MATH 4604 Spring 2017, Midterm #1 Handout date: Thursday 23 February 2017 Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.

I. Definitions

A. (5 pts) Let X be a topological space, $f : X \dashrightarrow \mathbb{R}$ and $a \in \text{dom}[f]$. Then f has a local strict max near a in X means ...

B. (5 pts) (Fill in **BOTH** "..."s in the following.) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$. Let $a \in \text{dom}[f]$. Then $SS_a^f : \cdots \to \mathbb{R}$ is defined by ...

C. (5 pts) We defined $\mathcal{O} := \cdots$.

D. (5 pts) We defined $\mathcal{O}(3) := \cdots$.

E. (5 pts) Let V and W be vector spaces. Then $SBF(V, W) := \cdots$.

F. (5 pts) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$ and let $S \subseteq \mathbb{R}$. Then f is differentiable on S means ...

II. True or false (no partial credit):

a. (5 pts) Let V be a vector space, $L, M \in \mathcal{L}(V)$. Then $LM \in \mathcal{Q}(V)$.

b. (5 pts) $\mathcal{O}(1) \subseteq \mathcal{O}(1)$.

c. (5 pts) If V and W are isomorphic vector spaces and V is finite dimensional, then W is also finite dimensional.

d. (5 pts) Let V be a finite dimensional vector space and let $n := \dim V$. Then V is isomorphic to \mathbb{R}^n .

e. (5 pts) Let $f : \mathbb{R} \to \mathbb{R}$. Assume f is differentiable on \mathbb{R} and f is semi-increasing on \mathbb{R} . Then, for all $x \in \mathbb{R}$, $f'(x) \ge 0$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

I. A,B,C I. D,E,F II. a,b,c,d,e III. 1 III. 2 III. 3 III. 4 III. Hand-graded problems. Show work.

- 1. (10 pts) Give an example of a polynomial $f : \mathbb{R} \to \mathbb{R}$ such that
 - f is strictly increasing on \mathbb{R} and
 - f'(0) = f'(3) = 0.

2. (10 pts) Let $f : \mathbb{R} \to \mathbb{R}$, and assume that f is differentiable on \mathbb{R} . Assume that f(0) = 0 and that $f' \in \mathcal{O}$. Show that $f \in \mathcal{O}(1)$. 3. (10 pts) Let $f \in \mathcal{O}(2)$ and let $g \in \mathcal{O}(3)$. Show that $g \circ f \in \mathcal{O}(6)$.

NOTE: You may use, without proof, that $\mathcal{O} \circ \mathcal{O} \subseteq \mathcal{O}$, that $|\mathcal{O}| \subseteq \mathcal{O}$ and that $\mathcal{O} \cdot \mathcal{O} \subseteq \mathcal{O}$.

4. (15 pts.) Let $S \subseteq \mathbb{R}$. Recall that S is **bounded in** \mathbb{R} means: there exist $p, q \in \mathbb{R}$ such that $p \leq S \leq q$.

Let $f_1, f_2, f_3, \ldots : \mathbb{R} \to \mathbb{R}$ be a sequence of functions. Assume that $\{f_1(0), f_2(0), f_3(0), \cdots\}$ is bounded in \mathbb{R} . Assume, for all $j \in \mathbb{N}$, for all $x \in \mathbb{R}$, that f_j is differentiable at x and that $|f'_j(x)| \leq 3$. Show that $\{f_1(1), f_2(1), f_3(1), \ldots\}$ is bounded in \mathbb{R} .