
Writeup on integration for MATH 4604 (Advanced Calculus II)
Spring 2015

We adopt here all the notation from the handout on measures. This handout is a contin-
uation of that one.

Definition: Let n ∈ N, let D ⊆ Rn and let f : D → R. Then the ordinate set of f is
defined to be Of := {(x, y) ∈ D × R | 0 < y < f(x)} ⊆ Rn+1.

Definition: Let n ∈ N, let D ⊆ Rn and let f : D → R. Then f is integrable means: the
sets Of and O−f are both contented in Rn+1. If f is integrable, then the integral of f is

defined to be

∫
D

f := [ vn+1(Of ) ] − [ vn+1(O−f ) ].

Definition: For any n ∈ N, for any nonempty S ⊆ Rn, diamS := sup
x,y∈S

|x− y|.

Definition: For any n ∈ N, for any nonempty F ⊆ 2R
n\{∅}, meshF := max

F∈F
diamF .

Recall that I ⊆ 2R denotes the set of all intervals in the real number line, R.

Fact (chopOnion): Let n ∈ N, let S ∈ Cn\{∅} and let δ > 0. Then there exists a finite
nonempty pairwise-disjoint F ∈ Cn\{∅} such that ∪F = S and such that meshF < δ.

Proof: Choose m ∈ N such that
√
n/m < δ. Let I0 := { [ j/m , (j+1)/m) ) | j ∈ Z}. Then

I0 ⊆ I ⊆ 2R. Let G := {I1 × · · · × In | I1, . . . , In ∈ I0}. Then G ⊆ Bn ⊆ 2R
n

. Also, G is
pairwise-disjoint and ∪G = Rn. Also, for all G ∈ G, we have diamG =

√
n/m < δ. We

define F := {S ∩G |G ∈ G, S ∩G 6= ∅}. QED

Lemma (inOutApprox2): Let n ∈ N, let S ⊆ Rn be bounded and let σ ≥ 0. Then:
(+) [ ( S is contented ) and ( vn(S) = σ ) ]

⇔
(∗) ∀ε > 0,∃K,L ∈ Kn s.t. K ⊆ S ⊆ L and s.t. σ − ε ≤ vKn (K) ≤ vKn (L) ≤ σ + ε.

Proof: Proof of ⇒: Assume (+). Given ε > 0. We wish to prove
(∗′) ∃K,L ∈ Kn s.t. K ⊆ S ⊆ L and s.t. σ − ε ≤ vKn (K) ≤ vKn (L) ≤ σ + ε.

Since vn(S) = vn(S) = σ, choose K ∈ Kn such that K ⊆ S and such that σ − ε ≤ vKn (K).
Since vn(S) = vn(S) = σ, choose L ∈ Kn such that S ⊆ L and such that vKn (L) ≤ σ + ε.
Then K ⊆ S ⊆ L, and it remains only to show that vKn (K) ≤ vKn (L). However, K ⊆ L,
and so, by monotonicity of vn, we get vKn (K) ≤ vKn (L), as desired. End of proof of ⇒.

Proof of ⇐: Assume (∗). We wish to prove vn(S) = vn(S) = σ. Given ε > 0. We
wish to prove σ − ε ≤ vn(S) ≤ vn(S) ≤ σ + ε.

By (∗), choose K,L ∈ Kn such that K ⊆ S ⊆ L and σ− ε ≤ vKn (K) ≤ vKn (L) ≤ σ+ ε.
By definition of vn, we have vKn (K) ≤ vn(S). By (a) of Fact (innerOutr) in the handout
on measures, we have vn(S) ≤ vn(S). By definition of vn, we have vn(S) ≤ vKn (L). Then

σ − ε ≤ vKn (K) ≤ vn(S) ≤ vn(S) ≤ vKn (L) ≤ σ + ε,
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so σ − ε ≤ vn(S) ≤ vn(S) ≤ σ + ε, as desired. End of proof of ⇐. QED

Note that Lemma (inOutApprox2) may be used to give a quick proof of Lemma
(inOutApprox) in the writeup on measures.

Lemma (prodMsr): Let m,n ∈ N, let S ∈ Cm and let T ∈ Cn. Then S × T ∈ Cm+n and
vm+n(S × T ) = [vm(S)][vn(T )].

Proof: Let σ := vm(S) and let τ := vn(T ). We wish to prove: S × T ∈ Cm+n and
vm+n(S×T ) = στ . Given ε > 0. By Lemma (inOutApprox2), we wish to show that there
exist A,B ∈ Km+n such that

A ⊆ S × T ⊆ B and στ − ε ≤ vKm+n(A) ≤ vKm+n(B) ≤ στ + ε.

Choose ε0 > 0 such that ε0 ≤ 1 and (σ + τ + 1)ε0 ≤ ε. By Lemma (inOutApprox2),
choose K,L ∈ Km such that

K ⊆ S ⊆ L and σ − ε0 ≤ vKm(K) ≤ vKm(L) ≤ σ + ε0.

By Lemma (inOutApprox2), choose P,Q ∈ Kn such that

P ⊆ T ⊆ Q and τ − ε0 ≤ vKn (P ) ≤ vKn (Q) ≤ τ + ε0.

Let A := K × P and B := L × Q. Then A ⊆ S × T ⊆ B, and it remains to show that
στ − ε ≤ vKm+n(A) ≤ vKm+n(B) ≤ στ + ε.

We leave it as an exercise to prove: vKm+n(B) = (vKm(L))(vKn (Q)). Then

vKm+n(B) = (vKm(L))(vKn (Q))

≤ (σ + ε0)(τ + ε0)

= στ + (σ + τ + ε0)ε0

≤ στ + (σ + τ + 1)ε0

≤ στ + ε.

Also, as A ⊆ B, we get vKm+n(A) ≤ vKm+n(B). It remains to prove: vKm+n(A) ≥ στ − ε.
We leave it as an exercise to prove: vKm+n(A) = (vKm(K))(vKn (P )). Then

vKm+n(A) = (vKm(K))(vKn (P ))

≥ (σ − ε0)(τ − ε0)

= στ − (σ + τ − ε0)ε0

≥ στ − (σ + τ + 1)ε0

≥ στ − ε,

as desired. QED

Lemma (ctdContin): Let n ∈ N and let S ⊆ Rn. Assume, for all ε > 0 that there exist
R, T ∈ Cn such that R ⊆ S ⊆ T and such that vn(T\R) ≤ ε. Then S ∈ Cn.
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Proof: Choose T0 ∈ Cn such that S ⊆ T0. Since T0 ∈ Cn, T0 is bounded. So, since S ⊆ T0,
S is bounded. Given ε > 0. By Lemma (inOutApprox) from the handout on measures,
we wish to prove that there exist K,L ∈ Kn such that K ⊆ S ⊆ L and vKn (L\K) ≤ ε.

Choose R, T ∈ Cn such that R ⊆ S ⊆ T and such that vn(T\R) ≤ ε/3. By definition
of vn, choose K ∈ Kn such that K ⊆ R and such that vKn (K) ≥ (vn(R)) − (ε/3). Since
R ∈ Cn, we have vn(R) = vn(R). Then vKn (K) ≥ (vn(R)) − (ε/3). By definition of vn,
choose L0 ∈ Kn such that T ⊆ L0 and such that vKn (L0) ≤ (vn(T )) + (ε/3). Since
T ∈ Cn, we have vn(T ) = vn(T ). Then vKn (L0) ≤ (vn(T )) + (ε/3). Since T ∈ Cn, it
follows that T is bounded. Then choose a bounded B ∈ Bn such that T ⊆ B. Let
L := L0 ∩ B. Since L0 ∈ Kn and since B ∈ Bn ⊆ Kn, it follows that L ∈ Kn. We have
K ⊆ R ⊆ S ⊆ T ⊆ L0 ∩B = L, so K ⊆ S ⊆ L. It remains to show that vKn (L\K) ≤ ε.

Since L ⊆ L0, we get vKn (L) ≤ vKn (L0). Since B is bounded and K ⊆ L ⊆ B, it
follows that K and L are bounded. Then vKn (K) = vn(K) and vKn (L) = vn(L). Then
vn(K) = vKn (K) ≥ (vn(R)) − (ε/3) and vn(L) = vKn (L) ≤ vKn (L0) ≤ (vn(T )) + (ε/3).
Then vn(R\K) = (vn(R)) − (vn(K)) ≤ ε/3 and vn(L\T ) = (vn(L)) − (vn(T )) ≤ ε/3.
Also, recall that vn(T\R) ≤ ε/3. Then, as L\K = (L\T ) ∪ (T\R) ∪ (R\K), we see that
vn(L\K) ≤ (ε/3) + (ε/3) + (ε/3) = ε, as desired. QED

Remark (supInfDiff): Let D be a set, let g : D → R, let F ⊆ D and let ε0 > 0. Assume,
for all x, y ∈ F , that |(g(x))− (g(y))| < ε0. Then

(
sup
F

g
)
−
(

inf
F
g
)
≤ ε0.

Proof: Let M := sup
F

g, let m := inf
F
g and let v := M −m. We wish to show that v ≤ ε0.

Assume, for a contradiction, that v > ε0.
Let δ := v − ε0. Then δ > 0. Choose y ∈ F such that g(y) ≥ M − (δ/2). Choose

x ∈ F such that g(x) ≤ m+ (δ/2). Then

v = M −m ≤ [(g(y)) + (δ/2)]− [(g(x))− (δ/2)] = (g(y))− (g(x)) + δ.

We have v > ε0 > 0, so v = |v|. Then v = |v| ≤ |(g(y))− (g(x))|+ δ < ε0 + δ = v, and so
we get v < v, contradiction. QED

Lemma (contInt): Let n ∈ N, let D ∈ Cn be closed and let g : D → R be continuous. Then
g is integrable.

Proof: We will only prove that Og ∈ Cn+1, and will leave it as an (unassigned) exercise to
the reader to prove that O−g ∈ Cn+1. Since D ∈ Cn, D is bounded. Since D is closed and
bounded, D is compact. So, since g is continuous, it follows that g : D → R is bounded and
uniformly continuous. Choose K > 0 such that g(D) ⊆ [−K,K]. Then Og ⊆ D × (0,K].
Then Og is bounded. Given ε > 0. By Lemma (ctdContin), it suffices to prove that there
exist R, T ∈ Cn+1 such that R ⊆ Og ⊆ T and vn+1(T\R) ≤ ε.

Choose ε0 > 0 such that [vn(D)]ε0 ≤ ε. By uniform continuity of g, choose δ > 0 such
that, for all x, y ∈ D, we have:(

|x− y| < δ
)

⇒
(
|(g(x))− (g(y))| < ε0

)
.

By Fact (chopOnion), choose a finite, pairwise-disjoint F ⊆ Cn\{∅} such that ∪F = D
and such that meshF < δ.

3



For all F ∈ F , let mF := inf
F
g and MF := sup

F
g; then mF ≤MF . For all F ∈ F , for

all x, y ∈ F , we have |x− y| ≤ diamF ≤ meshF < δ, so |(g(x))− (g(y))| < ε0.
By Remark (supInfDiff), for all F ∈ F , we have MF −mF ≤ ε0. For all F ∈ F , define

RF :=

{
F × (0,mF ], if mF > 0
∅, if mF ≤ 0

and TF :=

{
F × (0,MF ], if MF > 0
∅, if MF ≤ 0;

then RF ⊆ Og ∩ (F × R) ⊆ TF and TF \RF ⊆ F × [mF ,MF ].

Let R :=
⋃
F∈F

RF and T :=
⋃
F∈F

TF . Since ∪F = D and since Og ⊆ D × R, we

conclude that
⋃
F∈F

Og ∩ (F × R) = Og ∩ (D × R) = Og. Then

R ⊆ Og ⊆ T and T\R ⊆
⋃
F∈F

(F × [mF ,MF ]).

It remains to show that vn+1(T\R) ≤ ε.
We have

vn+1(T\R) ≤
∑
F∈F

(vn+1(F × [mF ,MF ]))

≤
∑
F∈F

([vn(F )][MF −mF ])

≤
∑
F∈F

([vn(F )]ε0)

≤

[∑
F∈F

[vn(F )]

]
ε0

= [vn(∪F)] ε0 = [vn(D)]ε0 ≤ ε,

as desired. QED

Lemma (puffUpBox): Let n ∈ N, let B ∈ Bn be bounded and let ε > 0. Then there exists
an open, bounded C ∈ Bn such that both B ⊆ C and vBn (C) < (vBn (B)) + ε.

Proof: If B = ∅, the result follows with C := ∅. We therefore assume that B 6= ∅. Choose
I1, . . . , In ∈ I such that B = I1× · · ·× In. Since B is bounded, I1, . . . , In are all bounded.
Define a polynomial f : R → R of degree n by f(t) = [(`(I1)) + t] · · · [(`(In)) + t]. Then
f(0) = [`(I1)] · · · [`(In)] = vBn (B). So, by continuity of f at 0, choose η > 0 such that,
for all t ∈ (−η, η), we have |(f(t)) − (vBn (B))| < ε. Let δ := η/2. Then δ ∈ (−η, η), so
|(f(δ))− (vBn (B))| < ε, so (f(δ))− (vBn (B)) < ε, so f(δ) < (vBn (B)) + ε.

For all integers k ∈ [1, n], choose an open bounded Jk ∈ I such that Ik ⊆ Jk and such
that `(Jk) ≤ (`(Ik)) + δ. Let C := J1 × · · · × Jn. Then C is open, C is bounded, C ∈ Bn
and B = I1 × · · · × In ⊆ J1 × · · · × Jn ⊆ C. It remains to show that vBn (C) < (vBn (B)) + ε.
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We have [`(J1)] · · · [`(Jn)] ≤ [(`(I1))+δ] · · · [(`(In))+δ]. That is, vBn (C) ≤ f(δ). Recall
that f(δ) < (vBn (B)) + ε. Then vBn (C) ≤ f(δ) < (vBn (B)) + ε, as desired. QED

Lemma (puffUpNegl): Let n ∈ N, let Z ⊆ Rn be negligible and let ε > 0. Then there exists
an open, bounded U ∈ Kn such that both Z ⊆ U and vn(U) < ε.

Proof: Since Z is negligible, it follows that Z is bounded. Choose a bounded B ∈ Bn
such that Z ⊆ B. We have vn(Z) = 0. By definition of vn, choose K0 ∈ Kn such that
both Z ⊆ K0 and vKn (K0) ≤ ε/2. Let K := K0 ∩ B. Then K ∈ Kn and Z ⊆ K. Also,
vKn (K) ≤ vKn (K0) ≤ ε/2. Since B is bounded, K is bounded. Any bounded kidset is
contented, so K ∈ Cn. Moreover, vn(K) = vKn (K). Then vn(K) ≤ ε/2.

By definition of kidset, choose a finite, pairwise-disjoint F ⊆ Bn such that ∪F = K.
For all F ∈ F , we have F ⊆ K; so, as K is bounded, F is bounded. Let m := #F be the
number of elements in F . Choose ε0 > 0 such that mε0 ≤ ε/2.

By Lemma (puffUpBox), for all F ∈ F , choose an open, bounded CF ∈ Bn such that

F ⊆ CF and vBn (CF ) < (vBn (F )) + ε0. Let U :=
⋃
F∈F

CF . Then U is open and bounded.

Moreover, U ∈ Kn and Z ⊆ K = ∪F ⊆
⋃
F∈F

CF = U . It remains to show that vn(U) ≤ ε.

We have vn(∪F ) = vn(K) ≤ ε/2. Recall that mε0 < ε/2. Then

vn(U) ≤
∑
F∈F

(vn(CF ))

<
∑
F∈F

[(vn(F )) + ε0]

≤

[∑
F∈F

(vn(F ))

]
+ [#F ]ε0

= [vn(∪F)] +mε0 ≤ ε

2
+
ε

2
= ε,

as desired. QED

Definition: Let n ∈ N, let D ⊆ Rn, let f : D → R and let A ⊆ D. Then f is integrable
on A means: f |A : A→ R is integrable.

Remark (approxInt): Let n ∈ N, let D ⊆ Rn be bounded and let f : D → R be bounded.
Assume, for all ε > 0 that there exists U ∈ Cn such that vn(U) ≤ ε and such that f is
integrable on D\U . Then f is integrable.

Proof: We will only prove that Of ∈ Cn+1, and will leave it as an (unassigned) exercise to
the reader to prove that O−f ∈ Cn+1. Choose K > 0 such that f(D) ⊆ [−K,K]. Then
Of ⊆ D × (0,K]. Then Of is bounded. Given ε > 0. By Lemma (ctdContin), it suffices
to prove that there exist R, T ∈ Cn+1 such that R ⊆ Of ⊆ T and vn+1(T\R) ≤ ε.

Choose ε0 > 0 such that ε0K ≤ ε. Choose U ∈ Cn such that vn(U) ≤ ε0 and such that
f is integrable on D\U . Let R := Of |(D\U). Then R = Of ∩ ((D\U)×R). Then R ⊆ Of .
Let Y := U × (0,K]. Then Y ⊇ Of ∩ (U ×R). Let T := R ∪ Y . Then T ⊇ Of ∩ (D ×R).
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So, since Of ⊆ D × R, we see that T ⊇ Of . Then R ⊆ Of ⊆ T , and it remains to show
that vn+1(T\R) ≤ ε.

Since T\R = (R ∪ Y )\R ⊆ Y , we get vn+1(T\R) ≤ vn+1(Y ). Since Y = U × (0,K],
it follows that vn+1(Y ) = [vn(U)][K − 0]. So, as vn(U) ≤ ε0, we see that vn+1(Y ) ≤ ε0K.
Then vn+1(T\R) ≤ vn+1(Y ) ≤ ε0K ≤ ε, as desired. QED

Definition: Let n ∈ N, let D ⊆ Rn and let f : D → R. By the discontinity set of f , we
mean DSC f := {x ∈ D | f is discontinuous at x}.

Theorem (Rnint): Let n ∈ N and let f : Rn → R be bounded. Assume both that
f−1(R\{0}) is bounded and that DSC f is negligible. Then f is integrable.

Proof: We wish to prove that Of ,O−f ∈ Cn+1. Because f−1(R\{0}) is bounded, choose a
compact D0 ∈ Bn such that f−1(R\{0}) ⊆ D0. Let f0 := f |D0 : D0 → R. Then we have
both Of = Of0 and O−f = O−f0 , and so it suffices to prove that Of0 ,O−f0 ∈ Cn+1, i.e.,
that f0 : D0 → R is integrable.

Since D0 is compact, D0 is bounded. Since f is bounded, f0 is bounded. Given ε > 0.
By Remark (approxInt), it suffices to show that there exists U ∈ Cn such that vn(U) ≤ ε
and such that f0 is integrable on D0\U .

Let Z := DSC f . Then Z is negligible. By Lemma (puffUpNegl), choose an open,
bounded U ∈ Kn such that both Z ⊆ U and vn(U) < ε. As U is a bounded kidset, we see
that U is contented, i.e., that U ∈ Cn. It remains to show that f0 is integrable on D0\U .
Let D := D0\U and let g := f0|D : D → R. We wish to show that g : D → R is integrable.

Because D0 is compact, D0 is closed and bounded. So, since U is open, we see that
D0\U is closed. That is, D is closed. We have D0 ∈ Bn ⊆ Kn, so D0 is a bounded kidset,
so D0 ∈ Cn. So, since U ∈ Cn, we see that D0\U ∈ Cn. That is, D ∈ Cn. Then, by Lemma
(contInt), it suffices to show that g : D → R is continuous.

We have D = D0\U ⊆ D. Also, f0 = f |D0 and g = f0|D. Then g = f |D. We have
D0 ⊆ Rn and DSC f = Z ⊆ U , so D0\U ⊆ Rn\(DSC f). That is, D ⊆ Rn\(DSC f). Then
f |D : D → R is continuous. That is, g : D → R is continuous, as desired. QED

Remark (Rnint): Let n ∈ N, let D ⊆ Rn and let g : D → R. Define f : Rn → R by

f(x) =

{
g(x), if x ∈ D
0, if x /∈ D.

Then
(i) DSC f ⊆ (DSC g) ∪ (∂D) and
(ii) Of = Og and O−f = O−g and
(iii) f−1(R\{0}) ⊆ g−1(R\{0}).

Proof: We leave (ii) and (iii) as exercises and prove only (i).
Let x ∈ DSC f . Assume that x /∈ DSC g. We wish to show that x ∈ ∂D.
Recall that ∂D = D \D◦. Because Rn\D is an open set and because f = 0 on Rn\D,

it follows that f is continuous on Rn\D. Then x /∈ Rn\D, i.e., x ∈ D. It remains to prove
that x /∈ D◦. Assume, for a contradiction, that x ∈ D◦.
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As x /∈ DSC g, we know that g is continuous at x. However f = g on D and D◦ ⊆ D,
so f = g on D◦. So, since D◦ is open and since g is continuous at x, it follows that f is
continuous at x. However, x ∈ DSC f , i.e., f is discontinuous at x, contradiction. QED

Theorem (intCriterion): Let n ∈ N, let D ⊆ Rn and let g : D → R be bounded. Assume
(a) ∂D is negligible,
(b) g−1(R\{0}) is bounded and
(c) DSC g is negligible.

Then g is integrable.

Proof: Define f : Rn → R by

f(x) =

{
g(x), if x ∈ D
0, if x /∈ D.

Since g : D → R is bounded, f : Rn → R is bounded. Since g−1(R\{0}) is bounded,
by (iii) of Remark (Rnint), we see that f−1(R\{0}) is bounded. Since DSC g is negligible
and since ∂D is negligible, by (i) of Remark (Rnint), we see that DSC f is negligible. Then,
by Theorem (Rnint), we conclude that f is integrable, i.e., that Of ,O−f ∈ Cn+1. Then,
by (ii) of Remark (Rnint), we see that Og,O−g ∈ Cn+1, i.e., that g is integrable. QED

Since ∂Rn = ∅ is negligible, Theorem (intCriterion) implies Theorem (Rnint). Also,
recall that any contented set has negligible boundary. So, we get the following:

Corollary: Let n ∈ N, let D ⊆ Rn be contented and let g : D → R be bounded. Assume
both that g−1(R\{0}) is bounded and that DSC g is negligible. Then g is integrable.
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