# MATH 4604 Spring 2017, Midterm \#2 

Handout date: Thursday 23 March 2017
Instructor: Scot Adams

PRINT YOUR NAME:

PRINT YOUR @umn.edu EMAIL ADDRESS:

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.

Turn off all mobile electronic devices.
I. Definitions
A. (5 pts) Let $V$ and $W$ be vector spaces. Then $\mathcal{Q}(V, W):=\cdots$
B. ( 5 pts ) Let $V$ and $W$ be vector spaces. Then $\operatorname{SBF}(V, W):=\cdots$
C. (5 pts) Let $V$ be a finite dimensional vector space, $n:=\operatorname{dim} V$, $\mathcal{B} \in \mathrm{OB}(V)$ an ordered basis. Then $\mathcal{B}$ determines a topology, $\mathcal{T}_{\mathcal{B}}:=\cdots$.
D. (5 pts) Let $V$ be a vector space and let $\|\bullet\|: V \rightarrow[0, \infty)$. Then $\|\bullet\|$ is a norm on $V$ if $\ldots$
E. (5 pts) Let $V$ be a vector space and let $B \in \operatorname{SBF}(V, \mathbb{R})$. Then $B$ is positive definite means: ...
F. (5 pts) Let $n \in \mathbb{N}$ and let $A \in \mathbb{R}_{\text {sym }}^{n \times n}$. Then $A \geqslant 0$ means: ...
II. True or false (no partial credit):
a. ( 5 pts ) Let $F: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ denote the cofactor map, so, $\forall A \in \mathbb{R}^{2 \times 2}$, $F(A)$ is the cofactor matrix of $A$. Then $F \in \mathcal{P}_{3}\left(\mathbb{R}^{2 \times 2}, \mathbb{R}^{2 \times 2}\right)$.
b. (5 pts) Let $V$ be a finite dimensional vector space. Then, for all $\mathcal{A}, \mathcal{B} \in \mathrm{OB}(V)$, we have $\mathcal{T}_{\mathcal{A}}=\mathcal{T}_{\mathcal{B}}$.
c. (5 pts) We have $[\mathcal{O}(2)] \cdot[\mathcal{O}(4)] \subseteq \mathcal{O}(8)$.
d. (5 pts) There exists a vector space isomorphism $\mathbb{R}^{5} \rightarrow \mathbb{R}^{6}$.
e. (5 pts) Let $V$ and $W$ be vector spaces and let $B \in \mathcal{B}(V, V, W)$. Then there exists $S \in \operatorname{SBF}(V, W)$ such that, $\quad \forall v \in V, S(v, v)=B(v, v)$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE
I. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
I. $\mathrm{D}, \mathrm{E}, \mathrm{F}$
II. a,b,c,d,e
III. 1
III. 2
III. 3
III. 4
III. Hand-graded problems. Show work.

1. (10 pts) Find $f \in \mathcal{O}$ and $g \in \mathcal{O}$ such that $g \circ f \notin \mathcal{O}$.
2. (10 pts) Let $n \in \mathbb{N}$. Let $\cdot: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ denote the dot product. Let $A \in \mathbb{R}^{n \times n}$. Recall that $A^{t} \in \mathbb{R}^{n \times n}$ denotes the transpose of $A$. Let $v, w \in \mathbb{R}^{n}$. Show that $v \cdot\left[L_{A}(w)\right]=\left[L_{A^{t}}(v)\right] \cdot w$.
3. (10 pts) Let $V, W$ and $X$ be vector spaces. Let $B \in \mathcal{B}(V, W, X)$. Show: $B \in \mathcal{Q}(V \times W, X)$. That is, show: $\exists A \in \operatorname{SBF}(V \times W, X)$ such that $\forall v \in V, \forall w \in W, A((v, w),(v, w))=B(v, w)$.
4. (15 pts.) Let $\psi \in \mathcal{O}(7)$ and $\phi \in \mathcal{O}(1)$. Show that $\psi \circ \phi \in \mathcal{O}(7)$.

NOTE: You may use without proof, all of the following facts:

$$
|\mathcal{O}| \subseteq \mathcal{O}, \quad \mathcal{O} \cdot \mathcal{O} \subseteq \mathcal{O}, \quad \mathcal{O} \circ \mathcal{O} \subseteq \mathcal{O}, \quad \mathcal{O}(1) \subseteq \mathcal{O},
$$

$$
\forall n \in \mathbb{N}, \mathcal{O}^{n} \subseteq \mathcal{O}
$$

