Writeup on integration for MATH 4604 (Advanced Calculus II) Spring 2015

We adopt here all the notation from the handout on measures. This handout is a continuation of that one.

Definition: Let $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^{n}$ and let $f: D \rightarrow \mathbb{R}$. Then the ordinate set of f is defined to be $\mathcal{O}_{f}:=\{(x, y) \in D \times \mathbb{R} \mid 0<y<f(x)\} \subseteq \mathbb{R}^{n+1}$.

Definition: Let $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^{n}$ and let $f: D \rightarrow \mathbb{R}$. Then f is integrable means: the sets \mathcal{O}_{f} and \mathcal{O}_{-f} are both contented in \mathbb{R}^{n+1}. If f is integrable, then the integral of f is defined to be $\int_{D} f:=\left[v_{n+1}\left(\mathcal{O}_{f}\right)\right]-\left[v_{n+1}\left(\mathcal{O}_{-f}\right)\right]$.

Definition: For any $n \in \mathbb{N}$, for any nonempty $S \subseteq \mathbb{R}^{n}, \quad \operatorname{diam} S:=\sup _{x, y \in S}|x-y|$.
Definition: For any $n \in \mathbb{N}$, for any nonempty $\mathcal{F} \subseteq 2^{\mathbb{R}^{n}} \backslash\{\emptyset\}, \quad \operatorname{mesh} \mathcal{F}:=\max _{F \in \mathcal{F}} \operatorname{diam} F$.
Recall that $\mathcal{I} \subseteq 2^{\mathbb{R}}$ denotes the set of all intervals in the real number line, \mathbb{R}.
Fact (chopOnion): Let $n \in \mathbb{N}$, let $S \in \mathcal{C}_{n} \backslash\{\emptyset\}$ and let $\delta>0$. Then there exists a finite nonempty pairwise-disjoint $\mathcal{F} \in \mathcal{C}_{n} \backslash\{\emptyset\}$ such that $\cup \mathcal{F}=S$ and such that mesh $\mathcal{F}<\delta$.

Proof: Choose $m \in \mathbb{N}$ such that $\sqrt{n} / m<\delta$. Let $\left.\mathcal{I}_{0}:=\{[j / m,(j+1) / m)) \mid j \in \mathbb{Z}\right\}$. Then $\mathcal{I}_{0} \subseteq \mathcal{I} \subseteq 2^{\mathbb{R}}$. Let $\mathcal{G}:=\left\{I_{1} \times \cdots \times I_{n} \mid I_{1}, \ldots, I_{n} \in \mathcal{I}_{0}\right\}$. Then $\mathcal{G} \subseteq \mathcal{B}_{n} \subseteq 2^{\mathbb{R}^{n}}$. Also, \mathcal{G} is pairwise-disjoint and $\cup \mathcal{G}=\mathbb{R}^{n}$. Also, for all $G \in \mathcal{G}$, we have $\operatorname{diam} G=\sqrt{n} / m<\delta$. We define $\mathcal{F}:=\{S \cap G \mid G \in \mathcal{G}, S \cap G \neq \emptyset\}$. QED

Lemma (inOutApprox2): Let $n \in \mathbb{N}$, let $S \subseteq \mathbb{R}^{n}$ be bounded and let $\sigma \geq 0$. Then:
$(+) \quad\left[(S\right.$ is contented $)$ and $\left.\left(v_{n}(S)=\sigma\right)\right]$
\Leftrightarrow
(*) $\forall \varepsilon>0, \exists K, L \in \mathcal{K}_{n}$ s.t. $K \subseteq S \subseteq L$ and s.t. $\sigma-\varepsilon \leq v_{n}^{\mathcal{K}}(K) \leq v_{n}^{\mathcal{K}}(L) \leq \sigma+\varepsilon$.
Proof: Proof of \Rightarrow : Assume (+). Given $\varepsilon>0$. We wish to prove
$\left(*^{\prime}\right) \exists K, L \in \mathcal{K}_{n}$ s.t. $K \subseteq S \subseteq L$ and s.t. $\sigma-\varepsilon \leq v_{n}^{\mathcal{K}}(K) \leq v_{n}^{\mathcal{K}}(L) \leq \sigma+\varepsilon$.
Since $\underline{v}_{n}(S)=v_{n}(S)=\sigma$, choose $K \in \mathcal{K}_{n}$ such that $K \subseteq S$ and such that $\sigma-\varepsilon \leq v_{n}^{\mathcal{K}}(K)$. Since $\bar{v}_{n}(S)=v_{n}(S)=\sigma$, choose $L \in \mathcal{K}_{n}$ such that $S \subseteq L$ and such that $v_{n}^{\mathcal{K}}(L) \leq \sigma+\varepsilon$. Then $K \subseteq S \subseteq L$, and it remains only to show that $v_{n}^{\overline{\mathcal{K}}}(K) \leq v_{n}^{\mathcal{K}}(L)$. However, $K \subseteq L$, and so, by monotonicity of v_{n}, we get $v_{n}^{\mathcal{K}}(K) \leq v_{n}^{\mathcal{K}}(L)$, as desired. End of proof of \Rightarrow.

Proof of \Leftarrow : Assume $(*)$. We wish to prove $\underline{v}_{n}(S)=\bar{v}_{n}(S)=\sigma$. Given $\varepsilon>0$. We wish to prove $\sigma-\varepsilon \leq \underline{v}_{n}(S) \leq \bar{v}_{n}(S) \leq \sigma+\varepsilon$.

By (*), choose $K, L \in \mathcal{K}_{n}$ such that $K \subseteq S \subseteq L$ and $\sigma-\varepsilon \leq v_{n}^{\mathcal{K}}(K) \leq v_{n}^{\mathcal{K}}(L) \leq \sigma+\varepsilon$. By definition of \underline{v}_{n}, we have $v_{n}^{\mathcal{K}}(K) \leq \underline{v}_{n}(S)$. By (a) of Fact (innerOutr) in the handout on measures, we have $\underline{v}_{n}(S) \leq \bar{v}_{n}(S)$. By definition of \bar{v}_{n}, we have $\bar{v}_{n}(S) \leq v_{n}^{\mathcal{K}}(L)$. Then

$$
\sigma-\varepsilon \leq v_{n}^{\mathcal{K}}(K) \leq \underline{v}_{n}(S) \leq \bar{v}_{n}(S) \leq v_{n}^{\mathcal{K}}(L) \leq \sigma+\varepsilon
$$

so $\sigma-\varepsilon \leq \underline{v}_{n}(S) \leq \bar{v}_{n}(S) \leq \sigma+\varepsilon$, as desired. End of proof of \Leftarrow. QED
Note that Lemma (inOutApprox2) may be used to give a quick proof of Lemma (inOutApprox) in the writeup on measures.

Lemma (prodMsr): Let $m, n \in \mathbb{N}$, let $S \in \mathcal{C}_{m}$ and let $T \in \mathcal{C}_{n}$. Then $S \times T \in \mathcal{C}_{m+n}$ and $v_{m+n}(S \times T)=\left[v_{m}(S)\right]\left[v_{n}(T)\right]$.

Proof: Let $\sigma:=v_{m}(S)$ and let $\tau:=v_{n}(T)$. We wish to prove: $S \times T \in \mathcal{C}_{m+n}$ and $v_{m+n}(S \times T)=\sigma \tau$. Given $\varepsilon>0$. By Lemma (inOutApprox2), we wish to show that there exist $A, B \in \mathcal{K}_{m+n}$ such that

$$
A \subseteq S \times T \subseteq B \quad \text { and } \quad \sigma \tau-\varepsilon \leq v_{m+n}^{\mathcal{K}}(A) \leq v_{m+n}^{\mathcal{K}}(B) \leq \sigma \tau+\varepsilon
$$

Choose $\varepsilon_{0}>0$ such that $\varepsilon_{0} \leq 1$ and $(\sigma+\tau+1) \varepsilon_{0} \leq \varepsilon$. By Lemma (inOutApprox2), choose $K, L \in \mathcal{K}_{m}$ such that

$$
K \subseteq S \subseteq L \quad \text { and } \quad \sigma-\varepsilon_{0} \leq v_{m}^{\mathcal{K}}(K) \leq v_{m}^{\mathcal{K}}(L) \leq \sigma+\varepsilon_{0}
$$

By Lemma (inOutApprox2), choose $P, Q \in \mathcal{K}_{n}$ such that

$$
P \subseteq T \subseteq Q \quad \text { and } \quad \tau-\varepsilon_{0} \leq v_{n}^{\mathcal{K}}(P) \leq v_{n}^{\mathcal{K}}(Q) \leq \tau+\varepsilon_{0}
$$

Let $A:=K \times P$ and $B:=L \times Q$. Then $A \subseteq S \times T \subseteq B$, and it remains to show that $\sigma \tau-\varepsilon \leq v_{m+n}^{\mathcal{K}}(A) \leq v_{m+n}^{\mathcal{K}}(B) \leq \sigma \tau+\varepsilon$.

We leave it as an exercise to prove: $v_{m+n}^{\mathcal{K}}(B)=\left(v_{m}^{\mathcal{K}}(L)\right)\left(v_{n}^{\mathcal{K}}(Q)\right)$. Then

$$
\begin{aligned}
v_{m+n}^{\mathcal{K}}(B) & =\left(v_{m}^{\mathcal{K}}(L)\right)\left(v_{n}^{\mathcal{K}}(Q)\right) \\
& \leq\left(\sigma+\varepsilon_{0}\right)\left(\tau+\varepsilon_{0}\right) \\
& =\sigma \tau+\left(\sigma+\tau+\varepsilon_{0}\right) \varepsilon_{0} \\
& \leq \sigma \tau+(\sigma+\tau+1) \varepsilon_{0} \\
& \leq \sigma \tau+\varepsilon .
\end{aligned}
$$

Also, as $A \subseteq B$, we get $v_{m+n}^{\mathcal{K}}(A) \leq v_{m+n}^{\mathcal{K}}(B)$. It remains to prove: $v_{m+n}^{\mathcal{K}}(A) \geq \sigma \tau-\varepsilon$.
We leave it as an exercise to prove: $v_{m+n}^{\mathcal{K}}(A)=\left(v_{m}^{\mathcal{K}}(K)\right)\left(v_{n}^{\mathcal{K}}(P)\right)$. Then

$$
\begin{aligned}
v_{m+n}^{\mathcal{K}}(A) & =\left(v_{m}^{\mathcal{K}}(K)\right)\left(v_{n}^{\mathcal{K}}(P)\right) \\
& \geq\left(\sigma-\varepsilon_{0}\right)\left(\tau-\varepsilon_{0}\right) \\
& =\sigma \tau-\left(\sigma+\tau-\varepsilon_{0}\right) \varepsilon_{0} \\
& \geq \sigma \tau-(\sigma+\tau+1) \varepsilon_{0} \\
& \geq \sigma \tau-\varepsilon,
\end{aligned}
$$

as desired. QED
Lemma (ctdContin): Let $n \in \mathbb{N}$ and let $S \subseteq \mathbb{R}^{n}$. Assume, for all $\varepsilon>0$ that there exist $R, T \in \mathcal{C}_{n}$ such that $R \subseteq S \subseteq T$ and such that $v_{n}(T \backslash R) \leq \varepsilon$. Then $S \in \mathcal{C}_{n}$.

Proof: Choose $T_{0} \in \mathcal{C}_{n}$ such that $S \subseteq T_{0}$. Since $T_{0} \in \mathcal{C}_{n}, T_{0}$ is bounded. So, since $S \subseteq T_{0}$, S is bounded. Given $\varepsilon>0$. By Lemma (inOutApprox) from the handout on measures, we wish to prove that there exist $K, L \in \mathcal{K}_{n}$ such that $K \subseteq S \subseteq L$ and $v_{n}^{\mathcal{K}}(L \backslash K) \leq \varepsilon$.

Choose $R, T \in \mathcal{C}_{n}$ such that $R \subseteq S \subseteq T$ and such that $v_{n}(T \backslash R) \leq \varepsilon / 3$. By definition of \underline{v}_{n}, choose $K \in \mathcal{K}_{n}$ such that $K \subseteq R$ and such that $v_{n}^{\mathcal{K}}(K) \geq\left(\underline{v}_{n}(R)\right)-(\varepsilon / 3)$. Since $R \in \mathcal{C}_{n}$, we have $\underline{v}_{n}(R)=v_{n}(R)$. Then $v_{n}^{\mathcal{K}}(K) \geq\left(v_{n}(R)\right)-(\varepsilon / 3)$. By definition of \bar{v}_{n}, choose $L_{0} \in \mathcal{K}_{n}$ such that $T \subseteq L_{0}$ and such that $v_{n}^{\mathcal{K}}\left(L_{0}\right) \leq\left(\bar{v}_{n}(T)\right)+(\varepsilon / 3)$. Since $T \in \mathcal{C}_{n}$, we have $\bar{v}_{n}(T)=v_{n}(T)$. Then $v_{n}^{\mathcal{K}}\left(L_{0}\right) \leq\left(v_{n}(T)\right)+(\varepsilon / 3)$. Since $T \in \mathcal{C}_{n}$, it follows that T is bounded. Then choose a bounded $B \in \mathcal{B}_{n}$ such that $T \subseteq B$. Let $L:=L_{0} \cap B$. Since $L_{0} \in \mathcal{K}_{n}$ and since $B \in \mathcal{B}_{n} \subseteq \mathcal{K}_{n}$, it follows that $L \in \mathcal{K}_{n}$. We have $K \subseteq R \subseteq S \subseteq T \subseteq L_{0} \cap B=L$, so $K \subseteq S \subseteq L$. It remains to show that $v_{n}^{\mathcal{K}}(L \backslash K) \leq \varepsilon$.

Since $L \subseteq L_{0}$, we get $v_{n}^{\mathcal{K}}(L) \leq v_{n}^{\mathcal{K}}\left(L_{0}\right)$. Since B is bounded and $K \subseteq L \subseteq B$, it follows that K and L are bounded. Then $v_{n}^{\mathcal{K}}(K)=v_{n}(K)$ and $v_{n}^{\mathcal{K}}(L)=v_{n}(L)$. Then $v_{n}(K)=v_{n}^{\mathcal{K}}(K) \geq\left(v_{n}(R)\right)-(\varepsilon / 3)$ and $v_{n}(L)=v_{n}^{\mathcal{K}}(L) \leq v_{n}^{\mathcal{K}}\left(L_{0}\right) \leq\left(v_{n}(T)\right)+(\varepsilon / 3)$. Then $v_{n}(R \backslash K)=\left(v_{n}(R)\right)-\left(v_{n}(K)\right) \leq \varepsilon / 3$ and $v_{n}(L \backslash T)=\left(v_{n}(L)\right)-\left(v_{n}(T)\right) \leq \varepsilon / 3$. Also, recall that $v_{n}(T \backslash R) \leq \varepsilon / 3$. Then, as $L \backslash K=(L \backslash T) \cup(T \backslash R) \cup(R \backslash K)$, we see that $v_{n}(L \backslash K) \leq(\varepsilon / 3)+(\varepsilon / 3)+(\varepsilon / 3)=\varepsilon$, as desired. QED

Remark (supInfDiff): Let D be a set, let $g: D \rightarrow \mathbb{R}$, let $F \subseteq D$ and let $\varepsilon_{0}>0$. Assume, for all $x, y \in F$, that $|(g(x))-(g(y))|<\varepsilon_{0}$. Then $\left(\sup _{F} g\right)-\left(\inf _{F} g\right) \leq \varepsilon_{0}$.

Proof: Let $M:=\sup _{F} g$, let $m:=\inf _{F} g$ and let $v:=M-m$. We wish to show that $v \leq \varepsilon_{0}$. Assume, for a contradiction, that $v>\varepsilon_{0}$.

Let $\delta:=v-\varepsilon_{0}$. Then $\delta>0$. Choose $y \in F$ such that $g(y) \geq M-(\delta / 2)$. Choose $x \in F$ such that $g(x) \leq m+(\delta / 2)$. Then

$$
v=M-m \leq[(g(y))+(\delta / 2)]-[(g(x))-(\delta / 2)]=(g(y))-(g(x))+\delta
$$

We have $v>\varepsilon_{0}>0$, so $v=|v|$. Then $v=|v| \leq|(g(y))-(g(x))|+\delta<\varepsilon_{0}+\delta=v$, and so we get $v<v$, contradiction. QED

Lemma (contInt): Let $n \in \mathbb{N}$, let $D \in \mathcal{C}_{n}$ be closed and let $g: D \rightarrow \mathbb{R}$ be continuous. Then g is integrable.

Proof: We will only prove that $\mathcal{O}_{g} \in \mathcal{C}_{n+1}$, and will leave it as an (unassigned) exercise to the reader to prove that $\mathcal{O}_{-g} \in \mathcal{C}_{n+1}$. Since $D \in \mathcal{C}_{n}, D$ is bounded. Since D is closed and bounded, D is compact. So, since g is continuous, it follows that $g: D \rightarrow \mathbb{R}$ is bounded and uniformly continuous. Choose $K>0$ such that $g(D) \subseteq[-K, K]$. Then $\mathcal{O}_{g} \subseteq D \times(0, K]$. Then \mathcal{O}_{g} is bounded. Given $\varepsilon>0$. By Lemma (ctdContin), it suffices to prove that there exist $R, T \in \mathcal{C}_{n+1}$ such that $R \subseteq \mathcal{O}_{g} \subseteq T$ and $v_{n+1}(T \backslash R) \leq \varepsilon$.

Choose $\varepsilon_{0}>0$ such that $\left[v_{n}(D)\right] \varepsilon_{0} \leq \varepsilon$. By uniform continuity of g, choose $\delta>0$ such that, for all $x, y \in D$, we have:

$$
(|x-y|<\delta) \quad \Rightarrow \quad\left(|(g(x))-(g(y))|<\varepsilon_{0}\right)
$$

By Fact (chopOnion), choose a finite, pairwise-disjoint $\mathcal{F} \subseteq \mathcal{C}_{n} \backslash\{\emptyset\}$ such that $\cup \mathcal{F}=D$ and such that mesh $\mathcal{F}<\delta$.

For all $F \in \mathcal{F}$, let $m_{F}:=\inf _{F} g$ and $M_{F}:=\sup _{F} g$; then $m_{F} \leq M_{F}$. For all $F \in \mathcal{F}$, for all $x, y \in F$, we have $|x-y| \leq \operatorname{diam} F \leq \operatorname{mesh} \mathcal{F}<\delta$, so $|(g(x))-(g(y))|<\varepsilon_{0}$.

By Remark (supInfDiff), for all $F \in \mathcal{F}$, we have $M_{F}-m_{F} \leq \varepsilon_{0}$. For all $F \in \mathcal{F}$, define

$$
R_{F}:=\left\{\begin{array}{ll}
F \times\left(0, m_{F}\right], & \text { if } m_{F}>0 \\
\emptyset, & \text { if } m_{F} \leq 0
\end{array} \quad \text { and } \quad T_{F}:= \begin{cases}F \times\left(0, M_{F}\right], & \text { if } M_{F}>0 \\
\emptyset, & \text { if } M_{F} \leq 0 ;\end{cases}\right.
$$

then $R_{F} \subseteq \mathcal{O}_{g} \cap(F \times \mathbb{R}) \subseteq T_{F}$ and $T_{F} \backslash R_{F} \subseteq F \times\left[m_{F}, M_{F}\right]$.
Let $R:=\bigcup_{F \in \mathcal{F}} R_{F}$ and $T:=\bigcup_{F \in \mathcal{F}} T_{F}$. Since $\cup \mathcal{F}=D$ and since $\mathcal{O}_{g} \subseteq D \times \mathbb{R}$, we conclude that $\bigcup_{F \in \mathcal{F}} \mathcal{O}_{g} \cap(F \times \mathbb{R})=\mathcal{O}_{g} \cap(D \times \mathbb{R})=\mathcal{O}_{g}$. Then

$$
R \subseteq \mathcal{O}_{g} \subseteq T \quad \text { and } \quad T \backslash R \subseteq \bigcup_{F \in \mathcal{F}}\left(F \times\left[m_{F}, M_{F}\right]\right)
$$

It remains to show that $v_{n+1}(T \backslash R) \leq \varepsilon$.
We have

$$
\begin{aligned}
v_{n+1}(T \backslash R) & \leq \sum_{F \in \mathcal{F}}\left(v_{n+1}\left(F \times\left[m_{F}, M_{F}\right]\right)\right) \\
& \leq \sum_{F \in \mathcal{F}}\left(\left[v_{n}(F)\right]\left[M_{F}-m_{F}\right]\right) \\
& \leq \sum_{F \in \mathcal{F}}\left(\left[v_{n}(F)\right] \varepsilon_{0}\right) \\
& \leq\left[\sum_{F \in \mathcal{F}}\left[v_{n}(F)\right]\right] \varepsilon_{0} \\
& =\left[v_{n}(\cup \mathcal{F})\right] \varepsilon_{0}=\left[v_{n}(D)\right] \varepsilon_{0} \quad \leq \quad \varepsilon,
\end{aligned}
$$

as desired. QED
Lemma (puffUpBox): Let $n \in \mathbb{N}$, let $B \in \mathcal{B}_{n}$ be bounded and let $\varepsilon>0$. Then there exists an open, bounded $C \in \mathcal{B}_{n}$ such that both $B \subseteq C$ and $v_{n}^{\mathcal{B}}(C)<\left(v_{n}^{\mathcal{B}}(B)\right)+\varepsilon$.

Proof: If $B=\emptyset$, the result follows with $C:=\emptyset$. We therefore assume that $B \neq \emptyset$. Choose $I_{1}, \ldots, I_{n} \in \mathcal{I}$ such that $B=I_{1} \times \cdots \times I_{n}$. Since B is bounded, I_{1}, \ldots, I_{n} are all bounded. Define a polynomial $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree n by $f(t)=\left[\left(\ell\left(I_{1}\right)\right)+t\right] \cdots\left[\left(\ell\left(I_{n}\right)\right)+t\right]$. Then $f(0)=\left[\ell\left(I_{1}\right)\right] \cdots\left[\ell\left(I_{n}\right)\right]=v_{n}^{\mathcal{B}}(B)$. So, by continuity of f at 0 , choose $\eta>0$ such that, for all $t \in(-\eta, \eta)$, we have $\left|(f(t))-\left(v_{n}^{\mathcal{B}}(B)\right)\right|<\varepsilon$. Let $\delta:=\eta / 2$. Then $\delta \in(-\eta, \eta)$, so $\left|(f(\delta))-\left(v_{n}^{\mathcal{B}}(B)\right)\right|<\varepsilon$, so $(f(\delta))-\left(v_{n}^{\mathcal{B}}(B)\right)<\varepsilon$, so $f(\delta)<\left(v_{n}^{\mathcal{B}}(B)\right)+\varepsilon$.

For all integers $k \in[1, n]$, choose an open bounded $J_{k} \in \mathcal{I}$ such that $I_{k} \subseteq J_{k}$ and such that $\ell\left(J_{k}\right) \leq\left(\ell\left(I_{k}\right)\right)+\delta$. Let $C:=J_{1} \times \cdots \times J_{n}$. Then C is open, C is bounded, $C \in \mathcal{B}_{n}$ and $B=I_{1} \times \cdots \times I_{n} \subseteq J_{1} \times \cdots \times J_{n} \subseteq C$. It remains to show that $v_{n}^{\mathcal{B}}(C)<\left(v_{n}^{\mathcal{B}}(B)\right)+\varepsilon$.

We have $\left[\ell\left(J_{1}\right)\right] \cdots\left[\ell\left(J_{n}\right)\right] \leq\left[\left(\ell\left(I_{1}\right)\right)+\delta\right] \cdots\left[\left(\ell\left(I_{n}\right)\right)+\delta\right]$. That is, $v_{n}^{\mathcal{B}}(C) \leq f(\delta)$. Recall that $f(\delta)<\left(v_{n}^{\mathcal{B}}(B)\right)+\varepsilon$. Then $v_{n}^{\mathcal{B}}(C) \leq f(\delta)<\left(v_{n}^{\mathcal{B}}(B)\right)+\varepsilon$, as desired. QED

Lemma (puffUpNegl): Let $n \in \mathbb{N}$, let $Z \subseteq \mathbb{R}^{n}$ be negligible and let $\varepsilon>0$. Then there exists an open, bounded $U \in \mathcal{K}_{n}$ such that both $Z \subseteq U$ and $v_{n}(U)<\varepsilon$.

Proof: Since Z is negligible, it follows that Z is bounded. Choose a bounded $B \in \mathcal{B}_{n}$ such that $Z \subseteq B$. We have $\bar{v}_{n}(Z)=0$. By definition of \bar{v}_{n}, choose $K_{0} \in \mathcal{K}_{n}$ such that both $Z \subseteq K_{0}$ and $v_{n}^{\mathcal{K}}\left(K_{0}\right) \leq \varepsilon / 2$. Let $K:=K_{0} \cap B$. Then $K \in \mathcal{K}_{n}$ and $Z \subseteq K$. Also, $v_{n}^{\mathcal{K}}(K) \leq v_{n}^{\mathcal{K}}\left(K_{0}\right) \leq \varepsilon / 2$. Since B is bounded, K is bounded. Any bounded kidset is contented, so $K \in \mathcal{C}_{n}$. Moreover, $v_{n}(K)=v_{n}^{\mathcal{K}}(K)$. Then $v_{n}(K) \leq \varepsilon / 2$.

By definition of kidset, choose a finite, pairwise-disjoint $\mathcal{F} \subseteq \mathcal{B}_{n}$ such that $\cup \mathcal{F}=K$. For all $F \in \mathcal{F}$, we have $F \subseteq K$; so, as K is bounded, F is bounded. Let $m:=\# \mathcal{F}$ be the number of elements in \mathcal{F}. Choose $\varepsilon_{0}>0$ such that $m \varepsilon_{0} \leq \varepsilon / 2$.

By Lemma (puffUpBox), for all $F \in \mathcal{F}$, choose an open, bounded $C_{F} \in \mathcal{B}_{n}$ such that $F \subseteq C_{F}$ and $v_{n}^{\mathcal{B}}\left(C_{F}\right)<\left(v_{n}^{\mathcal{B}}(F)\right)+\varepsilon_{0}$. Let $U:=\bigcup_{F \in \mathcal{F}} C_{F}$. Then U is open and bounded. Moreover, $U \in \mathcal{K}_{n}$ and $Z \subseteq K=\cup \mathcal{F} \subseteq \bigcup_{F \in \mathcal{F}} C_{F}=U$. It remains to show that $v_{n}(U) \leq \varepsilon$.

We have $v_{n}(\cup F)=v_{n}(K) \leq \varepsilon / 2$. Recall that $m \varepsilon_{0}<\varepsilon / 2$. Then

$$
\begin{aligned}
& v_{n}(U) \leq \sum_{F \in \mathcal{F}}\left(v_{n}\left(C_{F}\right)\right) \\
&<\sum_{F \in \mathcal{F}}\left[\left(v_{n}(F)\right)+\varepsilon_{0}\right] \\
& \leq\left[\sum_{F \in \mathcal{F}}\left(v_{n}(F)\right)\right]+[\# \mathcal{F}] \varepsilon_{0} \\
& \leq\left[v_{n}(\cup \mathcal{F})\right]+m \varepsilon_{0} \quad \leq \quad \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \quad=\quad \varepsilon,
\end{aligned}
$$

as desired. QED
Definition: Let $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^{n}$, let $f: D \rightarrow \mathbb{R}$ and let $A \subseteq D$. Then f is integrable on A means: $f \mid A: A \rightarrow \mathbb{R}$ is integrable.

Remark (approxInt): Let $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^{n}$ be bounded and let $f: D \rightarrow \mathbb{R}$ be bounded. Assume, for all $\varepsilon>0$ that there exists $U \in \mathcal{C}_{n}$ such that $v_{n}(U) \leq \varepsilon$ and such that f is integrable on $D \backslash U$. Then f is integrable.

Proof: We will only prove that $\mathcal{O}_{f} \in \mathcal{C}_{n+1}$, and will leave it as an (unassigned) exercise to the reader to prove that $\mathcal{O}_{-f} \in \mathcal{C}_{n+1}$. Choose $K>0$ such that $f(D) \subseteq[-K, K]$. Then $\mathcal{O}_{f} \subseteq D \times(0, K]$. Then \mathcal{O}_{f} is bounded. Given $\varepsilon>0$. By Lemma (ctdContin), it suffices to prove that there exist $R, T \in \mathcal{C}_{n+1}$ such that $R \subseteq \mathcal{O}_{f} \subseteq T$ and $v_{n+1}(T \backslash R) \leq \varepsilon$.

Choose $\varepsilon_{0}>0$ such that $\varepsilon_{0} K \leq \varepsilon$. Choose $U \in \mathcal{C}_{n}$ such that $v_{n}(U) \leq \varepsilon_{0}$ and such that f is integrable on $D \backslash U$. Let $R:=\mathcal{O}_{f \mid(D \backslash U)}$. Then $R=\mathcal{O}_{f} \cap((D \backslash U) \times \mathbb{R})$. Then $R \subseteq \mathcal{O}_{f}$. Let $Y:=U \times(0, K]$. Then $Y \supseteq \mathcal{O}_{f} \cap(U \times \mathbb{R})$. Let $T:=R \cup Y$. Then $T \supseteq \mathcal{O}_{f} \cap(D \times \mathbb{R})$.

So, since $\mathcal{O}_{f} \subseteq D \times \mathbb{R}$, we see that $T \supseteq \mathcal{O}_{f}$. Then $R \subseteq \mathcal{O}_{f} \subseteq T$, and it remains to show that $v_{n+1}(T \backslash R) \leq \varepsilon$.

Since $T \backslash R=(R \cup Y) \backslash R \subseteq Y$, we get $v_{n+1}(T \backslash R) \leq v_{n+1}(Y)$. Since $Y=U \times(0, K]$, it follows that $v_{n+1}(Y)=\left[v_{n}(U)\right][K-0]$. So, as $v_{n}(U) \leq \varepsilon_{0}$, we see that $v_{n+1}(Y) \leq \varepsilon_{0} K$. Then $v_{n+1}(T \backslash R) \leq v_{n+1}(Y) \leq \varepsilon_{0} K \leq \varepsilon$, as desired. QED

Definition: Let $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^{n}$ and let $f: D \rightarrow \mathbb{R}$. By the discontinity set of f, we mean DSC $f:=\{x \in D \mid f$ is discontinuous at $x\}$.

Theorem (Rnint): Let $n \in \mathbb{N}$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be bounded. Assume both that $f^{-1}(\mathbb{R} \backslash\{0\})$ is bounded and that $\operatorname{DSC} f$ is negligible. Then f is integrable.

Proof: We wish to prove that $\mathcal{O}_{f}, \mathcal{O}_{-f} \in \mathcal{C}_{n+1}$. Because $f^{-1}(\mathbb{R} \backslash\{0\})$ is bounded, choose a compact $D_{0} \in \mathcal{B}_{n}$ such that $f^{-1}(\mathbb{R} \backslash\{0\}) \subseteq D_{0}$. Let $f_{0}:=f \mid D_{0}: D_{0} \rightarrow \mathbb{R}$. Then we have both $\mathcal{O}_{f}=\mathcal{O}_{f_{0}}$ and $\mathcal{O}_{-f}=\mathcal{O}_{-f_{0}}$, and so it suffices to prove that $\mathcal{O}_{f_{0}}, \mathcal{O}_{-f_{0}} \in \mathcal{C}_{n+1}$, i.e., that $f_{0}: D_{0} \rightarrow \mathbb{R}$ is integrable.

Since D_{0} is compact, D_{0} is bounded. Since f is bounded, f_{0} is bounded. Given $\varepsilon>0$. By Remark (approxInt), it suffices to show that there exists $U \in \mathcal{C}_{n}$ such that $v_{n}(U) \leq \varepsilon$ and such that f_{0} is integrable on $D_{0} \backslash U$.

Let $Z:=\operatorname{DSC} f$. Then Z is negligible. By Lemma (puffUpNegl), choose an open, bounded $U \in \mathcal{K}_{n}$ such that both $Z \subseteq U$ and $v_{n}(U)<\varepsilon$. As U is a bounded kidset, we see that U is contented, i.e., that $U \in \mathcal{C}_{n}$. It remains to show that f_{0} is integrable on $D_{0} \backslash U$. Let $D:=D_{0} \backslash U$ and let $g:=f_{0} \mid D: D \rightarrow \mathbb{R}$. We wish to show that $g: D \rightarrow \mathbb{R}$ is integrable.

Because D_{0} is compact, D_{0} is closed and bounded. So, since U is open, we see that $D_{0} \backslash U$ is closed. That is, D is closed. We have $D_{0} \in \mathcal{B}_{n} \subseteq \mathcal{K}_{n}$, so D_{0} is a bounded kidset, so $D_{0} \in \mathcal{C}_{n}$. So, since $U \in \mathcal{C}_{n}$, we see that $D_{0} \backslash U \in \mathcal{C}_{n}$. That is, $D \in \mathcal{C}_{n}$. Then, by Lemma (contInt), it suffices to show that $g: D \rightarrow \mathbb{R}$ is continuous.

We have $D=D_{0} \backslash U \subseteq D$. Also, $f_{0}=f \mid D_{0}$ and $g=f_{0} \mid D$. Then $g=f \mid D$. We have $D_{0} \subseteq \mathbb{R}^{n}$ and $\operatorname{DSC} f=Z \subseteq U$, so $D_{0} \backslash U \subseteq \mathbb{R}^{n} \backslash(\operatorname{DSC} f)$. That is, $D \subseteq \mathbb{R}^{n} \backslash(\operatorname{DSC} f)$. Then $f \mid D: D \rightarrow \mathbb{R}$ is continuous. That is, $g: D \rightarrow \mathbb{R}$ is continuous, as desired. QED

Remark (Rnint): Let $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^{n}$ and let $g: D \rightarrow \mathbb{R}$. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(x) \quad=\quad \begin{cases}g(x), & \text { if } x \in D \\ 0, & \text { if } x \notin D\end{cases}
$$

Then
(i) $\operatorname{DSC} f \subseteq(\operatorname{DSC} g) \cup(\partial D) \quad$ and
(ii) $\mathcal{O}_{f}=\mathcal{O}_{g} \quad$ and $\quad \mathcal{O}_{-f}=\mathcal{O}_{-g} \quad$ and
(iii) $f^{-1}(\mathbb{R} \backslash\{0\}) \subseteq g^{-1}(\mathbb{R} \backslash\{0\})$.

Proof: We leave (ii) and (iii) as exercises and prove only (i).
Let $x \in \operatorname{DSC} f$. Assume that $x \notin \operatorname{DSC} g$. We wish to show that $x \in \partial D$.
Recall that $\partial D=\bar{D} \backslash D^{\circ}$. Because $\mathbb{R}^{n} \backslash \bar{D}$ is an open set and because $f=0$ on $\mathbb{R}^{n} \backslash \bar{D}$, it follows that f is continuous on $\mathbb{R}^{n} \backslash \bar{D}$. Then $x \notin \mathbb{R}^{n} \backslash \bar{D}$, i.e., $x \in \bar{D}$. It remains to prove that $x \notin D^{\circ}$. Assume, for a contradiction, that $x \in D^{\circ}$.

As $x \notin \mathrm{DSC} g$, we know that g is continuous at x. However $f=g$ on D and $D^{\circ} \subseteq D$, so $f=g$ on D°. So, since D° is open and since g is continuous at x, it follows that f is continuous at x. However, $x \in \operatorname{DSC} f$, i.e., f is discontinuous at x, contradiction. QED

Theorem (intCriterion): Let $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^{n}$ and let $g: D \rightarrow \mathbb{R}$ be bounded. Assume
(a) ∂D is negligible,
(b) $g^{-1}(\mathbb{R} \backslash\{0\})$ is bounded and
(c) $\operatorname{DSC} g$ is negligible.

Then g is integrable.
Proof: Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}g(x), & \text { if } x \in D \\ 0, & \text { if } x \notin D .\end{cases}
$$

Since $g: D \rightarrow \mathbb{R}$ is bounded, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is bounded. Since $g^{-1}(\mathbb{R} \backslash\{0\})$ is bounded, by (iii) of Remark (Rnint), we see that $f^{-1}(\mathbb{R} \backslash\{0\})$ is bounded. Since DSC g is negligible and since ∂D is negligible, by (i) of Remark (Rnint), we see that DSC f is negligible. Then, by Theorem (Rnint), we conclude that f is integrable, i.e., that $\mathcal{O}_{f}, \mathcal{O}_{-f} \in \mathcal{C}_{n+1}$. Then, by (ii) of Remark (Rnint), we see that $\mathcal{O}_{g}, \mathcal{O}_{-g} \in \mathcal{C}_{n+1}$, i.e., that g is integrable. QED

Since $\partial \mathbb{R}^{n}=\emptyset$ is negligible, Theorem (intCriterion) implies Theorem (Rnint). Also, recall that any contented set has negligible boundary. So, we get the following:

Corollary: Let $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^{n}$ be contented and let $g: D \rightarrow \mathbb{R}$ be bounded. Assume both that $g^{-1}(\mathbb{R} \backslash\{0\})$ is bounded and that $\operatorname{DSC} g$ is negligible. Then g is integrable.

