that \(E_j \subseteq [a, b] \). Given an integer \(j \in [1, n] \). We wish to show that \(E_j \subseteq [a, b] \).

We have \(a_j \leq E_j \leq b_j \), i.e., \(E_j \subseteq [a_j, b_j] \). We have \(a \leq a_j \) and \(b_j \leq b \), so \([a_j, b_j] \subseteq [a, b] \). Then \(E_j \subseteq [a_j, b_j] \subseteq [a, b] \), as desired.

49. Let \(E \) be a closed subset of \(\mathbb{R} \). Let \(\{y_n\}_{n \in \mathbb{N}} \) be a sequence in \(E \) and let \(y_0 \in \mathbb{R} \). Assume that \(y_n \to y_0 \) as \(n \to \infty \). Show that \(y_0 \in E \).

Proof: Since \(E \) is closed, it suffices to show that \(y_0 \) is a closure point of \(E \). Given a neighborhood \(U \) of \(y_0 \). We wish to show that \(U \cap E \neq \emptyset \).

Choose \(\delta > 0 \) such that \((y_0 - \delta, y_0 + \delta) \subseteq U \). Since \(y_n \to y_0 \) as \(n \to \infty \), choose \(N \in \mathbb{N} \) such that, for any integer \(n \geq N \), we have \(|y_n - y_0| < \delta \). Then \(|y_N - y_0| < \delta \), so \(y_N \in (y_0 - \delta, y_0 + \delta) \). Then \(y_N \in (y_0 - \delta, y_0 + \delta) \subseteq U \). Since \(\{y_n\}_{n \in \mathbb{N}} \) is a sequence in \(E \), it follows that \(y_N \in E \). Then \(y_N \in U \cap E \). Then \(U \cap E \neq \emptyset \).

50. Let \(E \) and \(C \) be sets and let \(f : E \to C \) be a function. Let \(V \subseteq f(E) \). Show that \(f(f^{-1}(V)) = V \).

Proof:

Proof of \(\subseteq \): Given \(c \in f(f^{-1}(V)) \). We wish to show that \(c \in V \).

Choose \(e \in f^{-1}(V) \) such that \(c = f(e) \). Since \(e \in f^{-1}(V) \), we get \(f(e) \in V \). Then \(c = f(e) \in V \). End of proof of \(\subseteq \).

Proof of \(\supseteq \): Given \(c \in V \). We wish to show that \(c \in f(f^{-1}(V)) \).

We have \(c \in V \subseteq f(E) \). Choose \(e \in E \) such that \(f(e) = c \). We have \(f(e) = c \in V \), so \(e \in f^{-1}(V) \). Then \(c = f(e) \in f(f^{-1}(V)) \). End of proof of \(\supseteq \).

43. Let \(I \) be a set. Let \(\{U_\alpha\}_{\alpha \in I} \) be a family of subsets of \(\mathbb{R} \). Assume, for all \(\alpha \in I \), that \(U_\alpha \) is open. Show that \(\bigcup_{\alpha \in I} U_\alpha \) is open.

Proof: Given \(x \in \bigcup_{\alpha \in I} U_\alpha \). We wish to show that there is a neighborhood \(N \) of \(x \) such that \(N \subseteq \bigcup_{\alpha \in I} U_\alpha \).

Choose \(\beta \in I \) such that \(x \in U_\beta \). Then, because \(U_\beta \) is open, choose a neighborhood \(N \) of \(x \) such that \(N \subseteq U_\beta \). Then \(N \subseteq U_\beta \subseteq \bigcup_{\alpha \in I} U_\alpha \).

44. Let \(U, V \subseteq \mathbb{R} \). Assume that \(U \) and \(V \) are both open. Show that \(U \cap V \) is open.

Proof: Given \(x \in U \cap V \). We wish to show that there is a neighborhood \(N \) of \(x \) such that \(N \subseteq U \cap V \).

Let \(R \) be a neighborhood of \(x \) such that \(R \subseteq U \). Let \(S \) be a neighborhood of \(x \) such that \(S \subseteq V \). Choose \(\rho > 0 \) such that \((x - \rho, x + \rho) \subseteq R \). Choose \(\sigma > 0 \) such that
\[(x - \sigma, x + \sigma) \subseteq S. \] Let \(\nu := \min\{\rho, \sigma\} \). Let \(N := (x - \nu, x + \nu) \). We wish to show that \(N \subseteq U \cap V \).

We have \(N \subseteq (x - \rho, x + \rho) \subseteq R \subseteq U \). We have \(N \subseteq (x - \sigma, x + \sigma) \subseteq S \subseteq V \). Since we have both \(N \subseteq U \) and \(N \subseteq V \), it follows that \(N \subseteq U \cap V \), as desired.

45. Find a sequence \(U_1, U_2, \ldots \) of subsets of \(\mathbb{R} \) such that
- for all \(j \in \mathbb{N} \), \(U_j \) is open; and
- \(\bigcap_{j=1}^{\infty} U_j \) is NOT open.

Answer: For all \(j \in \mathbb{N} \), let \(U_j := (-1/j, 1/j) \). Then \(\bigcap_{j=1}^{\infty} U_j = \{0\} \), which is NOT open.

46. Let \(X \subseteq \mathbb{R} \) and let \(A \subseteq X \). Show that:

| A is compact | \iff | A is \(X \)-compact |

Proof: Proof of \(\Rightarrow \): Assume that \(A \) is compact. Given an \(X \)-open cover \(S \) of \(X \). We wish to show that there exists a finite \(F \subseteq S \) such that \(\bigcup F \supseteq A \).

For all \(S \in S \), let \(U_S \) be an open \(X \)-extension of \(S \). Then, for all \(S \in S \), we have \(U_S \cap X = S \), and so \(U_S \cap X \subseteq S \). Let \(U := \{U_S \mid S \in S\} \). Then \(U \) is an open cover of \(A \).

Also, for all \(U \in U \), we have \(U \cap X \subseteq S \). Choose a finite \(F_0 \subseteq U \) such that \(\bigcup F_0 \supseteq A \). Let \(F := \{U \cap X \mid U \in U\} \). Then \(F \subseteq S \) and \(F \) is finite. It remains to show that \(\bigcup F \supseteq A \).

We have \(\bigcup F = (\bigcup U) \cap X \supseteq A \cap X \). Since \(A \subseteq X \), it follows that \(A \cap X = A \). Then \(\bigcup F \supseteq A \cap X = A \), as desired. *End of proof of \(\Rightarrow \).*

Proof of \(\Leftarrow \): Assume that \(A \) is \(X \)-compact. Given an open cover \(U \) of \(A \). We wish to show that there exists a finite \(F \subseteq U \) such that \(\bigcup F \supseteq A \).

We have \(\bigcup U \supseteq A \). For all \(U \in U \), \(U \) is an open \(X \)-extension of \(U \cap X \), so \(U \cap X \) is \(X \)-open. Let \(S := \{U \cap X \mid U \in U\} \). Then \(\bigcup S = (\bigcup U) \cap X \). Since \(A \subseteq X \), it follows that \(A \cap X = A \). Then \(\bigcup S = (\bigcup U) \cap X \supseteq A \cap X = A \). Then \(S \) is an \(X \)-open cover of \(A \).

Choose a finite \(F_0 \subseteq S \) such that \(\bigcup F_0 \supseteq A \). For all \(S \in S \), there exists \(U \in U \) such that \(U \cap X = S \). For all \(S \in F_0 \), choose \(U_S \in U \) such that \(U_S \cap X = S \). Let \(F := \{U_S \mid S \in F_0\} \). Then \(F \) is finite and \(F \subseteq U \). It remains to show that \(\bigcup F \supseteq A \).

For all \(S \in F_0 \), we have \(\bigcup F \supseteq U_S \supseteq U_S \cap X = S \). Then \(\bigcup F \supseteq \bigcup F_0 \supseteq A \), as desired. *End of proof of \(\Leftarrow \).*

38. Let \(D \subseteq \mathbb{R} \). Assume that \(D \) is not bounded below. Let \(f : D \to \mathbb{R} \). Assume that \(f(x) \to \infty, \) as \(x \to -\infty \). Show that \(1/|f(x)| \to 0, \) as \(x \to -\infty \).

Proof: Given \(\varepsilon > 0 \). We wish to show that there exists \(N \in \mathbb{R} \) such that, for all \(x \in D \), we have: \([x < N] \Rightarrow [1/|f(x)| - 0] < \varepsilon \].

Choose \(N \in \mathbb{R} \) such that, for all \(x \in D \), we have: \([x < N] \Rightarrow [f(x) > 1/\varepsilon] \).

Given \(x \in D \). Assume that \(x < N \). We wish to show that \(|1/|f(x)|| - 0| < \varepsilon \). That is, we wish to show that \(1/|f(x)| < \varepsilon \).
We have \(f(x) > 1/\varepsilon > 0 \), so \(|f(x)| = f(x) \). Then \(|f(x)| = f(x) > 1/\varepsilon \). Then \(1/|f(x)| < 1/[1/\varepsilon] = \varepsilon \).

39. Find a function \(f: \mathbb{R} \rightarrow \mathbb{R}\setminus\{0\} \) such that:
 (i) \(f(x) \rightarrow 0 \), as \(x \rightarrow -\infty \); and
 (ii) NOT \([1/|f(x)|] \rightarrow \infty \), as \(x \rightarrow -\infty \).

Answer: Define \(f: \mathbb{R} \rightarrow \mathbb{R}\setminus\{0\} \) by \(f(x) = -e^x \).

40. Let \(D \subseteq \mathbb{R} \). Let \(f: D \rightarrow \mathbb{R} \). Let \(x_0 \in D \). Assume that \(x_0 \) is an accumulation point of \(D \). Show that:
 \[
 \text{[} f \text{ is continuous at } x_0 \text{] } \quad \text{iff} \quad \text{[} \lim_{x \rightarrow x_0} f(x) = f(x_0) \text{]}.
 \]

Proof: Proof of “only if”: Say \(f \) is continuous at \(x_0 \). We wish to prove: \(\lim_{x \rightarrow x_0} f(x) = f(x_0) \).

 Given \(\varepsilon > 0 \). We wish to show that there exists \(\delta > 0 \) such that, for all \(x \in D \), we have:
 \[
 \left[0 < |x - x_0| < \delta \right] \Rightarrow \left[|(f(x)) - (f(x_0))| < \varepsilon \right].
 \]

 Choose \(\delta > 0 \) such that, for all \(x \in D \), we have:
 \[
 [x-x_0] < \delta \Rightarrow [(f(x)) - (f(x_0))] < \varepsilon.
 \]

 Given \(x \in D \). Assume that \(0 < |x - x_0| < \delta \). We wish to show that \(|(f(x)) - (f(x_0))| < \varepsilon \).

 Since \(|x - x_0| < \delta \), it follows, from the choice of \(\delta \), that \(|(f(x)) - (f(x_0))| < \varepsilon \), as desired. End of proof of “only if”.

 Proof of “if”: Say \(\lim_{x \rightarrow x_0} f(x) = f(x_0) \). We wish to prove: \(f \) is continuous at \(x_0 \).

 Given \(\varepsilon > 0 \). We wish to show that there exists \(\delta > 0 \) such that, for all \(x \in D \), we have:
 \[
 \left[|x - x_0| < \delta \right] \Rightarrow \left[|(f(x)) - (f(x_0))| < \varepsilon \right].
 \]

 Choose \(\delta > 0 \) such that, for all \(x \in D \), \(0 < |x - x_0| < \delta \) \Rightarrow \[(f(x)) - (f(x_0))] < \varepsilon\].

 Given \(x \in D \). Assume that \(|x - x_0| < \delta \). We wish to show that \(|(f(x)) - (f(x_0))| < \varepsilon \).

 If \(x = x_0 \), then \(|(f(x)) - (f(x_0))| = |0| = 0 < \varepsilon \), and we are done. We therefore assume that \(x \neq x_0 \). Then \(0 < |x - x_0| \).

 Since \(0 < |x - x_0| < \delta \), it follows, from the choice of \(\delta \), that \(|(f(x)) - (f(x_0))| < \varepsilon \), as desired. End of proof of “if”.

41. Define \(f: \mathbb{R}\setminus\{0\} \rightarrow \mathbb{R} \) by \(f(x) = 1/x \). Show that \(f \) is continuous at \(3 \).

Proof: By Homework #35, \(f(x) \rightarrow 1/3 \), as \(x \rightarrow 3 \). That is, \(\lim_{x \rightarrow 3} f(x) = 1/3 \). Then \(\lim_{x \rightarrow 3} f(x) = f(3) \). Also, \(3 \in \mathbb{R}\setminus\{0\} \) and \(3 \) is an accumulation point of \(\mathbb{R}\setminus\{0\} \). Then, by Homework #40, we see that \(f \) is continuous at \(3 \).

42. Let \(D, E \subseteq \mathbb{R} \). Let \(f: D \rightarrow E \) and \(g: E \rightarrow \mathbb{R} \). Let \(x_0 \) be an accumulation point of \(D \). Let \(L \in E \). Assume that \(f(x) \rightarrow L \), as \(x \rightarrow x_0 \). Assume that \(g \) is continuous at \(L \). Show that \(g(f(x)) \rightarrow g(L) \), as \(x \rightarrow x_0 \).

Proof: Given \(\varepsilon > 0 \). We wish to prove that there exists \(\delta > 0 \) such that, for all \(x \in D \), we have:
 \[
 \left[0 < |x - x_0| < \delta \right] \Rightarrow \left[|g(f(x))| - |g(L)| < \varepsilon \right].
 \]

 Choose \(\gamma > 0 \) such that, for all \(y \in E \), we have:
 \[
 [y-L] < \gamma \Rightarrow ||g(y)| - |g(L)|| < \varepsilon.
 \]

 Choose \(\delta > 0 \) such that, for all \(x \in D \), we have:
 \[
 0 < |x - x_0| < \delta \Rightarrow |(f(x)) - L| < \gamma.
 \]
Given \(x \in D \). Assume that \(0 < |x-x_0| < \delta \). We wish to show that \(|g(f(x))| - |g(L)| < \varepsilon \).

By the choice of \(\delta \), we have: \(|f(x)| - L| < \gamma \). Let \(y := f(x) \). Then \(|y - L| < \gamma \). Also, \(y \in \text{im}[f] \subseteq E \). Then, by the choice of \(\gamma \), we get: \(|g(y)| - |g(L)| < \varepsilon \). That is, we get \(|g(f(x))| - |g(L)| < \varepsilon \), as desired.

35. Define \(f : \mathbb{R}\{0\} \to \mathbb{R} \) by \(f(x) = 1/x \). Show that \(f(x) \to 1/3 \), as \(x \to 3 \).

Proof: Given \(\varepsilon > 0 \). We wish to prove that there exists \(\delta > 0 \) such that, for all \(x \in D \),

\[
0 < |x - 3| < \delta \quad \Rightarrow \quad |(f(x)) - (1/3)| < \varepsilon.
\]

Let \(\delta := \min\{1, 6\varepsilon\} \). Given \(x \in D \). Assume that \(0 < |x - 3| < \delta \). We wish to prove that \(|(f(x)) - (1/3)| < \varepsilon \).

We have \((f(x)) - (1/3) = (1/x) - (1/3) = (3-x)/(3x) \), so

\[
|(f(x)) - (1/3)| = |3-x| \cdot |1/3| \cdot |1/|x||.
\]

We have \(|3-x| = |x-3| < \delta \leq 6\varepsilon \). Because \(3-x \leq |x-3| < \delta \leq 1 \), we have \(2 \leq x \), and so \(|x| = x \geq 2 \), and so \(1/(|x|) \leq 1/2 \). Then \(|(f(x)) - (1/3)| < 6\varepsilon \cdot 1/3 \cdot 1/2 = \varepsilon \).

36. Define \(g : \mathbb{R}\{0\} \to \mathbb{R} \) by \(g(x) = x[\sin(1/x)] \). Show that \(g(x) \to 0 \), as \(x \to 0 \).

Proof: Given \(\varepsilon > 0 \). We wish to prove that there exists \(\delta > 0 \) such that, for all \(x \in D \),

\[
0 < |x - 0| < \delta \quad \Rightarrow \quad |(g(x)) - 0| < \varepsilon.
\]

Let \(\delta := \varepsilon \). Given \(x \in D \). Assume that \(0 < |x - 0| < \delta \). We wish to show that \(|(g(x)) - 0| < \varepsilon \).

We have \(|x| < \delta \) and \(x \neq 0 \). Because \(-1 \leq \sin(1/x) \leq 1 \), we get \(|\sin(1/x)| \leq 1 \). Then \(|(g(x)) - 0| = |g(x)| = (|x|) \cdot (|\sin(1/x)|) \leq (|x|) \cdot 1 = |x| < \delta = \varepsilon \), as desired.

37. Let \(\{a_n\}_{n \in \mathbb{N}} \) be a sequence in \(\mathbb{R} \) and let \(x \in \mathbb{R} \). Assume that \(a_n \to x \), as \(n \to \infty \). Let \(\{b_n\}_{n \in \mathbb{N}} \) be a subsequence of \(\{a_n\}_{n \in \mathbb{N}} \). Show that \(b_n \to x \), as \(n \to \infty \).

Proof: Given \(\varepsilon > 0 \). We wish to show that there exists \(N \in \mathbb{N} \) such that, for all integers \(n \geq N \), we have \(|b_n - x| < \varepsilon \).

Choose \(N \in \mathbb{N} \) such that, for all integers \(n \geq N \), we have \(|a_n - x| < \varepsilon \). Given an integer \(n \geq N \). We wish to prove that \(|b_n - x| < \varepsilon \).

Since \(\{b_m\}_{m \in \mathbb{N}} \) is a subsequence of \(\{a_m\}_{m \in \mathbb{N}} \), choose an integer \(q \geq n \) such that \(a_q = b_n \). Since \(q \geq n \geq N \), it follows, from the choice of \(N \), that \(|a_q - x| < \varepsilon \). Then \(|b_n - x| = |a_q - x| < \varepsilon \), as desired.

32. Compute \(\lim_{n \to \infty} \left((\sqrt[n]{n+1}) - (\sqrt[n]{n}) \right) \left[\sqrt[n]{n^2} \right] \).

Hint: \((b^{1/3} - a^{1/3})(b^{2/3} + b^{1/3}a^{1/3} + a^{2/3}) = b - a \).

Answer: For all \(n \in \mathbb{N} \), using \(b = n + 1 \) and \(a = n \) in the hint, we get

\[
((n+1)^{1/3} - n^{1/3})((n+1)^{2/3} + (n+1)^{1/3}n^{1/3} + n^{2/3}) = (n+1) - n,
\]
so, since \((\sqrt[3]{n+1}) - (\sqrt[3]{n}) = (n+1)^{1/3} - n^{1/3}\) and since \((n+1) - n = 1\), we get

\[
(\sqrt[3]{n+1}) - (\sqrt[3]{n}) = \frac{1}{(n+1)^{2/3} + (n+1)^{1/3}n^{1/3} + n^{2/3}}.
\]

Then, for all \(n \in \mathbb{N}\), we have

\[
[(\sqrt[3]{n+1}) - (\sqrt[3]{n})] [\sqrt[3]{n^2}] = \frac{n^{2/3}}{(n+1)^{2/3} + (n+1)^{1/3}n^{1/3} + n^{2/3}} \cdot \frac{n^{-2/3}}{n^{-2/3}}
\]

\[
= \frac{1}{(n+1)^{2/3}n^{-2/3} + (n+1)^{1/3}n^{-1/3} + 1}
\]

\[
= \frac{1}{[1 + (1/n)^{2/3} + [1 + (1/n)]^{1/3} + 1}.
\]

As \(n \to \infty\), we have \(1/n \to 0\), so

\[
[(\sqrt[3]{n+1}) - (\sqrt[3]{n})] [\sqrt[3]{n^2}] \to \frac{1}{[1+0]^{2/3} + [1+0]^{1/3} + 1} = \frac{1}{3}.
\]

33. Let \(\{a_n\}_{n \in \mathbb{N}}\) be a bounded sequence in \(\mathbb{R}\). Show that there exists a subsequence \(\{b_n\}_{n \in \mathbb{N}}\) of \(\{a_n\}_{n \in \mathbb{N}}\) such that \(\{b_n\}_{n \in \mathbb{N}}\) is convergent.

Proof: Because a bounded semi-monotone sequence is convergent, and because any subsequence of a bounded sequence is again bounded, the result follows from the following lemma. QED

Lemma. Let \(\{a_n\}_{n \in \mathbb{N}}\) be a bounded sequence in \(\mathbb{R}\). Then there exists a subsequence \(\{b_n\}_{n \in \mathbb{N}}\) of \(\{a_n\}_{n \in \mathbb{N}}\) such that \(\{b_n\}_{n \in \mathbb{N}}\) is semi-monotone.

Proof: We wish to show that there is a strictly increasing sequence \(\{k_n\}_{n \in \mathbb{N}}\) in \(\mathbb{N}\) such that \(\{a_{k_n}\}_{n \in \mathbb{N}}\) is semi-monotone.

Let \(S := \{n \in \mathbb{N} | a_n \geq a_{n+1} \geq a_{n+2} \geq \cdots\}\).

Special case: \(S\) is infinite. **Proof in special case:** Define a function \(F : S \to S\) by \(F(s) = \min\{t \in S | t \geq s + 1\}\). Let \(k_1 := \min S\). For all \(n \in \mathbb{N}\), let \(k_{n+1} := F^n(k_1)\). For all \(n \in \mathbb{N}\), we have \(k_{n+1} \geq k_n + 1\). Thus \(\{k_n\}_{n \in \mathbb{N}}\) is strictly increasing. It suffices to show that \(\{a_{k_n}\}_{n \in \mathbb{N}}\) is semi-decreasing. Given \(n \in \mathbb{N}\). We wish to show that \(a_{k_n} \geq a_{k_{n+1}}\).

Because \(k_n \in S\), we have \(a_{k_n} \geq a_{k_{n+1}} \geq a_{k_{n+2}} \geq \cdots\). So, since \(k_{n+1} \geq k_n\), this yields \(a_{k_n} \geq a_{k_{n+1}}\), as desired. **End of proof in special case.**

We may therefore assume that \(S\) is finite. Let \(N := 1 + (\max S)\). Then, for all integers \(n \geq N\), we have \(n \notin S\), so there exists an integer \(q \geq n + 1\) such that \(a_n < a_q\).

Let \(T := \{N, N+1, N+2, \ldots\}\). Define \(G : T \to T\) by \(G(k) = \min\{q \geq k+1 | a_k < a_q\}\). For all \(k \in \mathbb{N}\), we have \(G(k) \geq k + 1\) and \(a_k < a_{G(k)}\).

Let \(k_1 := N\). For all \(n \in \mathbb{N}\), let \(k_{n+1} := G^n(k_1)\). Then, for all \(n \in \mathbb{N}\), we have \(k_{n+1} \geq k_n + 1\). Thus \(\{k_n\}_{n \in \mathbb{N}}\) is strictly increasing. It suffices to show that \(\{a_{k_n}\}_{n \in \mathbb{N}}\) is strictly increasing. Fix \(n \in \mathbb{N}\). We wish to show that \(a_{k_n} < a_{k_{n+1}}\).
We have \(a_{k_n} < a_{G(k_n)} \), so, as \(G(k_n) = k_{n+1} \), this yields \(a_{k_n} < a_{k_{n+1}} \), as desired. QED

34. Find a sequence \(\{a_n\}_{n \in \mathbb{N}} \) in \(\mathbb{R} \) such that \(\{a_n\}_{n \in \mathbb{N}} \) is NOT convergent, and such that for all convergent subsequences \(\{b_n\}_{n \in \mathbb{N}} \) of \(\{a_n\}_{n \in \mathbb{N}} \), \(b_n \to 0 \), as \(n \to \infty \).

Answer: Define \(\{a_n\}_{n \in \mathbb{N}} \) by \(a_n = \begin{cases} 0, & \text{if } n \text{ is odd;} \\ n, & \text{if } n \text{ is even.} \end{cases} \)

28. Let \(a, b \in \mathbb{R} \) and let \(\varepsilon > 0 \). Assume that \(a < b \). Show that there exists \(m \in \mathbb{N} \) such that \(\frac{b - a}{2^m} < \varepsilon \).

Proof: **Claim:** For all \(m \in \mathbb{N} \), \(m < 2^m \). **Proof of claim:** We have \(1 < 2 = 2^1 \). Given \(m \in \mathbb{N} \), we assume \(m < 2^m \) and, by induction, we wish to prove that \(m + 1 < 2^{m+1} \).

We have \(1 \leq m \), so \(m + 1 \leq 2m \). Since \(m < 2^m \), we get \(2m < 2 \cdot 2^m \). Then \(m + 1 \leq 2m < 2 \cdot 2^m = 2^{m+1} \). End of proof of claim.

Because \(\mathbb{N} \) is not bounded above, choose \(m \in \mathbb{N} \) such that \(m > \frac{b - a}{\varepsilon} \). We wish to prove that \(\frac{b - a}{2^m} < \varepsilon \).

By the claim, \(m < 2^m \), so \(\frac{b - a}{2^m} < \frac{b - a}{m} \). Because \(m > \frac{b - a}{\varepsilon} \), we get \(\frac{b - a}{m} < \varepsilon \).

Therefore, we have \(b - a < \varepsilon \).

29. Let \(\{a_n\}_{n \in \mathbb{N}} \) be a Cauchy sequence of real numbers and let \(\{b_n\}_{n \in \mathbb{N}} \) be a subsequence of \(\{a_n\}_{n \in \mathbb{N}} \). Let \(x \in \mathbb{R} \). Assume that \(b_n \to x \), as \(n \to \infty \). Show that \(a_n \to x \), as \(n \to \infty \).

Proof: Given \(\varepsilon > 0 \), we wish to prove that there exists \(N \in \mathbb{N} \) such that, for all integers \(n \geq N \), we have: \(|a_n - x| < \varepsilon \).

Choose \(N_1 \in \mathbb{N} \) such that, for all \(n \geq N_1 \), we have: \(|b_n - x| < \varepsilon/2 \). Choose \(N_2 \in \mathbb{N} \) such that, for all \(m, n \geq N_2 \), we have: \(|a_m - a_n| < \varepsilon/2 \). Let \(N := \max\{N_1, N_2\} \). Given an integer \(n \geq N \), we wish to prove: \(|a_n - x| < \varepsilon \).

Because \(n \geq N \geq N_1 \), we have \(|b_n - x| < \varepsilon/2 \). Because \(\{b_k\}_{k \in \mathbb{N}} \) be a subsequence of \(\{a_k\}_{k \in \mathbb{N}} \), choose an integer \(q \geq n \) such that \(b_n = a_q \). We have \(n \geq N \geq N_2 \) and \(q \geq n \geq N \geq N_2 \), so \(|a_q - a_n| < \varepsilon/2 \). So, since \(b_n = a_q \), we get \(|b_n - a_n| < \varepsilon/2 \).

Then \(|a_n - x| \leq |a_n - b_n| + |b_n - x| < (\varepsilon/2) + (\varepsilon/2) = \varepsilon \).

30. Let \(f, g : \mathbb{R} \to \mathbb{R} \) be two functions. Let \(u, v, a \in \mathbb{R} \). Assume that \(f(x) \to u \), as \(x \to a \). Assume that \(g(x) \to v \), as \(x \to a \). Prove that \([f(x)] + [g(x)] \to u + v \), as \(x \to a \).

Proof: Let \(\varepsilon > 0 \) be given. We wish to prove that there exists \(\delta > 0 \) such that, for all \(x \in (a - \delta, a + \delta) \setminus \{a\} \), we have: \(|[(f(x)) + (g(x))] - [u + v]| < \varepsilon \).

Choose \(\delta_1 > 0 \) such that, for all \(x \in (a - \delta_1, a + \delta_1) \setminus \{a\} \), we have: \(|(f(x)) - u| < \varepsilon/2 \).

Choose \(\delta_2 > 0 \) such that, for all \(x \in (a - \delta_2, a + \delta_2) \setminus \{a\} \), we have: \(|(g(x)) - v| < \varepsilon/2 \).

Let \(\delta := \min\{\delta_1, \delta_2\} \). Given \(x \in (a - \delta, a + \delta) \setminus \{a\} \).
We wish to prove that \[|((f(x)) + (g(x))) - (u + v)| < \varepsilon.\]

Because \(\delta \leq \delta_1\), it follows that \((a - \delta, a + \delta) - \{a\} \subseteq (a - \delta_1, a + \delta_1) - \{a\}\), and so \(x \in (a - \delta_1, a + \delta_1) - \{a\}\). Then \(|(f(x)) - u| < \varepsilon/2\).

Because \(\delta \leq \delta_2\), it follows that \((a - \delta, a + \delta) - \{a\} \subseteq (a - \delta_2, a + \delta_2) - \{a\}\), and so \(x \in (a - \delta_2, a + \delta_2) - \{a\}\). Then \(|(g(x)) - v| < \varepsilon/2\).

We have \(|((f(x)) + (g(x))) - (u + v)| = |(f(x)) - u| + |(g(x)) - v|\). It follows that \(|((f(x)) + (g(x))) - (u + v)| \leq |(f(x)) - u| + |(g(x)) - v| < \varepsilon/2 + \varepsilon/2 = \varepsilon|.

31. Find two functions \(f, g : \mathbb{R} \to \mathbb{R}\) such that all of the following are true:
 (i) \(f(x) \to 2\), as \(x \to 1\).
 (ii) \(g(x) \to 3\), as \(x \to 2\).
 (iii) NOT \([g(f(x)) \to 3\), as \(x \to 1\)]

Answer: Define \(f : \mathbb{R} \to \mathbb{R}\) by \(f(x) = 2\). Define \(g : \mathbb{R} \to \mathbb{R}\) by \(g(x) = \begin{cases} 3, & \text{if } x \neq 2; \\ 4, & \text{if } x = 2. \end{cases}\)

21. On a real number line, graph:
 all real numbers \(x\) such that \(|x - 3| < 1\).

Answer: Too much trouble to insert a graph. See me if you have questions.

22. On a real number line, graph:
 all real numbers \(x\) such that \(2 < x < 4\).

Answer: Too much trouble to insert a graph. See me if you have questions.

23. On a real number line, graph:
 all real numbers \(x\) such that \(0 < |x - 3| < 1\).

Answer: Too much trouble to insert a graph. See me if you have questions.

24. On a real number line, graph:
 all real numbers \(x\) such that \([2 < x < 4) \text{ and } (x \neq 3)\].

Answer: Too much trouble to insert a graph. See me if you have questions.

25. Let \(\{a_n\}_{n \in \mathbb{N}}\) and \(\{b_n\}_{n \in \mathbb{N}}\) be two sequences of real numbers. Let \(c \in \mathbb{R}\). Assume that \(a_n \to c\), as \(n \to \infty\), and that \(b_n \to c\), as \(n \to \infty\). Let \(\{c_n\}_{n \in \mathbb{N}}\) be the sequence given by

\[
c_n = \begin{cases}
a_{(n+1)/2}, & \text{if } n \text{ is odd;} \\
b_{n/2}, & \text{if } n \text{ is even.}
\end{cases}
\]

Show that \(c_n \to c\), as \(n \to \infty\).

Proof: Given \(\varepsilon > 0\). Want: \(\exists N \in \mathbb{N}\) such that \(\forall\) integers \(n \geq N\), we have: \(|c_n - c| < \varepsilon\).

Choose \(N_1 \in \mathbb{N}\) such that \(\forall\) integers \(n \geq N_1\), we have: \(|a_n - c| < \varepsilon\).
Choose \(N_2 \in \mathbb{N} \) such that \(\forall \) integers \(n \geq N_2 \), we have: \(|b_n - c| < \varepsilon \).

Let \(N := \max\{2N_1 - 1, 2N_2\} \). Given an integer \(n \geq N \). Want \(|c_n - c| < \varepsilon \).

Special case: \(n \) is odd. Proof in special case: Let \(m := (n + 1)/2 \). Then \(c_n = a_m \). We wish to prove \(|a_m - c| < \varepsilon \).

Since \(2m - 1 = n \geq N \geq 2N_1 - 1 \), we see that \(m \geq N_1 \). Then, by definition of \(N_1 \), we have \(|a_m - c| < \varepsilon \), as desired. **End of proof in special case.**

We now assume that \(n \) is even. Let \(m := n/2 \). Then \(c_n = b_m \). We wish to prove: \(|b_m - c| < \varepsilon \).

Since \(2m = n \geq N \geq 2N_2 \), we see that \(m \geq N_2 \). Then, by definition of \(N_2 \), we have \(|b_m - c| < \varepsilon \), as desired.

26. Let \(\{a_n\}_{n \in \mathbb{N}} \) and \(\{b_n\}_{n \in \mathbb{N}} \) be two sequences of real numbers. Let \(x \in \mathbb{R} \). Assume that \(a_n \to x \), as \(n \to \infty \), and that \(b_n \to \infty \), as \(n \to \infty \). Show that \(a_n + b_n \to \infty \), as \(n \to \infty \).

Proof: Given \(M \in \mathbb{R} \). Want: \(\exists N \in \mathbb{N} \) such that \(\forall \) integers \(n \geq N \), we have: \(a_n + b_n > M \).

Choose \(N_1 \in \mathbb{N} \) such that, \(\forall \) integers \(n \geq N_1 \), we have: \(|a_n - x| < 1 \). Then, \(\forall \) integers \(n \geq N_1 \), we have: \(a_n > x - 1 \).

Choose \(N_2 \in \mathbb{N} \) such that, \(\forall \) integers \(n \geq N_1 \), we have: \(b_n > M - (x - 1) \).

Let \(N := \max\{N_1, N_2\} \).

Given an integer \(n \geq N \). Want: \(a_n + b_n > M \).

Since \(n \geq N \geq N_1 \), we get \(a_n > x - 1 \). Since \(n \geq N \geq N_2 \), we get \(b_n > M - (x - 1) \). Then \(a_n + b_n > (x - 1) + M - (x - 1) = M \), as desired.

27. Let \(\{a_n\}_{n \in \mathbb{N}} \) be a sequence of real numbers. Let \(x \in \mathbb{R} \). Let \(\{c_n\}_{n \in \mathbb{N}} \) be the sequence given by

\[
c_n = \begin{cases}
a_{(n+1)/2}, & \text{if } n \text{ is odd;}
x, & \text{if } n \text{ is even.}
\end{cases}
\]

Assume that \(\{c_n\}_{n \in \mathbb{N}} \) is Cauchy. Show that \(a_n \to x \), as \(n \to \infty \).

Proof: Given \(\varepsilon > 0 \). Want: \(\exists N \in \mathbb{N} \) such that, \(\forall \) integers \(n \geq N \), we have: \(|a_n - x| < \varepsilon \).

Choose \(N \in \mathbb{N} \) such that, \(\forall \) integers \(m, n \geq N \), we have: \(|c_m - c_n| < \varepsilon \).

Given an integer \(n \geq N \). Want: \(|a_n - x| < \varepsilon \).

Let \(m := 2n - 1 \). Then \(c_m = a_n \) and \(c_{m+1} = x \). We have \(N - 1 \geq 0 \), so \(N + (N - 1) \geq N \).

Then \(m = 2n - 1 \geq 2N - 1 = N + (N - 1) \geq N \). Then \(m \geq N \) and \(m + 1 \geq N \). Then, by definition of \(N \), we have \(|c_m - c_{m+1}| < \varepsilon \). Then \(|a_n - x| = |c_m - c_{m+1}| < \varepsilon \), as desired.

17. Let \(n \in \mathbb{Z} \). Show both of the following:

(i) If \(n \) is even, then \(n^2 \) is even.

(ii) If \(n \) is odd, then \(n^2 \) is odd.

Proof of (i): Assume \(n \) is even. Want: \(n^2 \) is even.

Choose \(k \in \mathbb{Z} \) such that \(n = 2k \).

Then \(n^2 = (2k)^2 = 2(2k^2) \), so \(n^2 \) is even.

Proof of (ii): Assume \(n \) is odd. Want: \(n^2 \) is odd.
Choose $k \in \mathbb{Z}$ such that $n = 2k + 1$. Then $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, so n^2 is odd.

18. Let $S \subseteq \mathbb{R}$ and let $a_0, b_0 \in \mathbb{R}$. Assume that $a_0 \geq S$ and that $b_0 \geq S$. Assume, for all $a \geq S$, that $a \geq a_0$. Assume, for all $b \geq S$, that $b \geq b_0$. Prove that $a_0 = b_0$.

Proof: For all $a \geq S$, we have $a \geq a_0$. So, since $b_0 \geq S$, we have $b_0 \geq a_0$. It therefore suffices to show that $a_0 \geq b_0$.

For all $b \geq S$, we have $b \geq b_0$. So, since $a_0 \geq S$, we have $a_0 \geq b_0$.

19. Find a nonempty set I of intervals such that

 (i) for all $I, J \in I$, either $I \subseteq J$ or $J \subseteq I$; and

 (ii) $\bigcap_{I \in I} I = \emptyset$.

Answer: Let $I := \{(0, 1/n) \mid n \in \mathbb{N}\}$.

20. An interval I is compact if there exist $a, b \in \mathbb{R}$ such that $a < b$ and such that $I = [a, b]$. Let I be a nonempty set of compact intervals such that

 for all $I, J \in I$, either $I \subseteq J$ or $J \subseteq I$.

Show that $\bigcap_{I \in I} I \neq \emptyset$.

Answer: For all $I \in I$, let $a_I := \min I$ and let $c_I := \max I$. Then, for all $I \in I$, we have: $I = [a_I, c_I]$. Let $A := \{a_I \mid I \in I\}$. Then $A \neq \emptyset$.

Claim 1: For all $I \in I$, we have $A \leq c_I$. Proof of Claim 1: Given $I \in I$. We wish to prove that $A \leq c_I$. That is, we wish to prove, for all $a \in A$, that $a \leq c_I$.

Given $a \in A$. We wish to prove that $a \leq c_I$. Choose $J \in I$ such that $a = a_J$. We wish to prove that $a_J \leq c_I$.

Either $J \subseteq I$ or $I \subseteq J$. If $J \subseteq I$, then $a_J \in [a_J, c_J] = J \subseteq I = [a_I, c_I]$, and so $a_J \leq c_I$, as desired. We may therefore assume that $I \subseteq J$.

Then $c_I \in [a_I, c_I] = I \subseteq J = [a_J, c_J]$. Then $c_I \geq a_J$, as desired. End of proof of Claim 1.

By Claim 1, A is bounded above. Let $b := \sup A$.

Claim 2: For all $I \in I$, we have $a_I \leq b \leq c_I$. Proof of Claim 2: Given $I \in I$. We wish to prove that $a_I \leq b \leq c_I$.

Since $b = \sup A$, we have $A \leq b$. So, since $a_I \in A$, we get $a_I \leq b$. By Claim 1, $A \leq c_I$. So, since $b = \sup A$, we get $b \leq c_I$. Then $a_I \leq b \leq c_I$. End of proof of Claim 2.

By Claim 2, for all $I \in I$, we have $b \in [a_I, c_I] = I$. Then $b \in \bigcap_{I \in I} I$. Then $\bigcap_{I \in I} I \neq \emptyset$.

12. Display a bijection from $\{1, 2, 3, \ldots\}$ onto $\{-3, -5, -7, \ldots\}$.

Answer: Define $f : \{1, 2, 3, \ldots\} \to \{-3, -5, -7, \ldots\}$ by $f(n) = -2n - 1$. Then f is a bijection from $\{1, 2, 3, \ldots\}$ onto $\{-3, -5, -7, \ldots\}$.
13. Display a bijection from \mathbb{N} onto \mathbb{Z}.

Answer: Define $f : \mathbb{N} \to \mathbb{Z}$ by

$$f(n) = \begin{cases} n/2, & \text{if } n \text{ is even;} \\ (1-n)/2, & \text{if } n \text{ is odd.} \end{cases}$$

Then f is a bijection from \mathbb{N} onto \mathbb{Z}.

14. Display a bijection from $[0, 1]$ onto $[0, 1)$.

Answer: Let $S := \{1, 1/2, 1/3, \ldots\}$. Define $f : S \to S$ by $f(x) = 1/((1/x) + 1)$. Define $g : [0, 1] \to [0, 1)$ by

$$g(x) = \begin{cases} f(x), & \text{if } x \in S; \\ x, & \text{if } x \notin S. \end{cases}$$

Then g is a bijection from $[0, 1]$ onto $[0, 1)$.

15. By $\mathbb{Q}[x]$, we denote the set of polynomials in x with rational coefficients. Show that $\mathbb{Q}[x]$ is countable.

Proof: For all $n \in \mathbb{N}$, \mathbb{Q}^n is a finite product of countable sets, and is therefore countable. Let $Y := [\mathbb{Q}] \cup [\mathbb{Q}^2] \cup [\mathbb{Q}^3] \cup \cdots$. Then Y is a countable union of countable sets, and is therefore countable. Fix a surjection $f : \mathbb{N} \to Y$.

Define $g : Y \to \mathbb{Q}[x]$ by $g(q_1, \ldots, q_n) = q_1x^{n-1} + q_2x^{n-2} + \cdots + q_{n-2}x^2 + q_{n-1}x + q_n$. Then g is a surjection from Y onto $\mathbb{Q}[x]$. Then $g \circ f : \mathbb{N} \to \mathbb{Q}[x]$ is a surjection from \mathbb{N} onto $\mathbb{Q}[x]$. Then $\mathbb{Q}[x]$ is countable.

16. The zero polynomial is denoted $0 \in \mathbb{Q}[x]$. A number $\alpha \in \mathbb{R}$ is said to be real algebraic if there exists $p(x) \in (\mathbb{Q}[x])\{0\}$ such that $p(\alpha) = 0$. Let A denote the set of all real algebraic numbers. Show that A is countable.

Proof: Let $C := (\mathbb{Q}[x])\{0\}$. By Problem 15, $\mathbb{Q}[x]$ is countable, and so C is a subset of a countable set, and is therefore countable.

For all $p(x) \in C$, let $R_{p(x)} := \{\alpha \in \mathbb{R} | p(\alpha) = 0\}$. For all $p(x) \in C$, the set $R_{p(x)}$ is finite, and therefore countable. Then, because $A = \bigcup_{p(x) \in C} R_{p(x)}$, we see that A is a countable union of countable sets, and is therefore countable.

6. Let X and Y be sets and let $f : X \to Y$ be a function. Let $A, B \subseteq X$. Show that:

$$f(A \cup B) = (f(A)) \cup (f(B)).$$

Lemma 1: Let X and Y be sets and let $f : X \to Y$ be a function. Let P and Q be subsets of X. Assume that $P \subseteq Q$. Then $f(P) \subseteq f(Q)$.

Proof of Lemma 1: Given $y \in f(P)$. Want: $y \in f(Q)$.

Choose $x \in P$ such that $y = f(x)$. We have $x \in P \subseteq Q$. Then $y = f(x) \in f(Q)$, as desired. End of proof of Lemma 1.

Lemma 2: Let U, V and W be sets. Assume that $U \subseteq W$ and that $V \subseteq W$. Then $U \cup V \subseteq W$.

Proof of Lemma 2: Given $y \in U \cup V$. Want: $y \in W$.

We know: $(y \in U) \Rightarrow (y \in W)$.
Because $V \subseteq W$, we know: $(y \in V) \Rightarrow (y \in W)$.
So, because

\[(P \text{ or } Q) \quad \text{and} \quad (P \Rightarrow R) \quad \text{and} \quad (Q \Rightarrow R) \quad \Rightarrow \quad R,
\]

we conclude that $y \in W$, as desired. End of proof of Lemma 2.

Main proof: Proof of \subseteq: Let $y \in f(A \cup B)$. Want: $y \in (f(A)) \cup (f(B))$.

Choose $x \in A \cup B$ such that $y = f(x)$.
We know: $(x \in A) \text{ or } (x \in B)$.
We know: $[x \in A] \Rightarrow [y = f(x) \in f(A) \subseteq (f(A)) \cup (f(B))]$.
We know: $[x \in B] \Rightarrow [y = f(x) \in f(B) \subseteq (f(A)) \cup (f(B))]$.
So, because

\[\{(P \text{ or } Q) \quad \text{and} \quad (P \Rightarrow R) \quad \text{and} \quad (Q \Rightarrow R)\} \quad \Rightarrow \quad R,
\]

we conclude that $y \in (f(A)) \cup (f(B))$, as desired. End of proof of \subseteq.

Proof of \supseteq: Because $A \subseteq A \cup B$, by Lemma 1, we see that $f(A) \subseteq f(A \cup B)$. Because $B \subseteq A \cup B$, by Lemma 1, we see that $f(B) \subseteq f(A \cup B)$. Because $f(A) \subseteq f(A \cup B)$ and $f(B) \subseteq f(A \cup B)$, by Lemma 2, we see that $(f(A)) \cup (f(B)) \subseteq f(A \cup B)$, as desired. End of proof of \supseteq.

7. Find sets X and Y, a function $f : X \to Y$ and subsets $A, B \subseteq X$ such that:

\[f(A \cap B) \neq (f(A)) \cap (f(B)).\]

Answer: Let $X := \mathbb{R}$, let $Y := \mathbb{R}$ and let $f : X \to Y$ be defined by $f(x) = x^2$. Let $A := \{-1\}$ and let $B := \{1\}$.

Then $A \cap B = \emptyset$, so $f(A \cap B) = \emptyset$. On the other hand, $f(A) = \{1\} = f(B)$, so $(f(A)) \cap (f(B)) = \{1\}$.

Then $f(A \cap B) = \emptyset \neq \{1\} = (f(A)) \cap (f(B))$.

8. Let $f : X \to Y$ and $g : Y \to Z$. Assume $g \circ f : X \to Z$ is 1-1. Show $f : X \to Y$ is 1-1.

Proof: Let $x', x'' \in X$ and assume that $(g \circ f)(x') = (g \circ f)(x'')$. Want: $x' = x''$.
Let \(y' := f(x') \) and let \(y'' := f(x'') \). Then
\[
 g(y') = g(f(x')) = (g \circ f)(x') = (g \circ f)(x'') = g(f(x'')) = g(y'').
\]
So, since \(g \) is 1-1, we conclude that \(y' = y'' \).
Then \(f(x') = y' = y'' = f(x'') \). So, since \(f \) is 1-1, we conclude that \(x' = x'' \).

9. Prove by induction: For all integers \(n \geq 1 \),
\[
 1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}.
\]

Proof: We have \(1^2 = \frac{1 \cdot (2 \cdot 1 + 1)(2 \cdot 1 - 1)}{3} \). Fix an integer \(k \geq 1 \), and make the induction assumption that
\[
 (*) \quad 1^2 + 3^2 + 5^2 + \cdots + (2k-1)^2 = \frac{k(2k+1)(2k-1)}{3}.
\]
By induction, it suffices to show that
\[
 1^2 + 3^2 + 5^2 + \cdots + (2k-1)^2 + (2k+1)^2 = \frac{(k+1)(2(k+1) + 1)(2(k+1) - 1)}{3}.
\]
Let \(S := 1^2 + 3^2 + 5^2 + \cdots + (2k-1)^2 \). Then we wish to prove:
\[
 S + (2k+1)^2 = \frac{(k+1)(2k+2 + 1)(2k+2 - 1)}{3}.
\]
By \(*\), we have: \(S = \frac{k(2k+1)(2k-1)}{3} \). So we wish to prove:
\[
 \frac{k(2k+1)(2k-1)}{3} + (2k+1)^2 = \frac{(k+1)(2k+3)(2k+1)}{3}.
\]
Multiplying by 3 and dividing by \(2k+1 \), we wish to prove:
\[
 k(2k-1) + (6k+3) = (k+1)(2k + 3).
\]
We have
\[
 k(2k-1) + (6k+3) = 2k^2 - k + 6k + 3
 = 2k^2 + 5k + 3
 = (k+1)(2k + 3).
\]

10. Prove by modified induction: For all integers \(n \geq 20 \), \(200n + 100 < 2^n \).

Proof: We have \(200 \cdot 20 + 100 = 4100 < (1000)^2 < (1024)^2 = (2^{10})^2 = 2^{20} \). Fix an integer \(k \geq 20 \), and make the induction assumption that
By modified induction, it suffices to show that $200(k + 1) + 100 < 2^{k+1}$. Dividing by 2, we wish to prove that $100(k + 1) + 50 < 2^k$. That is, we wish to prove that $100k + 150 < 2^k$.

Because $k \geq 20$, it follows that $50 < 100k$. So, adding $100k + 100$ to both sides, we get $100k + 150 < 200k + 100$. So, from (*), we get $100k + 150 < 2^k$, as desired.

11. Prove by modified induction: For all integers $n \geq 20$, $100n^2 < 2^n$.

Proof: We have $100 \cdot (20^2) = 40000 < (1000)^2 < (1024)^2 = (2^{10})^2 = 2^{20}$. Fix an integer $k \geq 20$, and make the induction assumption that

\[(*) \quad 100k^2 < 2^k.\]

By modified induction, it suffices to show that $100(k + 1)^2 < 2^{k+1}$. That is, we wish to prove that $100k^2 + 200k + 100 < 2^{k+1}$.

By Problem 10, we have $200k + 100 < 2^k$. Combining this with (*), we conclude that $100k^2 + 200k + 100 < 2^k + 2^k = 2 \cdot (2^k) = 2^{k+1}$, as desired.

1. Let A and B be sets. Show that: $A = B \Rightarrow B \subseteq A$.

Proof: Assume $A = B$. We wish to show that $B \subseteq A$.

Given $a_0 \in A$. We wish to show that $a_0 \in B$.

Since $A = B$, we know, $\forall a$, that: $a \in A \iff a \in B$. So, as $a_0 \in A$, we get $a_0 \in B$, as desired.

2. Let A, B and C be sets. Show that: $(A \cap B) \cap C = A \cap (B \cap C)$.

Proof: We must prove both \subseteq and \supseteq.

We first prove \subseteq. Given $x \in (A \cap B) \cap C$. We wish to show that $x \in A \cap (B \cap C)$.

Since $x \in (A \cap B) \cap C$, we know that $x \in A \cap B$ and that $x \in C$. Since $x \in A \cap B$, we know that $x \in A$ and that $x \in B$. Since $x \in B$ and $x \in C$, we know that $x \in B \cap C$. Since $x \in A$ and $x \in B \cap C$, we know that $x \in A \cap (B \cap C)$, concluding the proof of \subseteq.

It remains to prove \supseteq. Given $x \in A \cap (B \cap C)$. We wish to show that $x \in (A \cap B) \cap C$.

Since $x \in A \cap (B \cap C)$, we know that $x \in A$ and that $x \in B \cap C$. Since $x \in B \cap C$, we know that $x \in B$ and that $x \in C$. Since $x \in A$ and $x \in B$, we know that $x \in A \cap B$. Since $x \in A \cap B$ and $x \in C$, we know that $x \in (A \cap B) \cap C$, concluding the proof of \supseteq.

3. Let A, B and C be sets. Show that: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof: We must prove both \subseteq and \supseteq.

We first prove \subseteq. Given $x \in A \cup (B \cap C)$. We wish to show that $x \in (A \cup B) \cap (A \cup C)$.

Because $x \in A \cup (B \cap C)$, it follows that: $(x \in A)$ or $(x \in B \cap C)$. Therefore, we have $(x \in A)$ or $((x \in B)$ and $(x \in C))$. So, since

$$ P \lor (Q \land R) \Rightarrow (P \lor Q) \land (P \lor R),$$

we get: $((x \in A)$ or $(x \in B))$ and $((x \in A)$ or $(x \in C))$. So $(x \in A \cup B)$ and $(x \in A \cup C)$. Then $x \in (A \cup B) \cap (A \cup C)$, concluding the proof of \subseteq.
It remains to prove \supseteq. Let $x \in (A \cup B) \cap (A \cup C)$ be given. We wish to show that $x \in A \cup (B \cap C)$.

Since $x \in (A \cup B) \cap (A \cup C)$, we have: $(x \in A \cup B)$ and $(x \in A \cup C)$. Therefore, we have $((x \in A) \text{ or } (x \in B))$ and $((x \in A) \text{ or } (x \in C))$. So, since

$$P \text{ or } (Q \text{ and } R) \iff (P \text{ or } Q) \text{ and } (P \text{ or } R),$$

we get: $(x \in A) \text{ or } ((x \in B) \text{ and } (x \in C))$. So $x \in A$ or $(x \in B \cap C)$. Then $x \in A \cup (B \cap C)$, concluding the proof of \supseteq.
4. Compute $\bigcap_{j=1}^{\infty} \left[-\frac{1}{j}, \frac{1}{j} \right]$.

Answer: $\{0\}$

5. Compute $\bigcap_{j=1}^{\infty} \left(-\frac{1}{j}, \frac{1}{j} \right)$.

Answer: $\{0\}$