MATH 4604 Spring 2017, Midterm \#1
Handout date: Thursday 23 February 2017
Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.
I. Definitions
A. (5 pts) Let X be a topological space, $f: X \rightarrow \mathbb{R}$ and $a \in \operatorname{dom}[f]$. Then f has a local strict max near a in X means...
B. (5 pts) (Fill in BOTH "..."s in the following.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $a \in \operatorname{dom}[f]$. Then $S S_{a}^{f}: \cdots \rightarrow \mathbb{R}$ is defined by \ldots
C. (5 pts) We defined $\mathcal{O}:=\cdots$.
D. (5 pts) We defined $\mathcal{O}(3):=\cdots$.
E. (5 pts) Let V and W be vector spaces. Then $S B F(V, W):=\cdots$.
F. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $S \subseteq \mathbb{R}$. Then f is differentiable on S means...
II. True or false (no partial credit):
a. (5 pts) Let V be a vector space, $L, M \in \mathcal{L}(V)$. Then $L M \in \mathcal{Q}(V)$.
b. $(5 \mathrm{pts}) \mathcal{O}(1) \subseteq \mathcal{O}(1)$.
c. (5 pts) If V and W are isomorphic vector spaces and V is finite dimensional, then W is also finite dimensional.
d. (5 pts) Let V be a finite dimensional vector space and let $n:=\operatorname{dim} V$. Then V is isomorphic to \mathbb{R}^{n}.
e. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Assume f is differentiable on \mathbb{R} and f is semi-increasing on \mathbb{R}. Then, for all $x \in \mathbb{R}, f^{\prime}(x) \geqslant 0$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE
I. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
I. $\mathrm{D}, \mathrm{E}, \mathrm{F}$
II. a,b,c,d,e
III. 1
III. 2
III. 3
III. 4
III. Hand-graded problems. Show work.

1. (10 pts) Give an example of a polynomial $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

- f is strictly increasing on \mathbb{R} and
- $f^{\prime}(0)=f^{\prime}(3)=0$.

2. (10 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$, and assume that f is differentiable on \mathbb{R}. Assume that $f(0)=0$ and that $f^{\prime} \in \mathcal{O}$. Show that $f \in \mathcal{O}(1)$.
3. (10 pts) Let $f \in \mathcal{O}(2)$ and let $g \in \mathcal{O}(3)$. Show that $g \circ f \in \mathcal{O}(6)$.

NOTE: You may use, without proof, that $\mathcal{O} \circ \mathcal{O} \subseteq \mathcal{O}$, that $|\mathcal{O}| \subseteq \mathcal{O}$ and that $\mathcal{O} \cdot \mathcal{O} \subseteq \mathcal{O}$.
4. (15 pts.) Let $S \subseteq \mathbb{R}$. Recall that S is bounded in \mathbb{R} means: there exist $p, q \in \mathbb{R}$ such that $p \leqslant S \leqslant q$.

Let $f_{1}, f_{2}, f_{3}, \ldots: \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of functions. Assume that $\left\{f_{1}(0), f_{2}(0), f_{3}(0), \cdots\right\}$ is bounded in \mathbb{R}. Assume, for all $j \in \mathbb{N}$, for all $x \in \mathbb{R}$, that f_{j} is differentiable at x and that $\left|f_{j}^{\prime}(x)\right| \leqslant 3$. Show that $\left\{f_{1}(1), f_{2}(1), f_{3}(1), \ldots\right\}$ is bounded in \mathbb{R}.

