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1. CLASS 1 ON 5 SEPTEMBER 2017, TU oF WEEK 1

Some abbreviations:

& = and
= = iff = if and only if
= = implies # therefore =:

COURSE GOAL: Present math as absolute truth.

We present Truth Tables.

We defined NOT X via a truth table.

We defined X&Y', X or Y, X =Y, X <« Y via truth tables.

THEOREM 1.1. Let A be a proposition. Then: A or (NOTA).

The last column of the truth table below shows that, in call cases,
the proposition A or (NOT A) is true. When a proposition is always
true, we call it a theorem.

|A[NOTA|Aor (NOTA) |

Proof. | T F T
F T T
O
THEOREM 1.2. Let A and B be propositions. Then:
(A =B) = ( (NOTA) or B).
Proof. Let C:= (A= B) and D := (NOT A). We wish to show:
C < (D or B).
Let £ := (D or B). We wish to show: C' < E.
|A|B|C|D|E|C<E]|
T T|T|F|T T
T F|F|F|F T
F|T|T|T|T T
FIF|F|T|T T
O

Assigned HW#1.

THEOREM 1.3. Let A, B and C be propositions. Then:
(A = (B&C)) = ((A=B)& (A=0C)).



4 SCOT ADAMS

Proof. Let D := (B&C), E:= (A= B) and F := (A = (). We wish
to show: [A = D] < [E&F]. Let G := (A = D) and H := (E&F).
We wish to show: G < H.

A[B|C|D|E|F|G|H|G=H]|
TIT|T|T|T|T|T|T| T
T|T|F|F|T|F|F|F| T
T F|T|F|F|T|F|F| T
TIF|F|F|F|F|F|F| T
F|T|T|T|T|T|T|T| T
F|T|F|F|T|T|T|T| T
F|F|T|F|T|T|T|T| T
F|F|F|F|T|T|T|T| T

Assigned HW#2 and HW#3.

Homework 3 asks for a proof that, for any propositions P and (@),
we have: [P&(P = Q)] = Q. I sometimes call this the “bad form”
theorem; in practice, it’s bad form to use it, because: If, in a proof, we
write P = (@, it conveys the thought, “If we could somehow just show
that P is true, then we would know () is true”, and it’s a little odd
to say this if we already know that P is true. We'll see how this kind
of situation can come up, and, when it does, we’ll talk about how to
rewrite the proof.

Some abbreviations:

v = for all/any/every “universal quantifier”
3 = there exists “existential quantifier”

3! = 3! = there exists a unique

s.t. = such that

€ = is an element of

c = is a subset of

We will not develop all of the rules, conventions and axioms of math-
ematics here; this course is not an ab ovo development of mathematics.
Nevertheless, certain axioms deserve to be highlighted. For example,
we’ll call the following the Axiom of Equality:

Axiom: Vx, v = x.
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The above axiom tells us that, for every object x in our mathematical
universe, we have x = x. This begs the quesion: What are all the
objects that we will consider in this course? If this were a course in
foundations of mathematics, we would answer this in a precise fashion,
but here we will just give examples:

e every complex number is an object,
e o0 and —oo are objects,

e every set is an object and

e ® is an object.

NOTE TO SELF: Next year, let’s also have “classes” as objects. The
“common objects” will be complex numbers, 00 and sets. The “exotic
objects” will be @ and classes. Every element of a class must be a
common object. Every set is a class, but some classes are not sets. A
class that is not a set is a “big class”. A “small class” is the same as a
set. A set that is contained in a class will be called a “small subclass”
of the class. Classes will be denoted by : {---}. For any well-formed
condition ¢(x) on z, {z|o(x)} is the class of all common objects x
such that ¢(x). Can use any unbound variable in place of z. For any
well-formed condition ¢(z) on z, for any class C,

{reClo()} = {z]|(re C)&(o(x))}

denotes the class of all objects © € C' such that ¢(x). For any well-
formed condition ¢(x) on x, for any set S, {z € S|¢(x)} is a set.
Define {comob} := {x | x = x}; then {comob} is the class of all common
objects. Also, {sets} := {A| A is a set} is the class of all sets. Also,
{singleton sets} is the class of all singleton sets, i.e., sets with exactly
one element. Also, {nonempty sets} := {A|A is a nonempty set} is
the class of all nonempty sets.

By Russell’s Paradox, {A|(A is a set) and (A ¢ A)} is a not a set.
So it’s a class that’s not a small class. That is, it’s a big class. Thus
{sets} and {comob} are also big classes.

A “class-function” is a class of ordered pairs satisfying the vertical
line test. For example, | J is a class-function and

U . {sets of sets} — {sets}.

By “function”, we mean a class-function whose domain is a set. By
axiom, the image of a function is also a set.
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Let f be a function. The notation f : A — B is okay if A is a set
and B is class, but, since domain of a function must be a set, we see
that A cannot be a big class. The notation f : A --» B is okay if A
and B are both big classes, but keep in mind that dom[f] and im[f]
are both sets, so dom[f] will be a small subclass of A and im[f] will
be a small subclass of B.

The Axiom of Choice asserts: Vset D, VS : D — {nonempty sets},
Jfunction ¢ : D — {lobjs} s.t., Vj € D, ¢; € S;. That is, “every set
valued function admits a choice function”.

Or, even easier: There is a class function

CHOOSE : {nonempty sets} — {common objects}

such that, for any set S, CHOOSE(S) € S. So, here, ELT gives us
the unique element from any singleton set, and CHOOSE picks some
element from any nonempty set. We could even define ELT to be the
restriction of CHOOSE to the class {singleton sets}. Maybe we might
use Zg or =(5) instead of CHOOSE(S), just to save writing. Then, in
the last paragraph, we can simply define ¢, by ¢; = Z(5;).

END OF NOTE TO SELF

The last object in the list above, ®, is a frownie face. It will play
a special role in our course and is nontraditional; most courses would
omit it. For us, whenever we have a computation that does not lead
to an answer, like 0/0, we will define the answer to be ®. Moreover, we
assert that @ is NOT a set and is not even allowed to be an element
of a set. That is, in our course, we have the nontraditional

Aziom: Vset S, [ (@ #S) & (®@¢95) |

To some logic purists, every quantifier should be followed by a vari-
able and the quantified clause ends there. To them “V set S” is not
allowed, and they would rewrite this as:

Aziom: ¥, ( [Sisaset] = [(@#95)&(@¢S5)] )

There are reasons to adopt such a view of quantification, but the
level of increased notational complexity makes it infeasible for us; we
will not be purists.

This now begs the question of what objects we DO allow to live
in a set, if @ is verboten. Again, without all the work of setting up
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foundational mathematics, it’s difficult to give a precise answer to this
question, but, in essence, any mathematical object can be put into
a set, ercept ®. For example, each of the following is a set, and is
therefore an object:
e the set N:= {1,2,3,...} of positive integers,
e the set Ny := {0, 1,2,3,...} of semipositive (a.k.a. nonnegative)
integers,
e theset Z :={...,—3,-2,—1,0,1,2,3,...} of integers,
e the set Q := {m/n|m € Z,n € N} of rational numbers,
e the set R of real numbers (in 1-1 correspondence with the points
of any coordinatized line),
e the set R* := R U {00, —o0} and
e the set C of complex numbers (in 1-1 correspondence with the
points of any complex coordinatized line).

We have the following inclusions
N ¢ N €€ Z < Q < R

We also have R € R* and R € C. Note, however, that R* and C are
inclusion-incomparable, meaning that neither is a subset of the other:

(NOT(R*<C)) & (NOT(C<R*)).

For any sets A and B, by A ¢ B, we will mean: NOT(A < B).
Following this, we write: R* &€ C and C ¢ R*.

For any two objects a and b, by a # b we mean: NOT(a = b). For
any object a, for any set S, by a ¢ S, we mean: NOT(a € 5).

We will not develop the four basic operations of addition, subtrac-
tion, multiplication, division (denoted, repectively, +, —, - and /) on
C. Again, this is not a foundational, or ab ovo, course, and we don’t
have time to set up all the necessary definitions and basic theorems
of such a course. Instead, we will simply assume that you understand
how these four operations work; we rely on your intuition and earlier
education. One caveat: In most courses, certain computations, like 0/0
are simply said to be undefined; for us they will be set to ®. We also
extend addition, subtraction, multiplication, division to the set R* of
extended reals. Here are some results that we will not prove, and will
simply assume as basic knowledge:

e 2+2=4
e 1/0 =0,
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e 0/0=0,
® 00 + 00 = 00,
e —00 — 0 = —00

® 00 — 00 = @,

e —00+ 00 = Q,

e (0.00001) - o0 = o0,

e (—0.00001) - 00 = —o0,
e (-00=0,

e 0/o0 =0,

e 1000/00 = 0,

o OO/OO = @,

° OO/(—OO) = @.

If you have any questions about any of these, or about any other arith-
metic computations in C or in R*, please feel free to contact me.

We will also assume that you know the basic properties of addition,
subtraction, multiplication and division on C and on R*. Here are some
more results that we will not prove, and will simply assume as basic
knowledge:

(1) Vo,yeR, z+y =y +x.

(2) Vzx e R, 2% # —1.

(3) Vr e Q, 22 # 2.

(4) Vx e R*, z/0 = ®.

(5) Ve e R, z/o0 = z/(—00) = 0.

(6) Va,y € {00, -0}, x/y = .

The logic purist would rewrite these as:

1) Va,Vy, [(z,yeR) = (z+y =y + z)].

6) vz, Yy, [(z,y € {0, —o0}) = (z/y = ©)].
Note that we can extend (1) above to C and to R*. That is:

(
(2) Vz, [(z e R) = (22 # —1)].
(3) Vz, [(z € Q) = (2% # 2)].
(4) Yz, [(x e R*) = (2/0 = @)].
(5) Va, [(x e R) = (z/0 = z/(—00) = 0)].
(6)
t

(Ve,yeC, x+y=y+z) & (Vr,yeR* z+y=y+ ).
Note that (6) above is equivalent to

w0/ = (~0)/w = wf(~0) = (~0)/(-x) = ©.
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We will also assume you know basic properties of <, <, >, > on R*.
Here are some more results that we will not prove, and will simply
assume as basic knowledge:

(1) —2<1, 5>3, 5=3, 5=5, —w<w, o<wn.

(2) Vz e R*, 22 = 0.

(3) Ve e R*, —0 < < 0.

(4) Ve eR, —o0 < x < o0.

(5) Va,b,y,zeR, [ ((a<b) & (y<z)) = (a+y<b+2z)]

For some aspects of set theory, we will rely on your prior knowledge.
In this course, we will not prove, for example, that there exists a unique
set whose only elements are 1 and 2. That is, we will not prove

Nset Sst. [Va, ([zeS] < [(z=1or(x=2)])]

Instead, we rely on the reader to know that such a set exists, is unique,
and is denoted {1,2}. Similarly, there’s a set {3,4} and we will simply
expect you to know that it exists and has only two elements, namely
3 and 4. Every set is an object, so {1,2} and {3,4}, being sets, are
objects. We can now put those two objects together to form a new
set {{1,2},{3,4}}. Again, we will not prove that this set exists, but
it has exactly two elements, each of which is a set of numbers. Thus,
{{1,2},{3,4}} is a “set of sets of numbers”. In this course, if a variable
is a number, it will typically be denoted by a small roman letter, like
a or s or x. If a variable is a set, we would usually use a capital roman
letter, like A or S or X. For a set of sets of numbers, I will usually use
a script capital roman letter, like A or S or X. Thus, if I want to say
that there’s a unique set whose elements are exactly {1,2} and {3, 4},
I would write

Fset Sst. [VX, ([XeS] « [(X={1,2})or (X ={3,4})]) ]
Formally, we can change the variables and write
Mset Sst. [Vr, ([zeS] < [(x={1,2})or (z=1{3,4})]) ],

without affecting the meaning, but it often helps the reader if we make
a few conventions about which alphabets we use for which kinds of
objects. In this class, integers are typically denoted by small roman
letters between ¢ and n, although we will sometimes need more than
six integer variables, so we’ll have to make exceptions.
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We will give a few axioms of set theory, but will not try to be com-
prehensive. Most mathematicians follow a kind of axiomatic set theory
called “ZFC”, or “Zermelo-Fraenkel with Choice”. In this class,
we'll follow a slight variant of ZFC, which could possibly be called
“ZFC with a frownie and happy sets”. By this, I mean that, while we
allow ® as an object, it is NOT a set, and, in fact, it’s not allowed even
to be an element of any set. That is, while we allow sadness in our
formulas, we don’t allow any sadness to infect our sets. More precisely,
one of the axioms that we’ll be using says:

Vset S, [ (@ # S) and (® ¢ 5) |.
A logic purist would rewrite this as:
VS, ([Sisaset] = [(@#S)and (©@¢5)]).

So ® is an object, but not a set. On the other hand keep in mind that
every set is an object.

Even though ® is never an element of a set, we do allow ourselves
to enclose ® in braces, e.g., {1,2,3, ®}; however anytime we see ® in
between braces, the result is equal to ®. So, in the notation that we
develop in this course, we have: {1,2,3,®} = ®. Thus, contrary to
appearance, {1,2,3,®} is NOT a set. Similarly, {{1,2}, {3,4,0}} = ®,
and so the equation

{{1,2},{3,4,6}} = {1,2, 3, @},

is true, even if it looks strange.

We will come back to talk more about set theory later, but we first
turn our attention to general issues about proofs. Since Math is Truth,
it follows that Math is error-free. However, most of us have little
experience with error-free thought in our lives. An exception occurs
when we play games, where error can lead to defeat. Consequently,
playing games like chess or checkers or even tic-tac-toe leads naturally
to a mode of rigorous thought. Playing off of that, I will, in this course,
often discuss theorems as games.

For example, here’s a theorem that is very much in the spirit of a
real analysis course:

THEOREM 1.4. ¥e > 0, 30 > 0 s.t., ¥z € R,

[0<2<20] = [z+4+2’<e].



NOTES 1 11

The “e > 07 indicates both that ¢ € R and that ¢ > 0. Similarly,
“6 > 07 indicates both that § € R and that 6 > 0. The compound
inequality “[0 < z < 2§]” is shorthand for [(0 < ) and (z < 20)].

Theorem 1.4 is an example of a “triply-quantified” result, because it
has three quantifiers (V, then 3, then another V) appearing in it. This
kind of result would become unreadable if we were to write like logic
purists. It’s even difficult to understand (much less prove!) as written.

In class, we tried to clarify Theorem 1.4 by considering a related
game. In this game, you make the first move by choosing and telling
me a positive number which we call . I then choose a § > 0. You then
choose x € R. We then check whether the impliaction

[0<2<20] = [z+a2*<e]

is TRUE. If it is, I win. Otherwise, you win.
In class, someone chose € = 0.1. I chose

5 = 0.000000000000000001 = 1078,

I made the point that, if you choose, say x = 5, then you lose im-
mediately becuase, with that choice of x, the compound inequality
0 <z < 26 would be FALSE, and so the implication

[0<2<20] = [o+2°<e]

would be TRUE. In order to have a chance, you have to choose an
x € R such that 0 < z < 0.000000000000000002. Someone chose

x = 0.0000000000000000019.

We then verified that the inequality x + 22 < ¢ is TRUE. That is,
0.0000000000000000019 + 0.0000000000000000019? < 0.1.
Since the inequality = + 22 < € is TRUE, it follows that the implication
[0<2<20] = [o+2°<ce]

is TRUE, and I win.

I offered to play again, but no one took me up on it. We agreed
that THE GAME IS RIGGED! That is, we agreed that Theorem 1.4
is correct. If you disagree, please get in touch with me, and we’ll play.

Taking the perspective that theorems are games, to be successful
in this course, you'll need three skills:

(1) Finding plausible strategies.
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(2) Proving to yourself that they win.
(3) Communicating the strategy and proof.

Each of these is quite difficult. Also, I can attest that students are often
frustrated when they master (1) and (2), but not (3), especially if the
standards of communication are not made clear. I want to mention
that, in my own work, many has been the time that I finished (1) and
(2) to my satisfaction, but then, in attempting (3), found an error in my
thinking. So (3) is crucial to the mathematical process.

For today, we focus on (1) and (2); we will talk about (3) in the next
class. Everything from here to the end of this class should be thought
of as “scratch work”. We will not be following carefully any hard and
fast rules of exposition for today.

The game of Theorem 1.4 seems too hard. Let’s simplify to

THEOREM 1.5. Ve > 0, 36 > 0 s.t., Vz € R,
[0<z<20] = J[z<el].

Then only difference between Theorem 1.4 and Theorem 1.5 is that
“r + 2?7 is changed to “z”. For this new game, someone suggested the
strategy 0 := ¢/2. To prove to myself that this works, I noted that

20 = ¢, and then wrote down
[0<2z<20] = [O0<z<el,

and then erased “0 <” on the RIGHT side of =, and felt persuaded
that the strategy will work. That is, if you and I play the game, if I
use the strategy ¢ := £/2, and if you choose an z satisfying 0 < x < 24,
then your z will automatically satisfy < . So either ( [0 < z < 24]
will be FALSE ) or ( [z < €] will be TRUE ). In either case, ( [0 <
x < 20] = [z <¢] ) will be TRUE, and I win.

Next, we looked at

THEOREM 1.6. Ve > 0, 30 > 0 s.t., Vz € R,
[0<z<d] = [2*<e]

LﬁxQH

Here, we replaced “20” by “0”, and, also, we're using instead of

29 @,

“r 4+ x*” or “z”. For this new game, someone suggested the strategy
d :=4/e. To prove to myself that this works, I wrote down

[0<z<d] = [0*P<2?<d?].
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I also made the point that, if you square an inequality, you need to be
sure that every item you're squaring is semipositive (a.k.a. nonnega-
tive). Since 0 is semipositive and since 0 < = < 0, it follows that
0 and z and § are all three semipositive, and so it’s all right to square
the inequality. Remember that, to take an EVEN power of an inequal-
ity, each quantity must be semipositive. By contrast, you can take
ODD powers, even if some or all of the quantities are negative. I then
noted that 62 = e. I then changed “0%*” to “0”, and changed “§%” to
“c” obtaining the implication

[0<z<6] = [0<a*<e]

I then erased “0 <” on the right side of =, and felt persuaded that the
strategy will work. it’s fine to put a “proof” like this down on scratch
paper, but you shouldn’t turn in work like this. (We will explain why
later, but we're only working on (1) and (2) now.)

Next, we looked at

THEOREM 1.7. Ve >0, 30 > 0 s.t., Vx e R,
[0<z<20] = [2*<e]

This is the same as Theorem 1.6, except that we changed “0” back
to “26”. Someone suggested the strategy § := y/c/2. To prove to myself
that this works, I noted that (2§)% = ¢, and then wrote down

[0<z<20] = [0<2’<e],

and then erased “0 <” on the right side of =, and felt persuaded that
the strategy will work.

The goal is to get Theorem 1.4, which has the inequality “z+a? < ”.
Note that

[ (x<e/2) and (z*<¢/2) ] = [az+2°<e]
So, if I can force you to choose an x that is so small that
(z <g/2) and (2° <g/2),

then T'll win. I therefore focus on replacing € by /2 in Theorem 1.5
and Theorem 1.7, obtaining:

THEOREM 1.8. Ve >0, 30 > 0 s.t., Vx € R,
[0<z<20] = [xz<eg/2]
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THEOREM 1.9. Ve > 0, 36 > 0 s.t., Vz € R,
[0<z<20] = [2*<¢e/2]

I need strategies for Theorem 1.8 and for Theorem 1.9. I know
by experience that, if I take the strategies for Theorem 1.5 and for
Theorem 1.7, and replace ¢ by /2 in each of them, then T'll obtain the
desired strategies.

The strategy for Theorem 1.5 was § := g So a good strategy for

/2

Theorem 1.8 should be § := TR That is, we try 0 := Z. Noting that
26 = ¢/2, I wrote

[0<z<20] = [O0<zxz<e/2],

and then erased “0 <” on the RIGHT side of =, and felt persuaded
that the strategy will work.

The strategy for Theorem 1.7 was § := \/TE So a good strategy for

\/E/2
Theorem 1.9 should be ¢ := %/ Noting that (2)? = /2, T wrote

[0<2<20] = [0<a2’<g/2],

and then erased “0 <” on the RIGHT side of =, and felt persuaded
that the strategy will work.

Finally, we returned to the original problem, of Theorem 1.4. The
implication in that result reads

[0<z<20] = [z+2®<e].

In playing Theorem 1.4, I try to force a win by forcing you to choose x
so small that both z < £/2 and 2? < /2. To do this, I look at the last
two strategies (for Theorem 1.8 and for Theorem 1.9), which involved
NGE

2

£ 1/€/2
42

. € . . .
the expressions 1 and . With experience as my guide, I settled

on a strategy: 0 := min { } That is, my strategy is: compute

\/€/2
bothiand ;/

We played the game with me using that strategy. Someone suggested

42 42/2} Va2l

e = 42. I computed 9§ := min{— 5

, and then let § be the smaller of those two numbers.

I noted that

47 2
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e/2

0 < - and that § < , and so

>~ ™

2

20<¢e/2 and 20 <A/e/2.

I don’t remember what x you chose, but it satsified 0 < x < 24, and so
O<z<e/2 and 0<z<+/g/2.

Leaving the first part as is, and squaring the second part, we get
O<z<g/2 and 0<a®<g/2

So, with the = that you gave me, we calculated:

v+ 22 < (g/2) + (¢/2) = e

And so it came to pass that ...I won.

Enough with scratch work. In the next class, we focus on commu-
nicating this strategy and proof for Theorem 1.4. We will follow the
many strict rules from our exposition handout.
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2. CLASS 2 ON 7 SEPTEMBER 2017, TH OF WEEK 1

We reformulate theorems as games and, seek to:

(1) Find plausible strategies.
(2) Prove to ourselves that they win.
(3) Communicate the strategy and proof to others.

In the last class, we made a good start at discussing (1) and (2), in the
context of

THEOREM 1.4. Ve >0, 30 > 0 s.t., Vz € R,

[0<z<20] = [z+2®<e].

We now discuss (3), the communication part of this course. The
most common way students lose credit in their first proofs is by failing
to follow the Cardinal Binding Rule:

You must bind a variable before you use it.

In any proof, ANY time you use a variable, you MUST be able to tell
me where that variable is bound, and the binding must happen before
the variable is used. If you can’t point to where the binding happens,
then you lose credit. Some bindings are temporary, and only last until
the end of the sentence in which they appear. In that case, you can’t
use the variable after the sentence, unless it gets rebound somehow.

The past participle of “to bind” is “bound”; it is NOT “bounded”.
After you bind a variable, it becomes bound, NOT bounded. Confusion
arises because “to bound” is another verb used frequently in mathe-
matics, and is quite different from “to bind”. The past participle of “to
bound” is “bounded”. After you bound a variable, it becomes bounded.
In this lecture, we will bound no variables; we only bind them. So, in
this lecture, no variables become bounded; they become bound.

One of my pet peeves is the common confusion between “bound”
and “bounded”. Mostly, in this course, you should say “bound”, but,
if, in some future lecture, I want to stress that some variable is trapped
between two real numbers (e.g., if I have a line in a proof that reads
“—1000 < x < 1000”), then it’s reasonable to say that it’s bounded
(e.g., I might say “z is bounded”).

Free is the opposite of bound. To say that a variable is free is to
say that it is unbound.
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In Theorem 1.4, we discussed the binding of ¢, 6 and x. We noted
that by (5) of the exposition handout, all three of these variables be-
come bound before use. However, this binding is only temporary, and
lasts only until the end of the sentence. So, when we begin the proof,
all three are free variables. Therefore, you cannot begin the proof with
a statement like: “We know that ¢ > 0”. If you do that, you lose some
credit because the ¢ in that statement is free, and you can NEVER use
a variable that’s free.

Instead, we examine the statement we are trying to prove. It reads:

Ve > 0,36 > 0 s.t., Yz e R,
[0<z<20] = [z+2®<e].

Note that it starts with “¥”. We therefore go to (10) of the exposition
handout. This is the Want: V template. The instructions in (10)
say that we should begin our proof as follows:

Proof:
Given € > 0.
Want: 30 > 0 s.t., Vo € R,

[0<2<20] = [z+2’<e]

By (2) of the exposition handout, “Given” is a permanent binding
word, so € is permanently bound. We are therefore able to use it all
the way to the end of the proof-section that we are in. We’ll talk later
about how some proofs are broken into sections. In our present proof,
there is only one section, so € is bound until the end of the proof.

Next examine the statement we are trying to prove. It reads

160 > 0 s.t., Vr e R,
[0<2<20] = [o+2’<e]

Note that it starts with “3”7. We therefore go to (11) of the exposition
handout. This is the Want: 3 template. The instructions in (11)
indicate that we should leave a blank space, and that, eventually we will
fill in that blank space with mathematical statements that permanently
bind §, and prove § > 0. For now, though, there’s just a blank space,
followed by:

Want: Vz e R,

[0<2<20] = [z+2’<e]
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Next, examine the statement we are trying to prove. It reads
Vr e R,

[0<z<20] = [z+a®<e].

Note that it starts with “¥”. We therefore go to (10) of the exposition
handout. This is the “Want: V" template. The instructions in (10) say
that we should continue our proof as follows:

Given z € R.
Want: [0<2<25] = [a+2i<e].

By (2) of the exposition handout, x is now permanently bound.
Next, examine the statement we are trying to prove. It reads:

[0<2<20] = [ax+a?<e]
Note that it has a = in the middle. We therefore to to (12) of the

exposition handout. This is the Want: --- = ... template. The
insturctions in (12) say that we should continue our proof as follows:

Assume 0 < z < 26.
Want: = + 22 < e.

Next examine the statement we are trying to prove. It reads:
r+a?<e.

Note the lack of V, of 3 and of = in that statement. We’ll say that a
statement is an atomic statement if it lacks all three of these. When
you get to proving an atomic statement, you can’t rely on templates
anymore. Instead, simply leave a big blank space followed by a small
box. (That box indicates the end of the proof.) Eventually, we’ll fill
in that blank space by a with mathematical statements that end with
“p4a? < e’

At this point, we have structured the proof. This means we’ve
used the templates (10), (11) and (12) as much as we can to set up
the proof. The finish is to fill in the two blank spaces. Even if you
can’t finish a proof, if you can structure it properly, then I will give
you substantial credit.

Now go back to the first blank space, in which we must permanently
bind ¢ and show that 6 > 0. We have already discussed our strategy
for finding § from e, with some notes that would typically be on scratch
paper — paper that we don’t turn in. Recall that, with experience as



NOTES 1 19

e +/€/2
4’ 2

my guide, I settled on a strategy: ¢ := min{ } Into the first

blank space, we write:

2
Let 6 := min Z, e/ }

2
Then § > 0.

Remember that we were trying to permanently bind § and prove
d > 0. By (1) of the exposition handout, “Let” is a permanent binding
word, so ¢ is permanently bound. We also asserted that 6 > 0, but, in
fact, I might even leave out the statement “Then § > 07, treating it
as obvious, because: First, I consider it to be obvious, from the rules
e/2

2
positive. Second, I also consider it obvious that a minimum of two

€
of arithmetic that, since ¢ > 0, we know that both 1 and are

positive numbers, being equal to one of them, is necessarily positive.

We now have to prove that our strategy works. This proof goes
in the second of the blank spaces. There are a number of possibilities
for exactly how to handle this, but one approach reads:

I € e/2

]and[25< %]

€
20 < —
| 2
0<xz<26.

_O<x<25< ]and[0<x<25< g]

DO ™

_O<x<§]andl0<x< £

7O<x<§]and[02<x2<§].
_I<E]and[ac2<f].
| 2 2

2
r+r <-4 =-=c¢.
2 2

x+x2<e.

C

Remember: in this sequence of statements, we were trying to prove
x+ 22 < e. Once we get “z + 2% < €” as a known statement, we STOP.
The proof is complete.



20 SCOT ADAMS

3. CLASS 3 ON 12 SEPTEMBER 2017, Tu OF WEEK 2

Assigned HW+#6 and HW#7.
Recall that we proved:

THEOREM 1.4. Ve >0, 3 > 0 s.t., Vr € R,

[0<2<20] = [o+2’<e]

4’ 2
We focus now on using Theorem 1.4 to prove:

€ \€/2
The strategy involved setting ¢ := min { — / }

THEOREM 3.1. Ve > 0, 30 > 0 s.t., Va € R,
[0<2<60] = [a+2><e/5].

Of course, one way to prove Theorem 3.1 is to simply mimic, mutatis
mutandis, the proof of Theorem 1.4. That may, in fact, be the quickest
way to get a proof of Theorem 3.1. However, our goal is broader than
just proving one result: We want to demonstrate, by example, how
to use one theorem to prove another. Specifically, we will show how
to use Theorem 1.4 to prove Theorem 3.1.

First, we use Replacement Rule (20) from the exposition handout,
applied to Theorem 1.4. We replace € by u, and § by A, and obtain:

THEOREM 3.2. Vi >0, I\ > 0 s.t., Vo € R,

[0<z<2\] = [z+2°<p].

IR

42
Now imagine that we wish to play the game associated to Theo-

The strategy for this game involves setting A := min

rem 3.1. You give me € > 0. Here’s what I do:
Let p:= % I then use the strategy from Theorem 3.2, and set
2
A = min ﬁ, L/
4’ 2
orem 3.2, I know, for every x € R, that

. Because I know this strategy works for The-

[0<2<2)\] = [z+22<u]

A
Next, I set 9 := 3 and I report this to you.
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Because 2\ = 66 and because y = %, I know, for every x € R, that

[0<z2<6)] = [x+x2<§].
That means that I know that, whatever x € R you choose, I will win!
I now have a plausible strategy, and I'm convinced that it will work.
I must now communicate this strategy and proof, using the rules of
exposition in the exposition handout.
I begin by structuring the proof of Theorem 3.1. For this particular
triply-quantified theorem, I would write:

Proof of Theorem Theorem 3.1: Given ¢ > 0.
Want: 30 > 0 s.t., Vx € R,

[0<2<65] = [az+22<e/5]

BLANK SPACE A: PERMANENTLY BIND 4, AND PROVE ¢ > 0.

Want: Vz e R, ([0 <z < 6] = [z + 2 <¢&/5] ).
Given x € R.

Want: [0 <z < 66] = [z + 2* < ¢/5].

Assume 0 < z < 60. Want: = + 2% < ¢/5.

BLANK SPACE B: PROVE z + 22 < /5.
We end the proof with a small box: O

The proof is now structured, and, were this an exam problem, you
could get substantial credit if you can just write down this much. The
remaining credit would be for filling in the two BLANK SPACES.

For BLANK SPACE A, on scratch paper, we apply Replacement
Rule (22) to Theorem 1.4, and replace € by the bound expression ¢/5.
Remember that, according to Catch (22), this strips off the “Ve > 0,
and we get: 30 > 0 s.t., Vz € R,

[0<2<25] = [2z+2°<e/5].

To this we apply Replacement Rule (20), and replace § by A, yielding:
dA > 0 s.t., Vo e R,

[0<z<2\] = [2z+2*<e/5]
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To this apply Replacement Rule (21); replace 3 by “choose”, yield-
ing: choose A > 0 s.t., Vx € R,

[0<z<2\] = [a+2*<e/5]

Next, remember that our strategy for Theorem 3.1 was to set § := \/3.
So, inside BLANK SPACE A, we might write:

By Theorem 1.4 (with e replaced by /5, and § by \),
choose A > 0 s.t., Vx € R,

[0<z<2\] = [2z+22<e/5]
Let 6 := A\/3.

This finishes BLANK SPACE A.
In BLANK SPACE B, we might write:

Since 0 < x < 69, and since 66 = 6 - (A\/3) = 2],
it follows that 0 < x < 2.

Then, by our choice of A,

we see that z + 2% < /5, as desired.

This finishes BLANK SPACE B.

Remember that when Know=Want, we stop. This is Stopping
Rules (23,24) in the exposition handout. In our proof, “z+z?% < £/5”
was both known and wanted, so we stopped there.

We left out a couple of steps in BLANK SPACE B. Specifically, if you
look back into BLANK SPACE A at how we chose A, what it actually
tells us is: Vo € R,

[0<z<2\] = [a+2*<e/5]

Unfortunately, we can’t say this in BLANK SPACE B, because x is
already bound, and “VYz € R” would cause a double-binding, which
is NEVER allowed. Without explictly saying so, we used Replacement
Rule (22) from the exposition handout, and replaced = by the bound
expression z. (It’s not uncommon to replace a variable by itself.) Re-
member that, according to Catch (22), this strips off the “Vx € R”,
and we get:

[0<z<2\] = [az+2*<e/5]

It would actually be bad form to write this at the end of BLANK
SPACE B, because: We already observed that 0 < z < 2\, and we
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typically don’t use P = (), when P is known. Instead, we can either
write “P, therefore )7, or, if it seems clear enough, simply write “Q)”.
In this case, we simply wrote “z + 2% < /5.

We will stop proving triply-quantified statements for the moment,
and move on to discussing SET THEORY BASICS. We'll list some,
but not all of the axioms of set theory. If you want to look them up,
you should look for Zermelo-Fraenkel, with Choice, sometimes called
ZFC set theory. We modify that slightly by adding a frownie that is
not allowed to be equal to a set and is not allowed to be an element of
a set. Our sets are “happy”:

Aziom: VS, < [Sisaset] = [(@#5)&(©®¢S5)] )

That is, two sets are equal iff they have the same elements. So, in a
proof, if we have a statement that reads “Want: S = T”, then we can,
if we wish, proceed as follows:

Want: Vo, [ (r€ S) < (xeT)].
Given x.

Want: (xe S) < (xeT).

At that point, still have work to do, but at least equality of sets has
been “unwound” a little and we now have an object x to work with.
We define subset as follows:

DEFINITION 3.3. For any sets S, T, S < T means:
Ve, [(zeS) = (zeT)].
We recalled HW#1: For any propositions A and B, we have
(A= B) < ((A=B) & (B= A))
THEOREM 3.4. For any sets S and T', we have
[S=T] < [(ScT)&(T<H)]

In what follows, any text between “((” and “))” doesn’t belong in the
proof. It is there only to explain some ideas of exposition.

Proof. Given sets S and T
Want: [S =T] < [(S<cT)&(T < 9)].
Let A:=[S=T|,B:=[ScT], C:=[TcS].
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Want: A < [B&CY.
By HW+#1 (replacing A by A, and B by B&(C'), want:

(1) A= [B&(C] and

(2) [B&C] = A.
((By HW#1 with the given replacements, we know:

| A< [B&C] ] < [(1)&(2) ]

So, by Rule (31) of the exposition handout we can make the transition
from “Want: A < [B&C|” to “Want: (1)&(2)”.

Next, we apply the Want: ...& ...template, which is Rule (14)
from the exposition handout, and proceed as follows.))

Proof of (1): BLANK SPACE A End of proof of (1).

Proof of (2): BLANK SPACE B End of proof of (2). O

It remains to fill in the blank spaces. Each one is a section of a
proof. This has the effect that varibles that are bound permanently
inside that section become free at the end of that section. So “perma-
nent” is relative.

In BLANK SPACE A, we might write:

Assume A.

Want: B&C.

((We just followed Rule (12).))

Know: A

((Once you assume something, you know it. Typically, we wouldn’t
bother to say this, but there’s nothing incorrect about it.))

Know: S =T.

((Since A is, by definition, equivalent to S = T, we may transition from
“Know: A” to “Know: S = T”. Each known statement should follow
from earlier known statements. By contrast, according to Rule (31),
each wanted statement (except those coming from templates) should
imply the preceding wanted statement.

Next, we use Rule (31), keeping in mind that B&C' is equivalent to
(Sch&(T < 5).))
Want: (S < T)&(T < 9).
((Next, we use the “Want: ...& ...” template.))
Proof of S < T: BLANK SPACE A1l End of proof of S < T.
Proof of T < S: BLANK SPACE A2 End of proof of T < S.
End of BLANK SPACE A
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Each of Al and A2 is a subsection of a proof. This has the
effect that varibles that are bound permanently inside that subsection
become free at the end of that subsection. So “permanent” is relative.

In BLANK SPACE A1, we might write:
((We look up the definition of subset.))
Want: Vz, [(z€S) = (zreT)].
((Next, the “Want: V" template.))

Given z.

Want (z€ S) = (zeT).

((Next, the “Want: --- = ---” template.))
Assume xinS.

Want: z € T.

((Recalling that S = T, we apply the Axiom of Extensionality, but
replacing x by y, since x is bound.))

Know: Yy, [(y € S) < (y € T)] ((Next replace y by z, using
Replacement Rule (22), remembering Catch (22). This would give
(x e S) < (xeT). However, we don’t write this because we KNOW
that x € S, so “z € S” should not appear as the left side of an impli-
cation. Instead we wite the following.))

(xe8). . (zeT).

((Since we now know that x € T\, we STOP, by Stopping Rules (23,24)
from the exposition handout.))

End of BLANK SPACE Al.

In BLANK SPACE A2, we might write:
((We look up the definition of subset.))
Want: Vo, [(zeT) = (xe€9)].
((Next, the “Want: V” template.))

Given z.

Want (x € T) = (z€5).

((Next, the “Want: --- = --.” template.))
Assume xinT'.

Want: z € S.

((Recalling that S = T, hence T' = S, we apply the Axiom of Exten-
sionality, but replacing x by y, since z is bound.))

Know: Yy, [(y € T) < (y € S)] ((Next replace y by z, using
Replacement Rule (22), remembering Catch (22). This would give
(xeT) < (zeS). However, we don’t write this because we KNOW
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that x € T, so “x € T” should not appear as the left side of an impli-
cation. Instead we wite the following.))

(xeT)..(zell).

((Since we now know that = € S, we STOP, by Stopping Rules (23,24)
from the exposition handout.))

End of BLANK SPACE A2.

In BLANK SPACE B, we might write:

Assume B&C.

Want: A.

Know: [S € T&[T < S].

Want: S =1T.

((Use the Axiom of Extensionality.))

Want: Vo, ([z€ S| < [zeT)).

((Use the “Want: V" template.))

Given x.

Want [z € S| < [z € T].

((We next use the definition of <, combined with Catch (22).))
Since S € T, we have: (x€ S) = (zeT).

((We again use the definition of <, combined with Catch (22).))
Since T'< S, we have: (xeT) = (ze09).

((We next use:

Vpropositions P, @, [(P = Q)&(Q = P)] < [P < Q].))

Since [(z€ S) = (zeT)]and [(zeT) = (x€9)],

we get: (ze€ S) < (xeT). ((By Stopping Rules (23,24), we STOP.))

Here’s our next axiom, called the Axiom of Specification:

Axiom: Vset S, Vwell-formed condition P on S, there exists a unique
set R such that: Vz, ([reR] < [(zef)&P(x))] ).

In the preceding Axiom of Specification, the set R is typically de-
noted either by {z € S| P(x)} or by {x € Ss.t. P(x)}. That is:

DEFINITION 3.5. For any set S, for any well-formed condition P
on S, by either {x € S| P(x)} or {z € Ss.t. P(x)}, we mean the unique
set R such that: Yz, ([reR] < [(zed)&(P(x))]).

For example, {z € N|z/2 e N} = {2/4,6,...}.
For example, {r € Z| —2 <z <3} ={-2,—-1,0,1,2}.
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For a non-example, {r € N|z is cool, man} is not a set because
“r is cool, man” is not a well-formed condition. (To get a more precise
idea of what well-formed means, you'll need to take a course on logic.)

Another non-example: Define a set B by

B = {A|(Aisaset) & (A¢ A)}.

Then (B € B) = (B ¢ B), and, also (B ¢ B) = (B € B). There-
fore both B € B and B ¢ B are impossible, but one of them must
be true. This is called Russel’s Paradox, and the point is that
you can’t use the Axiom of Specification to define a set of the form
{A|(Aisaset)& (A¢ A)}. If you have a set S of sets, then you could
let B:={AeS|(Aisaset)&(A¢ A)}. However, if you did this then
you couldn’t prove that (B ¢ B) = (B € B). In fact, you could only
prove that (B ¢ B)&(B e S)) = (B e B).

We assigned HW#S8.

Next, we define the empty set:
DEFINITION 3.6. J := {x € N|z # z}.
FACT 3.7. Vz, x ¢ ¢.

Proof. Given x.

Want: = ¢ .

((We next use the contradiction template,
which is Rule (13) from the exposition handout.))
Assume x € .

Want: —«.

By definition of 7, since x € 7,

we know both that z € N and that = # =z.

By the Axiom of Equality (with z replaced by z),
we know that x = x.

Then x = x and z # .

—> <, |:|
FACT 3.8. Vx e ¢, x = 5.

Proof. Given z € (.
Want: z = 5.
Assume x # 5.
Want: —«
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By definition of ¢, since x € (7,

we know both that x € N and that = # x.

By the Axiom of Equality (with x replaced by ),
we know that = = x.

Then z = x and x # .

FACT 3.9. Ve e g, x # 5.

Proof. Given x € (.

Want: = # 5.

Assume x = 5.

Want: —«

By definition of &, since x € 7,

we know both that x € N and that x # .

By the Axiom of Equality (with z replaced by z),
we know that x = x.

Then x = x and = # .

The next fact asserts that ¢ is a set of subsets of R.
FACT 3.10. VAe g, Ac R.

Proof. Given A e (.

Want: A < R.

Assume A & R.

Want: —«

By definition of &, since A € 7,

we know both that A € N and that A # A.

By the Axiom of Equality (with A replaced by A),
we know that A = A.

Then A=A and A # A.

—>—,

FACT 3.11. Vset A, we have: & < A.

Now that we have introduced most of the points in the exposition
handout, we will start typing our proofs in paragraph format, to save

paper. We encourage students to stick with our prior writing conven-

tions, when they turn in written work.
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Proof. Let a set A be given. We wish to prove: @5 € A. By definition
of €, we wish to prove: Vx € J, v € A. Let x € J be given. We wish
to prove: x € A. Assume that = ¢ A. We seek a contradiction.

Since x € ¢, we conclude that x € N and that = # z. By the Axiom
of Equality, we conclude that x = x. Contradiction. 0
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4. CLASS 4 ON 14 SEPTEMBER 2017, TH OF WEEK 2

Recall:

e Ve x=0>.
e Vre  x#b.
e VAe i, ACR.
o Vset S, < S.

Here’s our next axiom, called the Axiom of Union:

Aziom: Vset S of sets, there exists a unique set V' such that:

Vz, ([zeV] & [FAeSst.ze A]).

That is, the elements of V' are the objects that are elements of at
least one set in §. In the preceding Axiom of Union, the set V is
typically denoted by | JS. That is:

DEFINITION 4.1. For any set S of sets, by | JS we mean the unique
set V' such that: Va, ([reV] & [JAeS st.ze A]).

For example, | J{{1,2,3},{3,4,5}} = {1,2,3,4,5}. Using (JUJ, we
can flatten a set of sets of sets of numbers, down to a set of numbers:

YU ({123, 3,43}, {({5,6}, {7,8}} } = {1,2,3,4,5,6,7,8}.

Note that, in Definition 4.1, the variable V' is temporarily bound,
and became free at the end of the sentence. This example of temporary
binding isn’t to be found in the exposition handout, because I don’t
expect that students will be using it. However, occasionally, I'll need
it to make certain definitions.

Note that | = &.

We now begin on intersections. These exist, not by axiom, but by a
theorem, whose proof we omit:

THEOREM 4.2. Vset S of sets, there exists a unique set’Y such that:
Vz, ([zeY] & [VAeS, zeA]).
Proof. Omitted. 0

That is, the elements of Y are the objects that are elements of every
set in §. In the preceding theorem, the set Y is typically denoted
by JS. That is:
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DEFINITION 4.3. For any set S of sets, by (S we mean the unique
set'Y such that: Vo, ([zreY] & [VAeS, ze A]).

For example, ({{1,2,3},{3,4,5}} = {3}.

Note that, in Definition 4.1, the variable Y is temporarily bound,
and became free at the end of the sentence.

Note that (| & is undefined, so, by our conventions, we have (| & =
®.

We have a simplified notation for finite unions and finite inter-
sections.

DEFINITION 4.4. For anyn € N, for any sets Ay, ..., A,, we define
Aru- VA =U{AL . A and Ay -0 Ay = (AL AL

For example,
{1,2,3} U {3,4,5} = {1,2,3,4,5}
and {1,2,3} n {3,4,5} = {3}.
We assigned HW#9 and HW#10.

DEFINITION 4.5. For any set S, the number of elements in S 1is
denoted #S.

For example,

#{27476} = 3,
#{1,2,5,9} = 4,
#{{172}7{374}75} = 3,
#N = o,

#{y = 1

and #g = 0.

We compute #®, as follows. Remember our general convention that
any computation that is undefined yields ®. In this case, ® is NOT a
set, and so, when we review Definition 4.5, we see that #® is undefined.
We therefore have: #® = @.

Next is the Axiom of Power Set:

Aziom: Vset U, there exists a unique set S of sets such that:

VA,  ([AeS] = [AcU]).
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That is, the elements of S are the subsets of U. In the preceding
Axiom of Power Set, the set S will be denoted by 2V or 2°U. That is:

DEFINITION 4.6. For any set U, by 2V or 27U, we mean the unique
set S such that: VA, ([AeS] < [AcCU])).

For example, we compute

2{2,4,6} _ { @ ’
{2}, {4}, {6},
{2,4}, {2,6}, {4,6},
{2,4,6} }.

For any set U, the set 2V is called the power set of U. It is not
hard to show: For any set U, we have #(2Y) = 2#Y. So, for example,
we have: #(2{246}) = 2#{246} = 23 = g,

Next we focus on various commutativity results, associativity
results and distributivity results. We first expose these kinds of re-
sults in propositional logic, and then expose these kinds of results in set
theory.

We will need the following result from propositional logic, which
asserts that & and or are commutative.

LEMMA 4.7. Let P and @) be propositions. Then:
(1) [P&Q] < [Q&P] and
(2) [P or Q] < [Q or P].
This is proved by truth tables. Since this is not a course on propo-
sitional logic, we will, in general, omit the proofs of propositional logic

results. Similarly, it is an unassigned homework probem to verify by
truth tables that & and or are both associative:

LEMMA 4.8. Let P, () and R be propositions. Then:
(1) [(P&Q)&R] < [P&(Q&R)] and
(2) [(P or Q) or R] < [P or (Q or R)].
We have modified distributivity laws for not over both & and or:

LEMMA 4.9. Let P and @) be propositions. Then:

(1) [not(P&Q)] < [(not P) or (not Q)] and
(2) [not (P or Q)] < [(not P)&(not Q)].
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Finally, we will need the fact that & distributes both over & and
over or, as well as the fact that or distributes both over & and over or.
Again we omit the proof:

LEMMA 4.10. Let P, Q and R be propositions. Then:

(1) [P&(Q&R)] < [(P&Q)&(P&LR)],

(2) [P&(Q or R)] < [(P&Q) or (P&R)],

(3) [P or (Q&R)| < [(P or Q)&(P or R)] and
(4) [P or (Q or R)] < [(P or @) or (P or R)].

We can use logic results to get set-theoretic results, like the commu-
tativity of n and u:

THEOREM 4.11. Let A and B be sets. Then:

(1) AnB=BnA and
(2) AuB=BuUA.

Since this is not a course on propositional logic, we will, in general,
omit the proofs of set-theoretic results. However, we make exceptions
to highlight certain techniques of proof.

Proof. Proof of (1): By the Axiom of Extensionality, we wish to prove:
Vo, [(x e An B) < (xr € Bn A)]. Let x be given. We wish to prove:
(re AnB) < (xeBn A).

Let P := (z € A) and @ := (x € B). By definition of n, we have
(xe An B) < (P&Q), and we also have (r € Bn A) < (Q&P).

By (1) of Lemma 4.7, we have (P&Q) < (Q&P). Then

(re AnB) < (P&Q)

< (Q&P)
< (reBnA),
as desired. End of proof of (1).
Proof of (2): Unassigned homework. End of proof of (2). O

Next, we assert associativity of n and u:

THEOREM 4.12. Let A, B and C' be sets. Then:

(1) (AnB)nC=An(Bn(C) and
(2) (AuB)uC=Au(Bu().
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Proof. Proof of (1): By the Axiom of Extensionality, we wish to prove:
Ve, [(xe (AnB)nC) < (xe An (Bn(C))]. Let x be given. We
wish to prove: (re (AnB)nC)< (xe An(BnC)).

Let P:= (z € A), Q := (x € B) and R := (z € C'). By definition
of N, we have (z € (An B) n C) < ((P&Q)&R), and we also have
(xe An(Bn()) < (P&(Q&R)

By (1) of Lemma 4.8, we have

).
(P&Q)&R) < (P&(Q&R)). Then

(re(AnB)nC) < ((P&Q)&R)

< (P&(Q&R))
< (xeAn(Bn()),

as desired. End of proof of (1).
Proof of (2): Unassigned homework. End of proof of (2). O

We define set-theoretic subtraction:

DEFINITION 4.13. For any two sets A and B, we define

AB = {zeA|zx¢B}.

Next, we describe the modified distributivity laws for set subtraction
both over & and over or:

THEOREM 4.14. Let A, B and C' be sets. Then:

(1) A\(BnC) = (AB)U(AC)  and
(2) A\(BUC) = (A\B) n (A\C).

Proof. Proof of (1): By the Axiom of Extensionality, we wish to prove:
Vz, ([x € A\(Bn C)] < [z € (A\B) u (A\O)]). Let = be given. We
wish to prove: [z € A\(Bn C)] < [z € (A\B) u (A\C)].

We define P := (z € A), Q := (r € B) and R := (z € (). Also, we
define Q" := (not @) and R’ := (not R). By definition of \ and of n
and of U, we have [z € A\(B n C)] < [P&(not(Q&R))], and we also
have [z € (A\B) u (A\CO)] < [(P&Q") or (P&R')].
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By (1) of Lemma 4.9, we have (not(Q&R)) < (Q" or R'). Then
[P&(not(Q&R))] < [P&(Q or R')]. By (2) of Lemma 4.10, we con-
clude that [P&(Q’ or R')] < [(P&Q') or (P&R')]. Then

[z € A\(B n ()] P&(not(Q&R))|
PL(Q or )
P&Q') or (P&R')]

[
[
[
[z € (A\B) v (A\C)],

<>
.
.
i
as desired. End of proof of (1).
Proof of (2): Unassigned homework. End of proof of (2). O

Finally, we will assert that n distributes both over n and over U, as
well as the fact that U distributes both over n and over u.

THEOREM 4.15. Let A, B and C' be sets. Then:

() [An(BnC)] < [(AnB)n(An ()],
2) [An(BuC)] < [(AnB)u(An ()],
B)[Au(BnC)] < [(AuB)n(Au ()] and
4) [Au(BuC)] < [(AuB)u(Au(O)].
Proof. Unassigned homework. O

We next define ELT:
DEFINITION 4.16. For any non-®object a, let ELT({a}) =

A set S is called a singleton set if #5 = 1, i.e., if S has exactly one
element. Note, for example, that {7}, {—+/2}, {{1,2}} and {&} are all
singleton sets. Remember our general convention that any computation
that is undefined yields ®. Consequently, for any object x that is not
a singleton set, we have ELT(z) = ®. So:

BLT(2) = ©,
ELT({2,3}) =
ELT({5,8,9}) =
ELT(Z) = ® and

ELT(®) = ®.
On the other hand, we have
ELT({7}) =7,

ELT({—v/2}) = —v2.
ELT({{1,2)}) = {1,2}  and
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ELT({@}) = &.

Recall that {1,2,3,®} = ®. Similarly, we have {1,®} = ® and
{2,®} = ®. Then {1,®} = {2,®}. Unassigned homework: using the
Axiom of Extensionality, show that {1,2} = {2,1}. More generally, in
set theory, order is unimportant. So, for example, we have the following
fact.

FACT 4.17. For any non-®@u,v, for any x,y, we have
Hu, v} ={z.y}] < [(u=2)&(v =y)) or ((u=y)&(v =2)) |
Proof. Unassigned homework. O

To try to keep track of the order of a pair of objects, we make the
following definition.

DEFINITION 4.18. For all x,y, we define
Czyyy = {{z}, {=zy}}

NOTE TO SELF: NEXT YEAR, =z, vy )y = {{z}, {z,y} }.
END OF NOTE TO SELF

So, for example, we have

(o 2) = {{1}, {L2} },

(2, 1) = {{2}, 213},

(5,5) = {{5, {55} = {{5}}
CL,{238) = ({1}, {1L,{231 ),

(®,5) = © and
(5,0) = ©.
Note that (1,2) # (2,1). Generally, we have:

FACT 4.19. For any non-Qu,v, for any x,y, we have
[wv) =<y ] < [u=2)&v=y)]
Proof. Unassigned homework. O
For any set U, for any x,y € U, we have
{e}, {z,y} e 27U,
so (x,y) < 27U, so {x,y) € 2727U.

More ordering;:
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DEFINITION 4.20. For alln € N, for all x4, ..., x,, we define

($17"'7xn) = {<1,$1>,<2,Q§'2>,...,<n,l'n>}-
NOTE TO SELF: NEXT YEAR,

(xyy ooy xny = {0z, L2,29)), ..., n,xa)) .

This way, we have no confusion between (a,b) = {z € R|a < z < b}
and (a, by = {{({1,a)),{(2,b))}. END OF NOTE TO SELF
So, for example, we have

(17273) = {<17 1>7 <272>7 <3>3>}7
(3.1,2) — {(1,3),¢21), (3,25}  and
(1,2,3,@) = 0.

For any m,n € N, for any non-®xy, ..., x,,, for any yy,...,y,, we
leave it as unassigned homework to show that:

( ($17"'awm) = (y17"'ayn> )
iff ( [m=n] & [(t1=y)& - &@,=yn)] ).
For any n € N, for any sets Ay,..., A,, for any x1 € Ay, ..., x, € A,

dyay), ..o {nyxny € 2727({1,...,n} UAT U~ UA,),

$O (x1,...,x,) €272727°({1,...,n} VAT U---UA,).
For any n € N, for any x1,...,x,, we have

(@y,m) = {{IL L}y, s Hob {n 2ad) )

SO
U@.z) = {0}, o, {n} {n,2a} ),
SO
UU(ml,...,xn) = {1,Lz, ..., nnx,}
= {1,....n, x1,...,2, },
SO xl,...,xneUU(wl,...,xn). A similar argument shows: For any

neN,foranya:l,...,xn,wehavexl,...,xneUUU{(xl,...,acn)}.
DEFINITION 4.21. For any n € N, for any sets Ay, ..., A,, let
Ay x - x Ay, = {(x1,...,2,) | m €A, ...,z €A}



38 SCOT ADAMS
To a logic purist,
{(.’fCl,...,xn)’SUleAl,...7InEAn}

is verboten, for two reasons. First, in the Axiom of Specification, after
“{”, we need a free variable, NOT an expression like “(xy,...,2,)”.
Second, in the Axiom of Specification, after the free variable, we need
“e” NOT “|”; otherwise, we run the risk of Russel’s Paradox. Math-
ematicans, are often sloppy, but we should always keep in mind that
it’s important that there be ways to rewrite our definitions and argu-
ments to be precise. In the present situation, we should really rewrite
Definition 4.21, and set A; x --- x A,, equal to

{z€272727°({1,...,n} A U---UA,) | FzeA,.. .., Jx, €A,

s.t. 2= (21,...,2,) }.
NOTE TO SELF: IN THE FUTURE, we’ll define
Ay x o x A, = { x| ;€A o € Ay S

and we'll define {(xq,...,2,) = {{{1,21)),...{n,x,))}, and we’ll de-
fine ((z,y)) := {{z}, {z,y}}. END OF NOTE TO SELF

At this point, for any non-®x, y, we can make an ordered pair from
x and y in two ways: {(x,y) or (x,y). In the future, by ordered pair,
we always mean a (, )-ordered pair. That is, for all z, we say that z is
an orderd pair if there exist non-@z, y such that z = (z,y). A set is
called a relation if its elements are all ordered pairs. That is:

DEFINITION 4.22. Let R be a set. By R is a relation, we mean:
Vze R, 3dz,y st z=(x,y).

NOTE TO SELF: NEXT YEAR, define a relation as a set of ({))
ordered pairs. Then (J|J R is the set of underlying coordinates, e.g.,

LB, 5), 7,80 = | (133,43, 5}, {7}, {7, 8}} = {3,5,7,8}.

Also, we have {3},{3,5} < {3,5,7,8}, so {3},{3,5} € 27{3,5,7,8}, so
({3}, {3,5}} € 2743,5,7,8), so {{3},{3,5}} € 2°2°(3,5,7,8}. That is,
(3,5 € 2°23,5,7,8}. Similarly, ((7,8)) € 2°2(3,5,7,8}. Then

{(B3,5)),(7,8))} =2727{3,5,7,8},

{((3,5)),(7,8))} € 272727{3,5,7,8}.
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Thus, if S is the set of underlying coordinates of a relation R, then we
have R < 27275, and so R € 272727S. END OF NOTE TO SELF

So, for example,
Ry = {(z,y) e R xR |42? +¢* =1} and
Ry = {2,3,4} x {1,2,3}
are both relations. A logic purist would rewrite the definition of Ry:
Ry = {zeRxR|3z,yeRs.t. (2 = (2,9)) & (42° + y* = 1)}.
Note that
Ry = {(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2), (4,3)}.
DEFINITION 4.23. For any relation R, we define
dom[R] := {x |3y st (z,y)e R},
im[R] = {y]| 3z st (z,y)eR},
The set dom[R] is called the domain of R, and the set im[R] is

called the image of R.
For any relation R, for any x,y, if (z,y) € R, then {(x,y)} < R, and

soz,y e JUU{(z,y)} < UUU R. The logic purist would write:

dom[R] := {wEUUUR‘HyS.t. (x,y)eR},
im[R] = {yeUUUR‘Hms.’c. (x,y)eR},

Going forward, we will not always rewrite every set to suit the
purists. However, when we are sloppy with the Axiom of Specifica-
tion, any student may, at any point, ask how the set in question might
be more precisely defined.

NOTE TO SELF: IN THE FUTURE, we'll have [ JJ, not (JUJU-
END OF NOTE TO SELF.

We leave it as an unassigned homework to show:
dom[Ry| = [-1/2,1/2]
im[Ry] = [-1,1]
dom[R;] = {1,2,3} and
m[R] = {2,3,4}

1m



40 SCOT ADAMS

DEFINITION 4.24. Let f be a set. By f is a function we mean

(1) f is a relation and
(2) Ya € dom|[f], Ay s.t. (z,y) € f.

NOTE TO SELF: IN THE FUTURE, (2) will be replaced by

Vo e dom[f], Ay s.t. {x,y)) € f.
END OF NOTE TO SELF.

In Definition 4.24, (2) is called the vertical line test. Note that
{(z,y) € R x R|y = 2%} and {(1,4),(2,4),(3,4)} are both functions,
but that {(z,y) € R x R|z = 4?} and {(1,4),(2,4),(3,4),(2,5)} are
both NOT.

DEFINITION 4.25. For any function f, for any x, we define

f(z) = ELT{yeim[f]|(z,y) € [}.
Let fo:={(z,y) e R x R|y = 22}, f1 := {(1,4),(2,4),(3,4)}. Then

fo(3) =9,
fo(=3) =9,
f{3}) = ©,
f(®) = ©,
fl(l) = 4,
f1(2) = 4,
AhB) = 4,
f[1({1,2,3}) = @,

fi(0) = © and
h(@®) = o
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5. CLASS 5 ON 19 SEPTEMBER 2017, Tu OF WEEK 3

Recall (z,y) = {{z},{x,y},}. Then (5,0) = ®@ = (@,). Also
(1,2) # (2,1). Recall (z,y) = {{1,2),{2,y)} and, more generally,
(x1,...,xn) = {{1,x),...,{(n,z,)}. Warning: (3,7) = {(1,3),(2,7)} is
differemt from (3,7) = {x € R|3 < 2 < 7}. You have to figure out
from context which is which.

NOTE TO SELF: IN THE FUTURE, we’'ll use (3,7) for the ordered
pair, and we'll use (3, 7) for the interval. IN THE FUTURE, we'll define
3,7 := {{1,3)),{(2,7))}. Similarly, IN THE FUTURE, we’ll define
(3,7,2,2) = {{{1,3)),{(2,7)),{(3,2)),{{4,2))}. And, generally, IN
THE FUTURE, we'll define (zy,...,2,) := {{{1,21)),...,{n,zp))}.
NOT THIS YEAR, though. END OF NOTE TO SELF

Recall that R is a relation means that R is a set of () ordered pairs,
i.e., that Vz € R, 3x,y s.t. 2 = (z,9).

NOTE TO SELF: IN THE FUTURE, a relation will be a set of {{))
ordered pairs, and ((x,y)) := {{z},{z,y}}. Thatis, IN THE FUTURE,
we'll say that R is a relation means that Vz € R, 3z, y s.t. z = {(z,y)).
END OF NOTE TO SELF

Recall that, for any relation R, we defined

dom[R] := {z|3Jys.t. (z,y) € R},
im[R] = {y|3zs.t. (z,y) € R}.

Recall also that, for any n € N, for any sets Ay,..., A,, we defined
Ay x oo x Ay = {(x1, ... ) |21 € Ay, ...,z € Ay} Recall also that,
for any n € N, for any set A, we defined A" := A x A x --- x A, with
A repeated n times.

Recall that a function is a relation that satisfies the vertical line
test. That is, f is a function means both that f is a relation and that
Vo € dom[f], Iy s.t. (z,y) € f. Recall that, for any function f, for
any x, we defined f(z) := ELT{y € im[f]|(z,y) € f}. Sometimes, we
will use f, to denote f(x). For any sets A and B, for any function f,
if we have dom[f] = A x B, then, for any x € A, for any y € B, we
define f(x,y) := f((z,y)) and zfy := f((z,y)). The notation xfy is

particularly common when f is a special symbol (not a letter). So for
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example, for any sets A, B,C, for any function = : A x B — C, for
any = € A, for any y € B, we would typically use x *y to denote =(z,y).

NOTE TO SELF: IN THE FUTURE, we’ll write f(x,y) = f({z,y))).

For example, let

fo = {lz,y) e R? |y = 2%}
fi= {(174)7<274)7(374)}'

We calculated the domain and image of fy and f.

DEFINITION 5.1. Let A, B and f be sets. Then f: A — B means
e f is a function,
e dom[f] = A, and
e im|f] € B.

Writing fo = {(x,y) € R*|y = z?} will be considered bad form
in this class; even though it’s technically correct, it’s hard to read.
Instead, we will say, “Let fo : R — R be defined by fo(z) = 2*” or,
equivalently, “Define fy: R — R by fo(x) = 2*”. We calculated

e fo(3) =9 = fo(=3),
b f0(5) =25 = fo(—5)7
e fo({3,5}) = @,

e fo(0) =0 and
e fo(®) =06.

DEFINITION 5.2. Let A, B and f be sets. Then f : A --» B means
e f s a function,
o dom|[f] € A, and
° @m[f] c B.

By superdomain, we mean any superset of the domain. By su-
perimage, we mean any superset of the image. Some mathematicians
co-domain is used to mean superimage, others use target, and still
others use range. Be wary of the word “range” though, since some
mathematicians use range to mean image.

In Definition 5.1, we see that “f : A — B” indicates that A is the
domain of f, and that B is a superimage of f. On the other hand, in
5.2, we see that “f : A --» B” indicates that A is a superdomain of f,
and that B is a superimage of f.



NOTES 1 43

Writing f1 := {(1,4),(2,4), (3,4)} will be considered bad form in this
class; even though it’s technically correct, it’s hard to read. Instead,
we will say, “Let f; : R --+ R be defined by

4, ifz=1
filz) =14, ifz=2
4, ifz=3 7,

or, equivalently, “Define f; : {1,2,3} - R by fi(z) = 4”. We have:

o f1(1) = f1(2) = f1(3) = 4,

s f1(4) = Q,

e 1({1,2,3}) = ©,

e fi(0) =0 and

e f1(®) =06.

For another example, let h : R --» R be defined by h(x) = 1/x.

Then, technically, we have h = {(z,y) € R?|y = 1/x}, but this is
considered difficult to read. We have:

e h(5) =1/5,
e h(—5)=—1/5,
e h(0) =@,
o h(w) =@,
e h({5}) = and
e h(®) =0.
For another example, let h; : R --+ R be defined by
1
GG 2T + 523 + 47

Note that dom[h;] = {x € R| 27+ 5% +4 # 0}. Then hy is an example
of a function whose domain is difficult to calculate precisely, and so it’s
nice that we have the --» notation.

Finally, one more example. Define ¢ : R* — R by ¢(z,y) = x. Note
that, as is typical, g(z,y) is an abbreviation of ¢((z,y)). Technically,
we have ¢ = {((z,y), 2) € R?x §| 2 = }, but this is considered difficult
to read. Question: Is ¢(5,®) equal to 5 or to ®? Note that we have,
as usual, ¢(®) = ®. Recall that (5,®) = ®@. Note that, as is typical,
q(5,®) is an abbreviation of ¢((5,®). Then

Q<57®) = Q<<57®)) = Q<®) = 0.
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Recall that, for any set S, we defined 2° := {subsets of S}. Note
that, for any sets A and B, for any f: A — B, we have f € A x B,
or, equivalently, we have f e 24%B,

DEFINITION 5.3. For any sets A and B, we define
AP .= {functions B — A}.

That is, A® denotes the set of all function with domain B and su-
perimage A. More precisely, we should write
AP = {fe2™P|f. B A}

We recalled the computation of 2134°} which is a set of all the eight
subsets of {3,4,5}. We computed {0, 1}{**% and verified that these
functions are in correspondence with the sets in {3,4, 5}.

Recall that A" = A x --- x A. We now give a second definition to
A", as follows:

DEFINITION 5.4. For all n € N, for any set A, we define A" :=

From here on out, when you see A", you should use Definition 5.4.
Recall that we defined (z,...,z,) := {{1,21),...,{n,z,)}. We now
give a second definition to (z1,...,x,), as follows:

DEFINITION 5.5. For alln e N, for all x4,...,x,, we define
(1, xn) = {(L,z1), ..., (n,x,) }.

NOTE TO SELF: NEXT YEAR, we won’t need Definition 5.4 or Def-
inition 5.5. We’ll only have one definition of A™ and one definition

of (z1,...,2,). END OF NOTE TO SELF

From here on out, when you see (z1,...,x,), you should use Defini-
tion 5.5. For example, let v := (4,7,9). Then v = {(1,4),(2,7),(3,9)}.
Note that v : {1,2,3} — {4,7,9} and that v(1) =4, v(2) =7, v(3) = 9.
Typically, in this situation, we’ll use

vy instead of v(1),
vo instead of v(2) and
vs instead of v(3).
Thus, we would write v1 = 4, v = 7 and v3 = 9.

Recall that we defined
Ay x - x A, = (1, 1) T € Ay, € ALY
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Now that (xy, 2, . .., 2,) has two definitions (new and old), we see that
Ay x ... x A, has two definitions (new and old). From here on out, the
new definition is what we will mean by A; x --- x A,,.

DEFINITION 5.6. Let A and B be sets, and let f : A — B. Then

(1) f is one-to-one or injective means:

vy,ze B, ([f(y) = f(2)] = [y ==2]).

(2) f is onto B or surjective onto B means: im|f]| = B.
(3) f is bijective onto B means:

(f is one-to-one) & (f is onto B).

REMARK 5.7. Let A and B be sets, and let f: A — B. Then:
(fisonto B )< (VYyeB,3xe Ast f(x)=y ).

Proof. Proof of =: Assume that f is onto B. We wish to show:
Vye B, dzeA st. f(z)=y

Let y € B be given. We wish to show: 3z € A s.t. f(x) = y.
Since f is onto B, we have im[f] = B. Then

y € B = im[f] = {f(z)|zeAl

Choose z € A such that y = f(x). We wish to show: f(z) = y. By
choice of z, we have f(x) =y, as desired. End of proof of =.

Proof of «<: Assume: Vy € B, 3z € A s.t. f(z) = y. We wish to
show that f is onto B. That is, we wish to show that im[f] = B.

Since f : A — B, it follows that im[f] € B. We wish to show that
B < im[f]. We wish to show, for all y € B, that y € im[f]. Let y € B
be given. We wish to show: y € im[f].

By our assumption, choose « € A such that f(x) = y. Then we have
y = f(x) € im[f], as desired. End of proof of <. O

REMARK 5.8. Define g : Ny — N by g(z) = x + 1. Then g is
bijective onto N.
Proof. We wish to show:

(1) g is one-to-one and
(2) g is onto N.



46 SCOT ADAMS
Proof of (1): We wish to show, for all w,z € N, that
(9w) =9(z) = (y=2).
Let w,z € N be given. We wish to show:
(9w) =9(z) = (y=2)
Assume ¢(y) = g(z). We wish to show y = z. We have
y+1 = gly) = g(z) = =z+1

Then y +1 =z + 1, and so y = z, as desired. End of proof of (1).
Proof of (2): By Lemma 5.7, it suffices to show:

VyeN, dreNy st gx)=uy.

Let y € N be given. We wish to show: 3z € Ny s.t. g(x) = y. Since
y € N, it follows that y — 1 € Ny. Let x = y — 1. Then z € Ny, and we
wish to show that g(z) = y.

We have g(z) =x+ 1= (y— 1)+ 1 =y. End of proof of (2). O

Assigned HW#11.

DEFINITION 5.9. For ally = 0, we define

Vy = ELT{z>0]y=2"}.
DEFINITION 5.10. For any functions f and g, we define the com-
posite function, go f, by: Vo, (go f)(z)=g(f(x)).

For the logic purist:

go f={ve(dom[f]) x (im[g]) |
Jz € dom[f], Jy € (im[f]) n (dom]g]), Iz € im|g]
st. (zyy)e f, (y,2) g, v=_(z,2)}.

For example: Define f : R — R by f(x) = 2° + 7z + 1 and define
g:R --» R by g(z) = y/z. Then, for all z € R, we have (go f)(x) =
Va® + Tz + 1. Note that dom[go f] = {x € R|2® + Tz + 1 > 0}. This
domain is a finite union of intervals, but calculating the endpoints of
those intervals is difficult, and we won’t attempt it.

DEFINITION 5.11. Let A be a set. Thenidy : A — A is defined by
ida(x) = 2.
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DEFINITION 5.12. Let f be a function and let S be a set. Then
the forward image of S under f is

fe(S) = {f(z) [z €S (dom[f])}.
For the logic purist:

f«(S) ={yeim[f]|Fx € S n (dom[f]) s.t. y = f(x)}.

DEFINITION 5.13. Let f be a function and let T be a set. Then
the backward image or preimage of T under f is

AT = A{zedom[f]|f(z)eT}.
For example, define s : R — R by s(x) = 2%, Then
s«({1,2,3}) = {1,4,9} and
s*({1,2,3}) = {1,-1,v/2,—v2,v3,—V3}.

6. CLASS 6 ON 21 SEPTEMBER 2017, TH oF WEEK 3
Assigned HW#12.

Recall: Yy >0, /y := ELT{z > 0|y = 2°}.

Recall: Vins f, g, Vx, (go f)(z) = g(f(z)).

Recall: Vset A, idy : A — A is defined by ida(x) = x.
Recall: Vin f, Vset S, f«(S) = {f(x) |z € S n (dom[f]).
Recall: Vin f, Vset T, f*(T) = {x € dom[f]| f(x) € T}.

DEFINITION 6.1. For any function f, for any S < dom|f], the
function f|S S — im[f] is defined by (f|S)(z) = x.

Note that, in Definition 6.1, the equation “(f]S)(z) = z” is under-
stood to be quantified by “Vx € S”. For any x € (dom[f])\S, we have
x ¢ S = dom[f|S], and so (f|S)(x) = ®.

As an example, define s : R — R by s(z) = 2°. Then s might be
called the “squaring function”. Then s(2) = 4 and s(—2) = 4, so s
is NOT one-to-one. However, if we restrict s to [0,00), then we end
up with a different function r := s|[0,00), which might be called the
“restricted squaring function”. This restricted squaring function it IS
one-to-one. Note, for example, that r(2) = 4 and r(—-2) = @.

Assigned HW#13
REMARK 6.2. Va,b, [(a€ {b}) & (a=0b)].
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Proof. Omitted. Follows from the definition of {b}. O
REMARK 6.3. Vfn f, Yy,
f*Quy) = A{zedom[f]]f(z) =y}
Proof. Let a function f be given, and let y be given. We wish to show:

ffup) = {eedom[f][f(z) =y}
By Remark 6.2, for all x, (f(z) € {y}) < (f(x) =y). Then

f*({y}) = {zedom[f]]f(z) € {y}}
= {zedom[f]| f(z) =y},
as desired. O

REMARK 6.4. Vfn f, Vy,
(yeimlf]) <= (f*{y})#3).
Proof. Let a function f be given, and let y be given. We wish to show:
(yeim[f]) < (f"({y}) = 2).
By Remark 6.3, we have:
fyh) = A{zedom[f]|f(z) =y}

Then: (f*(y}) # &) < (Bxedom|[f]st. f(z)=1y).
Recall that im[f] = {f(x) | x € dom[f]}. Then

(yeim[f]) < (Jzedom[f]s.t. f(z)=y)
= (["({y}) # D),
as desired. ]

Assigned HW#14.
A set is nonempty iff it has at least one element:
FACT 6.5. Vset S, we have
(#S=1) < (S#9).
Proof. Omitted. O

A set has more than one element iff it has two elements that are not
equal to one another:
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FACT 6.6. Vset S, we have
(#S>1) < (Quw,xze S st w#x).
Proof. Omitted. O

THEOREM 6.7. Let f be a one-to-one function. Then, Yy € im|f],
we have: #[f*({y})] = 1.

Proof. Let y € im[ f] be given. We wish to prove that #[f*({y})] = 1.

Since y € im[f], it follows, from Remark 6.4, that f*({y}) # &.
Then, by Fact 6.5, we have #[f*({y})] = 1, and it remains to show:
#[f*({y})] < 1. Assume #[f*({y})] > 1. We aim for a contradiction.

As #[f*({y})] > 1, by Fact 6.6, choose w,z € f*({y}) s.t. w # x.
By definition of f*({y}), since w,z € f*({y}), we get f(w), f(x) € {y}.
Then f(w) = y and f(x) = y. Then f(w) = f(x). So, since f is
one-to-one, we conclude that w = x. However, by choice of w and x,
we have: w # x. Contradiction. U

FACT 6.8. Let f be a function. Then f is onto im|f].

Proof. Since im[f] = im[f], it follows, from the definition of “onto
im[f]”, that f is onto im[f]. O

DEFINITION 6.9. For any one-to-one function, the function f=! is

defined by
vy, [T'y) = ELT[f*({y})].

Note, for any one-to-one function f, that

(1) f + domlf] — im[f]
(2) f is bijective onto im|[f],

(3) /7' : im[f] — dom|[f] and
(4) f~1 is bijective onto dom[f].

All four of these are unassigned homework.
Example: Let f : R — R be defined by f(z) = 3z + 5. We leave it
as unassigned homework to show that f is one-to-one. We calculate
f719) = ELT[f'({y})]
= ELT{z e R]| f(z) =9}
= ELT{zeR|3z+5=09}
= ELT{xeR |z =4/3}
= ELT{4/3} = 4/3.
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Assigned HW#15.

Let r : R --» R be defined by r(z) = /z. (Note that dom|[r] =
[0,0).) Let s : R — R be defined by s(z) = z%. For any sets A and
B, a function f : A — B is sometimes denoted x — f(z) : A — B.
For example, the function z — 2z? : R — R is equal to s. A function
f: R --» R is sometimes denoted f(e). For example, the function (e)?
is equal to s, and the function /e is equal to 7.

Example (of an inverse function): The function () : R — R is not
one-to-one, and so it does not have an inverse. However the restriction
(0)2][0, 20) : [0,00) — R IS one-to-one, and [(e)?|[0,00)] ' = 4/e.

For all n € N, for all a4,...,a,, we say that aq,...,a, are distinct
or pairwise unequal if, for all ¢, 7 € {1,...,n}, we have:

[i#7] =[a #a;]

For all n € N, for all sets Sy, ..., S,, we say that S7,...,S, are pairwise
disjiont if for all 4, j € {1,...,n}, we have:
[i#]] =[SnS;=d]
For all n € N, for all ay,...,a,,b1,...,b,, if a1,...,a, are pairwise

unequal, then we use the notation

al'—>b1

a, — b,
to denote the function f : {ai,...,a,} — {b1,...,b,} defined by

bl, ifxzal
fz) =

b,, if x = a,.

Example (of an inverse function): We have

25\ (52
6—9 S \9—6 )"
DEFINITION 6.10. Let A, B and f be sets.
(1) By f : A— B, we mean: (f : A— B) and (f is one-to-one).

(2) By f : A —>> B, we mean: (f : A— B) and (f is onto B).
(3) By f: A—>> B, we mean: (f : A— B) and (f : A ->> B).
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DEFINITION 6.11. Let A and B be sets.
(1) By 3A — B, we mean: if s.t. f: A— B.
(2) By dA —»> B, we mean: If s.t. f: A —>> B.
(3) By 3A —> B, we mean: If s.t. f: A —>> B.

For example,
(31,2} — {3,4,5}) and
(3{3,4,5} —»>{1,2}) and
(3{1,2} —>> {3,4}).
In fact, for any finite sets F' and GG, we have

[(IF>G) = #HF<#G)] and
[(3G>>F) < ((#G=#F)&(F+#@))] and
[(IF >>G) < (#F=#G)] and

Reflexitivity of (1),(2),(3) of Definition 6.11: For any set A,
(JA — A) and (3A ->> A) and (A —> A).

Transitivity of (1),(2),(3) of Definition 6.11: For any sets A, B, C,

([3A— B)and (3B~ C)] = [3A—C]) and
([(3A -> B) and (3B -»>C)] = [3A—>>C]) and
([BA —> B) and (AB —> C)] = [34 —>(C]).

Symmetry of (3) of Definition 6.11: For any sets A, B,
(JA—>>B) = (IB —>> A).

51

We will not, in this course, define the “cardinality” of a set, but it’s

worth understanding that, for any sets A and B, we have: ( A has

smaller cardinality than B ) iff (3A — B ).

The following theorem is hard to prove, and we omit the proof, since

it doesn’t really belong in this course. However, to understand properly

how sets are organized by cardinality, it’s important to know all of the

results in it. Even though we won’t define cardinality explicitly, we

nevertheless call this the Cardinality Theorem:

THEOREM 6.12. Let S and T be sets. Then:
(1) (3S = T) or (IT — 9).

(2) [(3S — T)&(AT — S)] = [3S —>T].

(3) [3T —»> S] = [3S — T1.

(4) [3S = T)&(S # )] = [3T —> S].
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Proof. Omitted. O

Item (2) of Theorem 6.12 is the Schroeder-Bernstein Theorem.
The reverse implication is also true, and not hard to prove. So we can
say: Vsets S and T', we have: [(3S — T)&(IT — S)] < [IS —> T].

It would be nice if we could omit “&(S # )" from (4) of Theo-
rem 6.12, but that omission isn’t possible, because the only function
whose image is contained in the empty set is the empty function. So,
for any set T, if T # &, then 3@ — T, but 4T —> . It’s worth
remembering, though, that, by (3) and (4) of Theorem 6.12, we CAN
say: For any nonempty sets S and 7', we have:

[35>T] < [IT—>>5]

Another useful result says that N injects into any infinite set, so that
N may be thought of as one of the “smallest” infinite set. That is:

THEOREM 6.13. Let T' be an infinite set. Then AN — T.
We begin with an informal proof.

Proof. We wish to show that 3f s.t. f: N — T.

Since T is infinite, T" # F, so choose z; € T'.

Since T is infinite, T\{z1} # &, so choose z3 € T\{z1}.

Since T is infinite, T\{z1, 22} # O, so choose z5 € T\{z1, 22}.

Since T is infinite, T\{z1, 22, 23} # &, so choose z4 € T\{z1, 29, 23}

Continuing in this way we arrive at zi, 29, 23, ... € T such that, for
all j, ke N,

[i#7] = la#z]

That is, the elements zq, 29, 23,... of T are pairwise unequal.

Define f : N — T by f(j) = z;. We wish to show that f is one-to-
one.

We leave it as an unassigned exercise to show that, because 21, 29, 23, . . .
are pairwise unequal, it follows that f is one-to-one. O

Recall that for any functions S and ¢, for any j, we often write .S;
for S(j) and ¢; for ¢(j). To make the preceding informal proof precise,
we will need the Axiom of Choice:

Axiom of Choice. Let S be a function. Let D := dom[S] and
assume, for all j € D, that S; is a nonempty set. Then there exists a
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function ¢ such that dom[c|] = D and such that, for all j € D, we have
Cj S Sj.

The function c¢ is sometimes called a choice function for S.

Recall that “f € DP” is the same as “f : D — D”. To make
the preceding informal proof precise, we also need the Fundamental
Theorem of Dynamics, which says that whenever you have a set D
and a function f € DP, you can create a sequence of functions ¢y = idp,

O1=f, po=fof, ¢3=fofolf, etc.. More formally:
THEOREM 6.14. Let D be a set, f € DP. Then 3¢ : Ny — DP s.t.

(1) ¢o =1idp and

(2) VjeN, ¢;=fogp.
Proof. Omitted. Idea: For all 5 € N, define

S = L b0, —DP |

(Yo=idp ) & (Vie{l,....jhti=foia) }.

Argue, by induction, that, Vj € N, #[S;] = 1. For all j € N, define
¢’ = ELT(S;). Argue, by induction, that, for all j € N, we have
YL, ... j} = 47, Define ¢, by ¢; = 7. O

In the statement of Theorem 6.14, we are using ¢y to mean ¢(0),
and ¢; to mean ¢(1), etc..

DEFINITION 6.15. Let D be a set and let f € D”. Then, by f., we
mean the unique function ¢ : N — DP such that

(1) ¢p =idp and

(2) VjeN, ¢;=fod;.
For all j € Ny, by f7, we mean (f,); = f.(j) € DP.

Informally, for any set D, for any f : D — D, we have f? = idp,
and f; = f,and f2 = fo f,and fJ = fo fof, and so on.

DEFINITION 6.16. Let D be a set and let f : D <> D. Then, for
any j € N, we define f;7 := (f~1)

o

Informally, for any set D, for any f : D <> D, we have f;1 = [,
and f72 = flof ! and f;3 = f"1of o f! and so on.

We can now give a more formal proof of Theorem 6.13:
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Proof. We wish to show: 3z s.t. 2z : N — T

Let D := {X € 2T |#X = o} be the set of all infinite subsets of T'.
Note that T'e D. Let S :=idp : D — D. Then, VX € D, Sx = X.

By the Axiom of Choice, choose a function ¢ such that dom[c] = D
and such that, VX € D, ¢x € Sx. Then, for all X € D, we have
cx € Sy = X. For all X € D, as X is infinite, and as {cx} is finite, we
see that X\{cx} € D. Define f € D? by f(X) = X\{cx}.

For all j € N, we have f/(T) = f(fJ~%(T)). Define X : Ny — D by
X := fJ(T). Then

() VjeN, [X; = f(X;21)].
We leave it as unassigned homework to show:

(x¢) Vi, keNo, [(J <k)= (Xx < X;)]

Define 2z : N — T' by z; := cx,_,. We wish to show that z : N — T
Since z : N — T, we need only show that z is one-to-one. We wish to
show: Vj,k e N, ([j # k] = [z; # 2x]). Let j,k € N be given. We
wish to show: [j # k] = [z; # z,]. Assume j # k. We wish to show:
z; # zg. Let m := min{j, k} and n := max{j, k}. Then m < n, and it
suffices to show that z,, # z,.

By (#x), we have X, 1 € X,,. Then z, = ¢x, , € X,-1 € X,,.
By (x), we have X,,, = f(X;—1). Then

X = XpoaMex, o} = Xooa\{zm),
SO Zm & X,,. So, since z, € X,,,, we get z,, # z,, as desired. [

Using Theorem 6.12 and Theorem 6.13, we can organize the World
of Sets into various levels numbered 0, 1, 2, etc.. We picture the Oth
level at the bottom, the 1st just above it, the 2nd just above the 1st,
etc. Above all of these, there are infinte levels. Moreover:

(1) The Oth level contains only the empty set.

(2) The 1st level contains all sets S s.t. #5 = 1.

(3) The 2nd level contains all sets S s.t. #S5 = 2.

(4) ¥n € Ny, the nth level contains all sets S s.t. #S5 = n.
(5) The lowest infinite level contains N.

(6) For any two sets S and T on the same level, 35 <> T.
(7) For any two sets S and T,

if T is on a strictly higher level than .5,

then [ (35 < T) and (3T — 9) ].
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(8) For any two nonempty sets S and T,
if T is on a strictly higher level than S,
then [ (3T —> S) and (1S —>T) |.
So, in the World of Sets, a <> points horizontal, a —> points down,
and a < points up. We will eventually see that there is a level above
the lowest infinite level, and, in fact, there is no top level.

Note: {5} and {{1, 2, 3}} are both on the 1st level. Note: {5, {1,2,3}}
is on the 2nd level. By Theorem 6.13, every infinite set is at or above
the level of N. Every finite set is strictly below the level of N.

We explained why IN — Ny and 4N < Z. Thus Ny and Z are on the
same level as N.

DEFINITION 6.17. Let S be a set. By S is countable, we mean:
3S < N. By S is uncountable, we mean: 3S < N. By S is count-
ably infinite or denumerable, we mean: 35 —> N.

The countably infinite sets are those on the same level as N; in par-
ticular, Ny and Z are countably infinite.

A set is countably infinite iff it is both countable and infinite. The
countable sets are those on or below the level of N. The uncountable
sets are those strictly above the level of N.

In the next classes, we will place Q and R in the World of Sets.

7. CLASS 7 ON 26 SEPTEMBER 2017, Tu OF WEEK 4

meZ}.

SR 3 7?7?7353a3737"' .

DEFINITION 7.1. For alln € N, we define 2 = {@

n n

So, for example, — =

3
Assigned HW#16.

DEFINITION 7.2. For any set S, for any A < S, we define the
1, ifze A
0, ifz¢ A.

Assigned HW#17 and HW#18 and HW#19.

Z{ -3 -2 -10123 }

function x5 : S — {0,1} by x5 (z) =

The following result is called the Archimedean Principle:
THEOREM 7.3. VxR, 3j e N s.t. j > x.
Proof. Omitted. 0
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Assigned HW#20.

Recall: Theorem 6.12 and Theorem 6.13. By Theorem 6.13, we
know: Vset S, [ ( S is infinite ) « (IN — S ) ].

Recall: Definition 6.17. Using the Schroeder-Bernstein Theorem ((2)
of Theorem 6.12), it’s not hard to show: For any set .S, we have

[ S is countably infinite | < [ (S is countable) & (.S is infinite) |.
Recall: Because Ny is “listable” as {0,1,2,3,...}, it follows that

N <> Nj. Similarly, because Z is “listable” as {0,1,—1,2,—2,3, -3, ...

it follows that AN <> Z. Thus N and Ny and Z are all three countably
infinite.
Similarly, we can list the elements of N x N using two rules:

(1) For all p,q,r,s € N, if p+ ¢ < r + s, then we list (p, q) before

(r,s).
(2) For all p,q,r,s e N, if p+ ¢ =r + s and if p < r, then we list
(p, q) before (r,s).

Following these two rules, we list N x N as follows:

{ (1,1),

(1,2),(2,1),
(1,3),(2,2),(3,1),
(1,4),(2,3),(3,2), (4,1), ... y

DEFINITION 7.4. A sequence is a function whose domain is N.

For any sequence a, for any j € N, it is traditional to denote a(j) by
a;. For any sequence a, we will sometimes use a, to denote a. If in
a complicated situation, we have, say, sequences a, x and y, and real
numbers b, ¢ and z, it can be helpful to use a,, b, ¢, x,, Y., z so that
the reader can easily remember which object is a sequence and which
is a real number.

To indicate a sequence a,, we sometimes write (ay, as, as, . . .), hoping
that the pattern becomes clear for the reader. For example, defining
be := (1,4,9,16,...) is the same as defining b : N — R by a; = j°.
Defining ¢ := (5,5,5,5,...) is the same as defining ¢ : N — R by
Cj = 5.

For any sequence a, note that im[a] = {a; | j € N}, and we sometimes
write im[a,] = {a1, ag, ...}
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If we say “a is a sequence of real numbers”, then we mean: “a is a
sequence, and, for all j € N, a; € R”. Or, equivalently, “a € RN,

If we say “S is a sequence of sets”, then we mean: “S is a sequence,
and, for all j € N, S; is a set”.

If we say “W is a sequence of nonempty sets”, then we mean: “W
is a sequence, and, for all j € N, W} is a nonempty set”.

THEOREM 7.5. Let S1,S5,S55,... be countably infinite sets. Then
S1u Sy uS3u - s a countably infinite set.

Colloquially, Theorem 7.5 asserts: “A countably infinite union of
countably infinite sets is countably infinite.” A logic purist would not
appreciate the use of ellipses (“...”s) in Theorem 7.5, and would prefer
the following more precise version:

Theorem. Let S be a sequence of countably infinite sets. Then
J(@im[S.]) is a countably infinite set.

We begin with a proof of Theorem 7.5 that is appropriate to the level
of our course, but would irritate the logic purist:

Proof. Let U := Sy u Sy u ---. We wish to show that U is countably
infinite. That is, we wish to show that U is both countable and infinite.

Since U 2 S; and since S; is infinite, it follows that U is infinite.
It remains to show that U is countable. We wish to show: 3U — N.
Then, by (3) of Theorem 6.12, it suffices to show IN —> U. Since
N x N is countable, it follows that 3N x N —> N. Then, by transitivity
of Je—>e it suffices to show: dN x N —> U. That is, we wish to
show: 4@ s.t. D: N x N —-> U.

Choose f1 : N —> 5y, fo : N> Sy, etc. Then, for all j € N, since
S;c U, weget fj : N— U. Define ®: N x N — U by ®(j,k) = f;(k).
We wish to show ® is onto U. That is, we wish to show: Vy € U,
Jj,k € N st. ®(j,k) = y. Let y € U be given. We wish to show:
Jj,ke Nst. &5, k) =y.

Since y € U = 51 U Sy U ---, choose j € N such that y € S;.
Since f; : N — S; is onto S;, it follows that im[f;] = S;. Then
y € S; = im[f;], so choose k € N such that f;(k) = y. We wish to
show: ®(j,k) = y.

We have ®(j,k) = f;(k) =y, as desired. O
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From the purist’s point of view, there are two problems with the
proof given above: the use of “etc.” and the use of ellipses (“...s”).
The second one is easily fixed, because we can

(1) replace “U := 51 u Sy u " with “U := [ J(im[S.])” and
(2) replace “ye U =51 u Sy u---” with “ye U = J({im[S.])".

A more difficult problem appears at the start of the third paragraph
of the proof, where we say: “Choose f; : N <> 51, fo : N <> 5,
etc.”. We need to replace this with text that will satisfy the logic
purist.

The basic problem is that, at the start of the third paragraph of the
proof, we KNOW

VieN, dN —> §;
or, in other words, we KNOW
VieN, 3f st. f: N—=> 5

and we would like to replace 3 by “choose”. This is similar to Re-
placement Rule [21] in the exposition handout, except that “3” is not
appearing at the start of the known statement; it appears AFTER
“Yj € N”. So, in this situation, we know that infinitely many objects
exist, and we want to choose them all in one statement. A semi-purist
would say that, the spirit of the Axiom of Choice is that we can make
infinitely many choices at once, so we are, in fact, allowed to change ”3”
to “choose”, EXCEPT that we have to alter the notation to keep track
of the fact that the choices may well be different from one another.
Since we start with “Vj € N”, we should change each “f” to “f;” and
we end up with

VjeN, choose f;s.t. f; : N> S;
Here then, is a proof for the semi-purist:

Proof. Let U := |J(im[S,]). We wish to show that U is countably
infinite. That is, we wish to show that U is both countable and infinite.

Since U 2 S; and since S; is infinite, it follows that U is infinite.
It remains to show that U is countable. We wish to show: JU — N.
Then, by (3) of Theorem 6.12, it suffices to show IN —> U. Since
N x N is countable, it follows that 3N x N —> N. Then, by transitivity
of Je—>e it suffices to show: IN x N —> U. That is, we wish to
show: 40 s.t. ®: N x N —-> U.
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Forall j e N, dN <> S;. That is, forall j e N, 3f s.t. f : N> S,.
Then, by the (semi-purist’s) Axiom of Choice, for all j € N, choose f;
s.t. f; : N <—>>S;. Then, for all j € N, since S; € U, weget f; : N — U.
Define ® : N x N — U by ®(j, k) = f;(k). We wish to show ® is onto
U. That is, we wish to show: Vy € U, 35,k € N s.t. ®(j,k) = y. Let
y € U be given. We wish to show: 3j,k € N s.t. (j,k) = y.

Since y € U = J(im[S,]), choose Z € im[S,] such that y € Z. Since
Z € im[S,], choose j € N such that Z = S;. Since f; : N — S} is onto
S;, it follows that im[f;] = S;. Then y € Z = S; = im[f;], so choose
k € N such that f;(k) = y. We wish to show: ®(j,k) = y.

We have ®(j,k) = f;(k) =y, as desired. O

In reality, there isn’t a “semi-purist’s Axiom of Choice”. The follow-
ing is just a slight restatement of our earlier Axiom of Choice:

Axiom of Choice (slight restatement): Let S be a function and
let D be a set. Assume that dom[S] = D. Assume, for all j € D,
that S; is a nonempty set. Then there exists a function c¢ such that
dom|[c] = D and such that, for all j € N, we have ¢; € S;.

The intuitive meaning is: If we’re given D-many nonempty sets,
then we can choose an element from each of them simultaneously. To
be “given D-many nonempty sets” is to be given a single function S
with domain D such that, for all j € D, S; is a nonempty set. To
“choose an element from each of them simultaneously” is to choose
a single function ¢ with domain D such that, for all j € D, ¢; € 5;.

It will be helpful to change S to A, ¢ to f and to focus on the case
where D = N. Our slight restatment above therefore implies:

Axiom of Choice for N: Let A be a function. Assume dom[A] = N.
Assume, for all j € N, that A; is a nonempty set. Then there exists a
function f such that dom[f] = N and such that, Vj e N, f; € A;.

This might be called the Axiom of Choice for N-many nonempty
sets. A function with domain N is called a sequence, N-many objects
is a sequence of objects. Using the terminology of sequences, we would
state the last result as follows:

Axiom of Choice for sequences of nonempty sets: Let A, be
a sequence. Assume, for all j € N, that A; is a nonempty set. Then
there exists a sequence f, such that, for all j € N, we have f; € A;.
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To use this in our proof, we need to create the sequence A in such a
way that “f; € A;” implies “f; : N <> S;. We can accomplish this by
defining the function A, by

VieN, A = {feUY|f:No> 5}

Looking at this, we see, for all j € N, that A; = U, so A; € 27 (UY).
So, in our purist proof, we should define A : N — 27(UY) by

A;j = {feU"|f: N> G}

(Remember that “Vj € N” is understood here.)
This yields our purist’s proof:

Proof. Let U := |J(im[S,]). We wish to show that U is countably
infinite. That is, we wish to show that U is both countable and infinite.

Since U 2 S; and since S; is infinite, it follows that U is infinite.
It remains to show that U is countable. We wish to show: 3U — N.
Then, by (3) of Theorem 6.12, it suffices to show IN —> U. Since
N x N is countable, it follows that 3N x N —> N. Then, by transitivity
of Je—>e it suffices to show: IN x N —> U. That is, we wish to
show: 4@ s.t. ®: N x N —-> U.

Define A : N — 27(UN) by 4; = {f e UN|f : N —>> S;}. By as-
sumption, for all j € N, S, is countably infinite. For all j € N,
IN —> §;. That is, for all j € N, 3f s.t. f : N <> §;. That is,
for all j € N, we have A; # J. By the Axiom of Choice for sequences
of nonempty sets, choose a sequence f, such that, for all j € N, we
have f; € A;. Then, for all j € N, by definition of A;, we see that
fi N —>>5; Define ®: Nx N — U by ®(j,k) = f;j(k). We wish
to show @ is onto U. That is, we wish to show:

VyeU, 3Jj,keN st O(j,k)=y.

Let y € U be given. We wish to show: 35,k € N s.t. ®(j, k) = y.

Since y € U = |J(im[S.]), choose Z € im[S,] such that y € Z. Since
Z € im[S,], choose j € N such that Z = S;. As f; : N — S} is onto Sj,
it follows that im[f;] = S;. Then y € Z = S; = im[f;], so choose k € N
such that f;(k) = y. We wish to show: ®(j,k) = v.

We have ®(j, k) = f;(k) =y, as desired. O

We gave three proofs (original, semi-purist and purist) of Theo-
rem 7.5. In this course, all three are acceptable.
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COROLLARY 7.6. The set Q is countably infinite.

Proof. By HW#16, the sets
7Z 7 7 7
12 3w
are all countably infinite. So, since
it follows, from Theorem 7.5, that Q is countably infinite. O

This tells us that, in the World of Sets, Q belongs on the the count-
ably infinite level, along with N and Ny and Z and N x N. In the
next class, we’ll focus on placing R. For now, we have a few additional
observations to make about countable sets.

A subset of a countable set is countable:

PROPOSITION 7.7. Let T be a countable set. Let S < T. Then S
1s countable.

Proof. Since idg : S — T, we conclude that 45 <— T. Since T is
countable, we conclude that 37 < N. Then, by transitivity of Je<—e,
it follows that 45 < N. Then S is countable. O

Recall that | & = &. Also, & : @& — N, so 3% — N. That is, &J
is countable.

REMARK 7.8. Let S be a nonempty countable set. Then there exists
a € SN such that S = {ay,ay,...}.

7

The purist would say “...such that S = im[a.]”.

Proof. Since S is countable, we have 35 < N. So, since S # &, by (4)
of Theorem 6.12, we have N —> S. Choose a such that a : N —-> §.
Then S = im[a.], i.e., S = {ay,as,...}. O

Keep in mind, in Remark 7.8, that there is no assumption that the
sequence a, is injective, and so ay, as, ... may have repititions. So, for
example, if S = {2, 5,8}, then a, could, for example, be the sequence

(2,5,8,2,5,8,2,5,8,2,5,8,2,5,8,2,5,8,...).

LEMMA 7.9. Let A be a countable set. Then A U N is countably
infinite.
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Proof. Since N € A U N and since N is infinite, it follows that A U N is
infinite. It remains to show that A U N is countable.
Let B :={-1,-2,...}. Then x — —z : N <> B, so N <> B.
Since A is countable, 34 <— N. Since 44 — N and IN — B we
conclude that 3A < B. Choose f such that f: A — B.
Define g : AU N — Z by

() = f(x), ifxeA
g = x, if ¢ A

We leave it as an unassigned exercise to show that g : A U N — Z.
Thus 44 U N < Z. Since Z is countably infinite, 37 <> N.

Since 34 U N — Z and 3Z — N, we conclude, by transitivity, that
JA UN < N. That is, A u N is countable, as desired. O

THEOREM 7.10. Let C be a countable set of countable sets. Then
UC is countable.

The statement “Let C be a countable set of countable sets” means:
“Let C be a set of sets, assume C is countable, and assume, for all A € C,
that A is countable”.

Colloquially, Theorem 7.10 asserts: “A countable union of countable
sets is countable.”

NOTE TO SELF:

Here’s an easier approach. Given a sequence S, of countable sets (some
of which may be empty). For each j € N, form an injection from S;
into N, then form an injection from S; U {0} into Ny, then form a
surjection from Ny onto {0} U S;. Then use all these surjections to
surject N x Ny onto {0} U S; U Sy U ---. Then make a surjection N
onto N x Ny. Composing, get a surjection N onto {0} U S; U Sy U ---.
This gives an injection {0} U S; U Ss U -+ into N. Compose with the
inclusion S; U Sy U -+ < {0} U ST U Sy U -+, and we get an injection
SiuSyu - N, Then S; U Sy U --- is countable.

END OF NOTE TO SELF.

The proof below, of Theorem 7.10, illustrates how when we know
a compound statement with “or”, we can break the proof into two
sections. This process is described in [16] of the exposition handout.

Proof. Let U :=|JC. We wish to show: U is countable.
Either (HC=w or (2) C# .
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Proof in Case (1): AsC =, weget U =JC =] = . So, as
J is countable, we see that U is countable. End of proof in Case (1).

Proof in Case (2): Since C is nonempty and countable, by Re-
mark 7.8, choose A € CY such that C = {A;, Ay, ...}

Then U =JC =4, 0A uU---.

Note that, for all j € N, we have A; € C, so A; < |JC = U. Let
V := U uN. Then, for all j € N, we have A; UNCc UuNCc V, so
AjuNe 2. Define S: N — 2" by S; = A; UN. By Lemma 7.9, for
all j € N, §; is countably infinite. Then, by Theorem 7.5, we conclude
that S7 U S3 U - -+ is countable. So, since

SlUSQU"‘ = (AluN)u(AzuN)u---
= (AivA v )uN = UuN =V,

we conclude that V is countable. So, since U < U uUN = V, by
Proposition 7.7, that U is countable. End of proof in Case (2). O

There are several ellipses appearing in this proof of Theorem 7.10.
Resolving them to rigor is an exercise for the interested reader.

8. CLASS 8 ON 28 SEPTEMBER 2017, TH OF WEEK 4

DEFINITION 8.1. Let X be a set. An X-valued sequence is a
function whose domain is N and whose image is a subset of X.

A sequence of real numbers is a sequence a, such that, for all
Jj € N, we have: a; is a real numbers. That is, A sequence of real
numbers is an R-valued sequence. A sequence of sets is a sequence
A, such that, for all j € N, we have: A;is aset. A sequence of propo-
sitions is a sequence P, such that, for all j € N, we have: P; is a
proposition. Ftc.

Let a, be a sequence. Recall: a, is denoted (aj,as,as,...), if we
can list enough terms of a, that the pattern becomes apparent. For
example, if a, = (0,1,0,1,0,1,0,1,...), then, for all j € N, we have

1, if j is even
a; =
’ 0, ifjis odd.

Note that, denoting the set of integers by 2N, then the characteristic
function yby is equal to (0,1,0,1,0,1,0,1,...).

REMARK 8.2. For all m € {0,1}, we have 1 —m # m.
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Proof. Unassigned homework. O

THEOREM 8.3. For all z : N — {0, 1}, there exists a € {0, 1} such
that for all j e N, a # z;.

A bit is an element of {0,1}. Let’s use “bit-sequence” to mean
“sequence of bits”, i.e., an element of {0,1}. The theorem says: for
any sequence (21, 2, . . .) of bit-sequences, there exists a bit-sequence a
that is not equal to any of the terms of the sequence.

We interpreted this as a game. You give me z, I give you a, you pick
J and we then check whether a # z;. If a # z;, then I win; otherwise,
you win.

We represented z as an infinite two-dimensional array of bits, where,
for all j,k € N, the bit z;(k) is in the (j, k)-entry of the array. The kth
row of the array is the bit-sequence z, € {0,1}". You hope to make
z so robust that every bit-sequence appears as one of the rows. We
represent the bit-sequence a as a one-dimensional horizontal array of
bits. I try to choose an a that is not equal to any row of the array. The
theorem says that, with good play, I should win.

My strategy: I figure out (a(1),a(2),a(3),...) one term at a time.
First, I define a(1) := 1 — [21(1)], which guarantees that a # z;. In
other words, T look at the bit z;(1) and define a(1) to be the other bit,
so that a(1) # z;(1). This guarantees that my a will not be equal to
the first row of z. You, therefore, will not win if you choose j = 1.
Next, I define a(2) := 1 — [25(2)]. This guarantees that my a will not
be equal to the second row of z. You, therefore, will not win if you
choose j = 2. Next, I define a(3) := 1 — [23(3)]. This guarantees that
my a will not be equal to the second row of z. You, therefore, will not
win if you choose j = 3. Ftc.

The strategy described in the last paragraph is sometimes called
Cantor diagonalization, because we look at the diagonal entries

21(1),  22(2), 23(3), z4(4),

in the array, and then use them to define the bit-sequence a.
We now give the formal proof of Theorem 8.3:

Proof. Let z : N — {0, 1} be given. We wish to show that there exists
a € {0,1}" such that for all j € N, a # z;.

Define a € {0,1}" by a(j) = 1 — [2;(j)]. We wish to show: for
all e N, a # z;. Let j € N be given. We wish to show a # z;.
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By Remark 8.2, 1 — [2;(j)] # #;(j). So, since a(j) = 1 —[2;(j)], we
conclude that a(j) # z;(j). Then a # z;, as desired. O

What a cool argument! Very useful, too:
COROLLARY 8.4. N —> 2N,

Proof. Assume IN —> 2N, We aim for a contradiction.

By HW#17, 3{0, 1} <> 2N, Then, by symmetry, 32 <> {0, 1}.
Then 328 —> {0, 1},

Since IN —> 2N and 32V —> {0,1}", it follows, by transitivity,
that IN —> {0,1}". Choose z such that z : N —> {0, 1}". Then z is
onto {0, 1}N. That is, we have: im[z] = {0, 1}".

By Theorem 8.3, choose a € {0, 1} such that, for all j € N, a # z;.
Then a € {0,1}" = im[z], so choose j € N such that a = z;. Then
a = z; and a # z;. Contradiction. O

We can now upgrade our proofs from N to an arbitrary set .S, both
in Theorem 8.3 and in Corollary 8.4. We obtain:

THEOREM 8.5. Let S be a set. For all z : S — {0,1}", there exists
a € {0,1}° such that for all j € S, a # z;.

Proof. Let z : S — {0,1}° be given. We wish to show that there exists
a € {0,1}° such that for all j € S, a # z;.

Define a € {0,1}° by a(j) = 1 — [z(j)]. We wish to show: for
all j €S, a+# z;. Let j € S be given. We wish to show a # z;.

By Remark 8.2, 1 — [2;(j)] # z;(j). So, since a(j) = 1 — [2;(j)], we
conclude that a(j) # z;(j). Then a # z;, as desired. O

COROLLARY 8.6. Let S be a set. Then §S —> 25.

Proof. Assume 35 —> 29, We aim for a contradiction.

By HW#17, 3{0,1}% <> 2. Then, by symmetry, 32° <> {0,1}.
Then 325 —> {0,1}".

Since 35 —> 2 and 325 —> {0, 1}7, it follows, by transitivity, that
1S —> {0,1}°. Choose z such that z : S —> {0,1}°. Then z is
onto {0,1}%. That is, we have: im[z] = {0, 1}°.

By Theorem 8.5, choose a € {0,1}° such that, for all j € S, a # 2;.
Then a € {0,1}° = im[z], so choose j € S such that a = z;. Then
a = z; and a # z;. Contradiction. U
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There’s an interesting lesson here: The intuition beind the proof
of Theorem 8.3 involved thinking of 2 as a two-dimensional array of bits
and a as a one-dimensional array of bits. That intuition is built on
our understanding that the elements of N are naturally ordered as
1,2,3,.... For an arbitrary set S, we don’t have that kind of structure
to its elements, so the same kind of intuition for z and @ in Theorem 8.5
is harder to imagine.

Once you see the intuition behind Theorem 8.3, you may be tempted
to think that there’s little value in writing down a formal proof. On the
other hand, once you write down such a proof, you might notice that
nothing about the structure of N is used in the proof, and that the same
proof will work for any set S, leading to the much better Theorem 8.5.

Formal proofs are valuable partly because they allow us to make
arguments so airtight that disagreements resolve themselves quickly,
making mathematics a very different subject than, say, political sci-
ence. It’s more than that, though. A formal proof allows us to go
beyond a shallow understanding of a theorem, and to undertand, at a
very deep level, what makes its proof “tick”. So, for example, if a proof
uses N over and over, but doesn’t really use anything specific about N,
then the observant mathematician will see a possibility to generalize.
By contrast, intuitive arguments often revolve around preconceived no-
tions, like the ordering of the elements of N.

Formality and intuition are yin and yang; neither is complete with-
out the other. Without intuition, I can’t imagine understanding most
formal proofs. Without formal proofs, mathematical progress would
halt. Partly this would be because disagreements would build. It’s
more than that, though. It would also halt because our understanding
of theorems would be much more shallow.

Let S be aset. According to HW#18, in the World of Sets, we should
put 29 either at the same level or above S. According to Corollary 8.6,
1S — 25 and so S —> 25. Consequently, we cannot put 2° at the
same level as S.

The logic of the last paragraph tells us: for any set S, we place 2° at
a strictly higher level than S. So, while the World of Sets has a bottom
set, namely ¢F, it does NOT have a top set.
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For the special case of N, we see that IN —> 2V so 2V is NOT
countably infinite. On the other hand IN < 2N, so 2V is infinite. Since
2N is infinite but not countably inifinite, 2V is uncountable.

So we now have many new levels in the World of Sets:

the level of 27N,
the level of 227N,
the level of 27272°N,

e ctc.

Each of these levels is strictly higher than the preceding level. The first
one consists of sets that are bijective with 2V, and these sets are said
to have continuum cardinality or cc. That is:

DEFINITION 8.7. Let X be a set. By X has continuum cardi-
nality or X has cc, we mean: 3X —> 2V,

Since 2V is uncountable, any set with cc is uncountable. We will
eventually show that R has continuum cardinality, so this will show
that R is uncountable.

It’s natural to wonder if, in the World of Sets, there’s any level
strictly between countable and cc. That is, does there exist a set X
with all four of the following properties?

(1) 3N — X,
(2) X >N,
(3) 3X — 2N and
(4) $2N — X.

The Continuum Hypothesis, denoted CH asserts that no set X ex-
ists satisfying (1)-(4). i.e., that there’s no space between the countable
and cc levels. Most mathematicians work with a set of axioms called
ZFC and it is known

e both that [ ZFC does not imply that CH is true |
e and that | ZFC does not imply that CH is false |.

This is sometimes expressed by saying that “CH is independent of
ZFC”. So any mathematician is free

e cither to add CH to ZFC, and work with a set of axioms that
is denoted ZFC+CH,

e or to add (not CH) to ZFC, and work with a set of axioms that
is denoted ZFC+(not CH).
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Most of us choose to do neither, and simply to stick with ZFC. With
this choice, it is unknowable whether CH is true or not.

For any infinite set .S, it’s natural to wonder if, in the World of Sets,
there’s any level strictly between S and 2°. That is, for any set S, does
there exist a set X with all four of the following properties?

(A) 38 — X,
(B) X — S,
(C) 3X — 25 and
(D) #2% — X.

The Generalized Continuum Hypothesis, denoted GCH asserts,
for all infinite sets S, that no set X exists satisfying (A)-(D). As with
CH, GCH is independent of ZFC. As with CH, most mathematicians
neither accept nor reject GCH, and consider it unknowable.

Our next goal is to show that R has cc, but, to get there, we need
to understand R better, focusing on max, min, inf and sup.

DEFINITION 8.8. Let S < R* and x € R*. Then:

Byx < S orS>=ux, wemean: Vye S, x < y.
Byx >S5 orS <ux, we mean: Vye S, x = y.
S = 2”7 as “x is a lower bound for S.

S < 2”7 as “x is an upper bound for S.

DEFINITION 8.9. Let S € R*. Then

LB(S) :={zreR*|xz < S} and
UB(S) := {x e R*|x > S}.

DEFINITION 8.10. Let S < R*.  Then

min S := ELT(S n [LB(5)]) and
max S := ELT(S n [UB(S)]) and
inf S := max(LB(5) and

sup S := min(UB(Y5)).

We read “sup” as a homonym for “soup”. Sometimes you'll see “glb”
to mean “inf”, read “greatest lower bound. Sometimes you’ll see “lub”
to mean “sup”, read “least upper bound.

Some examples:
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’ S H LB ‘ UB ‘ min ‘ max ‘ inf ‘ sup ‘
{5} [—o0,5] | [6,00] | 5 5 5 5
[0,1] [00,0] |[1,00]| O 1 0 1
0,1) | [00,0] [[LLo]| ® | ® | 0 | 1
{0,1} [00,0] |[1,00]| O 1 0 1
{01y | @ ® | ©]| 0| oo
(0,0} © @ |©] @ oo
{0,131 © ®© | ©]| 0| o6
R* {—w} | {0} |—0| o |—0| ©
R {—0} | {0} | ® | @ |—0]| ©
[%) R* R* ® ® 0 | —o0
® ® ® ® ® ® ®
LEMMA 8.11. Let S < R* and let y € R*. Then:
(1) [y = min S] < [(y < S)&(y € 5)],
(2) [y = inf S] < [(y < S)&(Ve e R*, [(x < 5) = (z < y)])],
(3) [y = max S| < [(S < y)&(y € 5)]
&(4) [y = sup S] < [(S <y)&(Vz e R, [(S < 2) = (y < 2)])].
Proof. Unassigned homework. O

DEFINITION 8.12. For all a,b, by a =* b or b *= a, we mean:
[b£®] = [a=0b].

We read “a =" b" or “b *= a” as: “a is contingent equal to b, with
the contingency on b”. The meaning is that a is equal to b, PROVIDED
b exists. If b does NOT exist, then a may or may not exist.

FACT 8.13. Let S < R*. Then
min S *= infS # ® #supS =* maxS§.
Proof. Omitted. O

Concerning Fact 8.13: The proof that min S *= inf S is not hard.
The proof that sup S =* max .S is not hard. The proof that inf .S #
® # sup S is difficult, and belongs in a course on the foundations of R,
and not in our course.

That is, for any set of extended real numbers,

the inf and sup will exist and, moreover,

if the min exists, then it will equal the inf and, moreover,
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if the max exists, then it will equal the sup.
FACT 8.14. For any nonempty S < N, we have: minS # ®.
Proof. Omitted. 0

The proof of Fact 8.14 belongs in a course on the foundations of N,
and not in our course. Sometimes Fact 8.14 is expressed by saying:
“N is well-ordered”, or “N is well-ordered from below”.

Note that, there exist sets S such that max$S = @, e.g., S = N. So
N is NOT well-ordered from above.

9. CLAss 9 oN 3 OCTOBER 2017, Tu oF WEEK 5

We recalled Definition 8.9, Definition 8.10, Fact 8.13, Theorem 7.3,
Fact 8.14 and Definition 7.4.

FACT 9.1. For all k € N, we have
[k#1] = [k—1eN].
Proof. Omitted. O
Next, we have the Principle of Mathematical Induction:

THEOREM 9.2. Let P, be a sequence of propositions. Assume P;.
Assume: Yje N, (P; = Pj11). Then: VjeN, P;.

Proof. Assume 35 € N such that not P;. We aim for a contradiction.

Let S :={j € N|not P;}. Then S # . Since P;, we see that 1 ¢ S.
By construction, we have S < N.

Let k := minS. By Fact 8.14, k # ®. Then k € S n [LB(S)]. Then
k e S. Also, k € LB(S), so k < S. Since k € S, we get: not Py.
Since k € S, but 1 ¢ S, we conclude that £ # 1. Also, k€ S < N.
Then, by Fact 9.1, we see that £k —1 € N. Then, by assumption, we get
P,_1 = Pj. Since k > k—1, we have k € k—1. So, since k < S, we get
k—1¢ 5. So, as k—1 € N, by the definition of S, we get: P,_1. So, as
P._1 = Py, we get: P. So, since not P, we have a contradiction. []

Let’s apply the Principle of Mathematical Induction to prove:
THEOREM 9.3. For all j € N, we have 1 +---+ j = j(j +1)/2.
Proof. Define a sequence P, of propositions by
0]
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We wish to show: Vj e N, P;.

We have
1-(1+41)
5
so P;. By the Principle of Mathematical Induction, it now suffices
to show: Vj e N, (P; = Pj;1). Let j € N be given. We wish to show:
P; = Pj;y. Assume P;. We wish to show: Pj;.

We know P;, i.e., we know that

1=

jG+1)
S

We wish to prove Pj;1, i.e., we wish to prove that

1+...+(j+1)zw_

1_|_..._|_j:

2
We have
1+ 4+G+1) = [1+--+j]+[7+1]
j+1) 2 +1)
el R
_ U+2)+H _ G+1DG+2)
2 2 '
as desired. O

Assigned HW#21, HW#22, HW#23, HW#24, HW#25.

We now turn our attention back to showing that R has continuum
cardinality. To do this we need to develop a theory of infinite summa-
tion.

DEFINITION 9.4. For all Z < [0,0], for all j € N, we define
SUMS;(Z) = {ai+--+ajla:{l,....5} =2}

For example, if Z = {4,7,8}, then

SUMS,(Z) = {4,7,8},
SUMS,(Z) = {11,12,15},
SUMSs(Z) = {19},
SUMS,(2) = @,

and, in fact, for all integers j > 4, we have SUMS;(Z) = &.
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DEFINITION 9.5. For all Z < [0, ], we define
SUMS(Z) := [SUMS(Z)] u[SUMSy(Z)] U -,
and we define sum Z := sup(SUMS(Z)).
So, for all Z < [0, 0], we have:
(SUMS(Z) = | J{SUMS;(2)|jeN})

and ( sum (Z) is the least upper bound of SUMS(Z) ).
If Z ={4,7,8}, then we have
SUMS(Z) = {4,7,8,11,12,15,19}
and sum Z = 19.
F th 1 A 1 L1111 In thi
o er exa ose Z = e R & s
r another example, suppos 1R 1632 n thi
paragraph, we’ll compute sum Z. We explained why, for all j € N,

1 1 1 1
SUMS;(Z) < 1+§+Z+”'+2j*1 = 2—23,71 < 2.

Since ( Vj € N, SUMS;(Z) < 2 ), it follows that SUMS(Z) < 2. Then
sup(SUMS(Z)) < 2. For all j e N,

1 1 1 1
2= = 145+ 1+ + 5 € SUMS;(Z) © SUMS(Z).
1 1 1
Then 2 -1, 2—5, 2—1, 2—§, ... € SUMS(Z). Then
1 1 1
2—1, 2——=, 2——=, 2——, ... c SUMS(Z
{21 2-5 2-3 25 .} = suwsa)
SO
1 1 1
supg 2—1, 2—=, 2—— 2—— ... < sup(SUMS(Z2)).
2 4 8
We explained why
2—1, 2 L 2 L 2 L 2
s - — =, 2—=, 2—=, ... = 2.
up ) 27 47 87

Then 2 < sup(SUMS(Z)). So, since sup(SUMS(Z)) < 2, we get
sup(SUMS(Z)) = 2. Then sum Z = sup(SUMS(Z)) = 2.

The following fact, tells us that for any uncountable Z < [0, o],
it’s easy to calculate sum Z. So all the interesting infinite summation
problems involve countable subsets of [0, oo].

FACT 9.6. For all uncountable Z < [0, 0], we have sum Z = o0.
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Proof. Since Z < [0, 0], it follows that Z n [0, 0] = Z. Since

[0,0] = {0} v (0,0],
it follows that Z n [0,0] = (Z n {0}) U (Z n (0,0]). Then
Z = Zn|0,0] = (Zn{0}) u (Zn(0,]).

The set {0} is finite, hence countable. So, since Z n {0} < {0}, we
see that Z n {0} is countable. By Theorem 7.10, a countable union
of countable sets is countable. So, since ( Z is uncountable ) and since
( Z n {0} is countable ) and since (Z = (Z n{0}) u (Z n (0,0]) ), we
conclude that Z n (0, o0] is uncountable.

For all k € N, let [, := [1/k,0]. Then

(0,0@]211UIQUI3U"',

Zn(0,o]l=ZnhL)u(ZnL)u(Znlz)u---.

Then, by Theorem 7.10, choose k € N such that Z n I, is uncountable.

Since sum Z € R* < oo, it suffices to show that sum Z > o. So,
since sup{ 1/k, 2/k, 3/k, ...} = oo, it suffices to show that sum Z is
an upper bound for the set {1/k, 2/k, 3/k, ...}. That is, it suffices
to prove, for all j € N, that sum Z > j/k.

Let j € N be given. We wish to show: sum Z > j/k.

The set Z n I is uncountable, hence infinite, and it follows that
SUMS,(Z n I;;) # &. Choose x € SUMS;(Z n I,). Because

Znly < I, > 1/k
it follows that SUMS;(Z n Iy) = j/k. Then x > j/k. We have
v e SUMS;(Zn 1) < SUMS;(Z) < SUMS(Z).
Then {z} < SUMS(Z), so sup{z} < sup(SUMS(Z)). Then
sumZ = sup(SUMS(Z)) > sup{z} = = = j/k,
as desired. U

So far every set that we have tried to sum has been a subset of [0, o0].
When we try to sum sets with negative numbers, difficulties arise. For
example, mathematicians have studied the partial sums of the series

1 1 1 1 1 1

1 — = - -z -z

R T - S R S
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and found that its partial sums tend toward In 2. It might be tempting,
therefore to declare that the sum of the set

1 1 1 1 1 1 1
) 27 37 47 57 67 77"‘

is equal to In2. The problem is that sets are unordered, and we need

to set up our definitions in such a way that the sum of a set doesn’t

depend on the order in which its terms are presented. This turns out

to be a real problem, which we explain in the next two paragraphs:
For all j € N, let

~—1+1+1+1+ + !
T Ty Ty Ty 29— 1
For all j € N, we have
1
1 > -
2
1+1 N 1+1_1
2 3 4 4 2
1+1+1+1 N 1+1+1+1_1
4 5 6 T 8 8 &8 8 2
SR SRR R S
2i—1 2 —1 2J 2 2

Adding these inequalities, we find, for all j € N, that s; > j/2.

Let Z := {1,1/2,1/3,1/4,...}. Then: Vj € N,sumZ > s; > j/2.
Then sum Z = 0. Let X := Z/2 = {1/2,1/4,1/6,1/8,...}. Tt is not
hard to show that sum X = (sum Z)/2 = o0/2 = c0. We have 1 > 1/2,
1/3 > 1/4, 1/5 > 1/6, .... Let Y := {1,1/3,1/5,1/7,...}. Then
sumY > sum X. So, as sum X = o0, we get sumY = co. From these
observations, we showed how we can find a reordering of

1 1 11 11
PR TS e
whose partial sums tend toward co. We also showed how to find a dif-
ferent reordering whose partial sums tend toward —oo. Consequently,
trying to define the sum of the set

1 11 1 1 1 1
) 27 37 47 57 67 77"‘

is fraught, because sets are unordered, so any reordering is as good as
any other. The following is the best we can do.

1
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DEFINITION 9.7. For all x € R*, we define
z = max{z,0},
r~ = max{—z,0} and
|z| = max{z, —z}.
For example,
5% = max{5,0} = 5,
57 = max{-5,0} = 0 and
15| := max{5,—5} = 5.
Also,
(=3)* = max{-3,0} = 0,
(—=3)" := max{—(-3),0} = 3  and
| — 3| = max{-3,—(-3)} = 3.
Unassigned HW: Show, for all x € R*, that

r = xt — x” and

lz| = 27 + a”.

DEFINITION 9.8. For all Z < R*, we define

zZt = {zt|ze Z},
Zm = {a |veZ} and
|Z] = {|z| s.t. x€ Z}.

For example if

then

and

-
2 - |
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For example, if
Z = 17 _17 17 _17 17 _17 17 . )
273 45 67
then
sum (Z*) = o and
sum(Z~) = oo,
soaddZ =00 — o0 = 0.
On the other hand, if
11 1 1 1 1
Z = 1a T8 40 T o) 140  an) pad )
{ 2747 8 160 32" 64 }
then
1 1
7t = 1 — —, ...
{ ) 07 ) 07 16’ O’ 64’ } and
1 1 1
AR — — — )
{ 07 27 07 87 07 327 07 }7
so we get sum (Z1) = 4 1 and sum (Z7) = 2 and it
A 4 3 1 23 4—-1 ’
follows that add Z = 3 3 3
Unassigned HW: Show, for all Z < R*, that
add Z, if Z < [0, ]
sum Z =
®, if Z & [0, 0].

Consequently, we see, for all Z < R*, that add Z =" sum Z.

Note: SUMS(&¥) = &
add &

A basic limitation to

, so sum (J = sup J = —oo. Also,

[sum ()] — [sum (&7)]

[sum ]| — [sum ]

(—0) — (=) ®.

studying add is that it doesn’t allow for re-

peated terms. For example, one wants to say 7+ 7+ 7+ --- = o0,

but {7,7,7,...} = {7}, so add{7,7,7,...}

add {7} = 7. To get at

infinite sums with repeated terms, it helps to think, not just about

how to sum a subset of

R*, but, also, about how to add the outputs
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of a function z whose image is contained in R*. For any such z, we
will next time define add z. The definition is set up in such a way
that, for any set S, if z : § — R* denotes the constant function de-

fined by z; = 7, then add Z = 7 - (#S). Also, the definition is set up
in such a way that, for any INJECTIVE function z, if im[z] < R*, then
add z = add (im[z]). In particular, for any Z < R*, we’ll conclude that
add (idz) = add (im[idz]) = add Z. More on all this next time.

10. CrLAss 10 oN 5 OCTOBER 2017, TH OF WEEK 5

We recalled the definitions of SUMS;(Z), SUMS(Z), sum Z and
add Z. See Definition 9.4, and Definition 9.5 and Definition 9.9.

REMARK 10.1. For all nonempty Z < R*, add Z =* sum Z.

Proof. Let a nonempty Z < R* be given. We wish to prove that
add Z =" sum Z. That is, we wish to show:

[sumZ #©®] = [addZ =sumZ |.

Assume: sum Z # ®. We wish to show: add Z = sum Z.

Since sum Z # @, it follows that Z < [0,00]. Then Z* = Z. Then
sum (Z*) = sum Z. Also, since J # Z < [0,0], we get Z~ = {0}.
Then sum (Z~) = 0. Then

addZ = [sum(Z7)]—[sum(Z7)] = [sumZ]—0 = sumZ,
as desired. O

DEFINITION 10.2. For any set S, for all z : S — [0,0], for all
j €N, we define

SUMS;(2) = {z(@x)+ - +2(x;) | x:{Ll,....5 =S5 }.
DEFINITION 10.3. For any set S, for all = : S — [0,0], we define
SUMS(z) := [SUMS;i(2)] u[SUMSy(2)] U ---,

and we define sum z := sup(SUMS(z)).

Remember that, for all z : N — [0, ], we sometimes denote z by
the “infty-tuple” (z1, 2, 23,...).
In class, we calculated sum (7,7,7,7,...) = 0.

Al 1111111111 _ 4
SO7 suim ) 727274’478787167167"‘ -
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Al 10t0t0to Ly =2
SO7 Sum ) ) Y 74’ ’87 716’ DR - N
1 1 1 1
2.0,-,0,-,0,—,...) =2.
270747078707167 )
11

DEFINITION 10.4. For any set S, for all z : S — R*, we define
2t 27, |2+ S — [0, 0] by
(2(x))",
(z7)(@) = (2(x))”
(lz)(x) = l|z(2)].

DEFINITION 10.5. For any set S, for all z : S — R*, we define
add z := [sum (z7)] — [sum (z7)].

z

In class, we calculated

1 11 11
27 274 4%

add(l,—l, SR ..):2—2:0.

1

816" 167

1 11 11 11 1

27 273 374 45 57
Our goal is still to show that R has continuum cardinality (cc).

Also, sum <1, -1, ) = —0ow=0.

DEFINITION 10.6. For any set I, I is a nondegenerate ex-
tended interval means: da,b e R* such that a < b and such that

I € {(ab), [a,b), (a,b], [a,b]}.

DEFINITION 10.7. For any set I, I is a degenerate extended
interval means: Ja € R* such that I = [a,al.

DEFINITION 10.8. For any set I, I is an extended interval
means: either (I is a nondegenerate extended interval ) or (I is a
degenerate extended interval ).

Note that any nondenerate extended interval is an infinite set. By
contrast, any degenerate extended interval is a singleton set.
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LEMMA 10.9. For any extended interval I, for any s,t € I, we have
(s<t) = ([s,t]cI).

Proof. Omitted. O

We turned Lemma 10.9 into a game: You choose I. Then you choose
s,t € I satisfying s < t. We check whether [s,t] < I. If so, I win.
Otherwise, you win.

For example, if you choose I = [3,8) and then choose s = 3 and
t = 7, then, because [3,7] < [3,8), I win.

I will happily play that game, and I will win every time, and with
zero effort; I never have to make any choices!

DEFINITION 10.10. For any set I, I is a nondegenerate interval
means: (1 is a nondegenerate extended interval ) and (I < R ).

DEFINITION 10.11. For any set I, I is a degenerate interval
means: (I is a degenerate extended interval ) and (I < R ).

DEFINITION 10.12. For any set I, I is an interval means: (I is
an extended interval ) and (I < R ).

DEFINITION 10.13. For all d € {0,1,2,...,9}", we define

d dy dy  dy
didody - Veen = add {2, 2 % A
(0.didzds - ): ¢ {10 100° 1000° 10000 }
Note that (0.99999 - - )ten = 1.
Note that (0.099999 - Jien = (0.100000 - - - )en = 1/10.
Note that (0.275399999 - - - )en = (0.275400000 - - - )gen = 276,/1000.

DEFINITION 10.14. For all b€ {0, 1}, we define

by by b3 by
Dibobs - Ve = add 4L 22224 L
(0b1Babs - Jow & {24816 }
Note that (0.11111 -+ )tyo = 1.
Note that (0.011111 -+ )yo = (0.100000 - - - )wo = 1/2.

Note that

(0.10110011111 - -+ )yo = (0.10110100000 - - - )y
2°+2°+22 41

26 '
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DEFINITION 10.15. For all t € {0,1}Y, we define
toty ty 1
Otitots - Juwee = add L 2 3 4 L
(Otatats - * {392781 }
Note that (0.22222 - )ipree = 1.

Note that (0.022222 - )¢pree = (0.100000 - - - )ipree = 1/2.
Note that

(0.20012012122222 - - - Jipree = (0.20012012200000 - - - )three
2334137 42.3"41-324+2-3+2
3° '
Define f : {0,...,9} — R* by f(d.) = (0.didads. . .)ten. We ex-
plained why im[f] = [0,1]. Unfortunately, f is NOT one-to-one, be-
cause, for example

(0.099999 - Jgew = (0.100000 - - - )gen.

We sought out restrictions of f that ARF one-to-one. We have to take
some care: For example, f[({0,2,5,6,9}Y) is NOT one-to-one, because

(0.599999 -+ Jyen = (0.600000 - - - )ien-
However, we did find several restrictions of f that ARE one-to-one:
fHO, ..., 8} is one-to-one.
fHL, ..., 9} is one-to-one.

f110,2,5,7,9}" is one-to-one.

f140,3,6,9}Y is one-to-one.
We can exclude 0. We can exclude 9. If we include both 0 and 9, then
we have to make sure that no two of the allowed digits differ by 1; the
problem with {0,2,5,6,9} was that 5 and 6 differ by 1. For any of the
four restrictions described above, the image of the restriction is hard
to calculate.

Now define g : {0,1}N — R* by g(b.) = (0.b1bobs .. .)two. We ex-

plained why im[g] = [0, 1]. Unfortunately, g is not one-to-one, because,
for example

(0.011111 -+ )ywo = (0.100000 - - - )iwo.

We don’t want to restrict g to {0} or to {1} because these two sets
each only have one element:

{O}N == {(07 07 O; 07 07 07 O’ 07 07 07 c )}
N = {(1,1,1,1,1,1,1,1,1,1,.. )}



NOTES 1 81

Now define h : {0,1,2} — R* by h(t,) = (0.t1tat3. . .)inree. Unfortu-
nately, h is not one-to-one, because, for example

(0.022222 - )iwo = (0.100000 - - - )iwo.

Here are three restrictions of h that ARFE one-to-one:

h|({0, 1}Y) is one-to-one.

h|({0,2}Y) is one-to-one.

h|({1,2}Y) is one-to-one.
The middle restriction, h|({0,2}"), is one-to-one because, even though
we have included both 0 and 2, the two trits 0 and 2 don’t differ by 1.
The images of the first and third restrictions are hard to calculate. The
middle restriction is the most famous because its image is, perhaps, a
bit easier to describe. By definition, the Cantor set is Cantor :=
im[A|({0,2}Y)]. For any k € N, the kth Cantor set approximation
is

Cantory, := { (0.t1tats .. inree | te € {0,1,2}"
th# 1, ta#=1, ..., tp#1}.

We gave the geometric description of how to transition from each ap-
proximation to the next by “excluding middle thirds”. The approxima-
tions form a decreasing sequence of sets, and the Cantor set is the inter-
section of its approximations. From this, we can see that the Cantor set
is “small” in the sense that it does not contain any nondegenerate inter-
val. On the other hand, if n := h|({0, 2}"Y), then 7 : {0,2}" <> Cantor.
By HW#17, 328 <> {0, 1}, Also, 3{0, 1} —> {0,2}. Also, us-
ing 7, we see that 3{0,2}" <> Cantor. Then, by transitivity, we see
that 32% < Cantor. We conclude the Cantor set is “big” in the sense
that it has continuum cardinality (cc).

Since the Cantor set a subset of R, we get 3Cantor <— R, so, in the
World of Sets, we must place R at or above the cc level. The same logic
shows that R* must be placed at or above the cc level. In particular,
we now know that R and R* are both uncountable.

LEMMA 10.16. 3[1, 0] <> [1,2].

Proof. By HW#19, 3[1, 0] <> [0, 1]. So, since z — x +1: [0,2] —>
[1,2], by composition, we see that 3[1, 0] <> [1,2], as desired. O

LEMMA 10.17. 3[—o0, —1] <> [-2, —1].
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Proof. We have x — —x : [—0, —1] <> [1,00] Also, by Lemma 10.16,
we get 3[1, 0] — [1,2]. Aso, x — —x : [1,2] <> [-2, —1]. Therefore,
by composition, we see that 3[—o0, —1] <> [-2, —1], as desired. [

LEMMA 10.18. JR* —> [-2,2].

Proof. By Lemma 10.17, choose a : [—00, —1] —> [-2, —1].
Let f:=id11): (—1,1) = (=1,1). Then 8 : (=1,1) —=> (—1,1).
By Lemma 10.16, choose v : [1, 0] <> [1,2].
Define w : R* — [-2,2] by

a(z), ifxe[—ow,—1]
w(z) = B(x), ifxe(—1,1)
v(z), ifze[l,00].
Then w : R* <> [—2,2], so IR* <> [-2,2], as desired. O

THEOREM 10.19. Vnondegenerate extended interval I, IR* — I.

Proof. Given a nondegenerate extended interval I, want: JR* «— [I.

Since I is a nondegenerate extended interval, it follows that I is
an infinite set. Let F := {o0,—o0}. Then R*\F = R. Because [ is
infinite and F' is finite, it follows that I\F' is infinite. In particular,
we have #(I\F) > 2. Choose s,t € I\F such that s < t. Then
s,t € INF < R*\F =R. Also, s,t € I\F < I, so, by Lemma 10.9, we
see that [s,t] < 1.

Let u := (t —s)/2. Then s +2u = s+ (t — s) = t. We have

r—x/2 @ [-2,2] >>[—-1,1] and
r—au : [—1,1] =>> [—u, u] and
r—>xr+s+u : [—u,ul —>>[s, s+ 2ul.
Composing, 3[—2,2] <> [s,s + 2u]. We have [s, s + 2u] = [s,t] < I,
sox — x:[s,5+ 2u] — I. Then
[-2,2] < [s,s+ 2u] and
s, s +2u] — I
Composing, we get 3[—2,2] — I.

By Lemma 10.18, IR* <> [-2,2]. So, since 3[-2,2] — I, by
composing, we get IR* — [, as desired. O
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Recall that, in the World of Sets, R and R* must be placed at or
above the Cantor set, and the Cantor set has continuum cardinality
(cc). By HW#17, 3{0, 1} < 2N 50 {0, 1} has cc. Recall also that

be — (bibobs.. Do : {0,131 —>[0,1].

Thus [0,1] must be placed at or below {0,1}N. Because [0,1] is a
nondegenerate interval, by Theorem 10.19, we see that IR* — [0, 1].
Thus R* must be placed at or below the level of [0, 1]. Organizing our
thoughts carefully, we can now show that R and R* have cc. In fact,
we’ll show that ANY nondegenerate extended interval has cc:

THEOREM 10.20. Let I be a nondenerate extended interval. Then
I has cc.

Proof. By Schroeder-Bernstein ((2) of Theorem 6.12), we wish to show
2N — [ and 31 — 2N,

By HW#17, 328 —> {0, 1}N. Also, 3{0, 1} —> {0,2}N. Let C
be the Cantor set. Then t, — (0.t1tat3. . )inree : 10,2} <> C. Since
C < R*, we have 3C — R*. By Theorem 10.19, dR* — [. Composing,
32N < . Tt remains to show that 37 < 2N,

Recall that by — (b1babs3 .. . )ewo @ {0, 1} —> [0,1]. Tt then follows,
from (3) of Theorem 6.12, that 3[0, 1] — {0, 1}*.

As I < R*, we get 31 — R*. Since [0, 1] is a nondegenerate interval,
by Theorem 10.19, we get: IR* — [0,1]. Recall: 3[0,1] — {0, 1}N.
By HW#17, 3{0, 1} <> 2N, Composing, 31 < 2N, as desired. O
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11. Crass 11 oN 10 OcTOBER 2017, TUu or WEEK 6

Discussed Midterm 1, next class. Class will have three parts:
(1) 45 mins (approx) review,
(2) 10 min (approx) break, and
(3) 60 minute (exact) exam.

Discussed what Midterm 1 covers.

DEFINITION 11.1. For any set S of sets, we define

(8, = {UA‘AQ Q}.

For any set S of sets, the set (S), is called the union-closure of S.
We calculated

C{L2E, {83, {4561} )o =
{a,
{12}, {3}, {4,5,6},
{1,2,3}, {1,2,4,5,6} , {3,4,5,6} ,
{1,2,3,4,5,6} }.

Note that since {{1, 2}, {3}, {4, 5,6}} has three elements, it follows that
{{1,2},{3},{4,5,6}} has 23 subsets, and each of those eight sets is a
set of sets, and, for each of these eight sets of sets, we calculated the
union. The answer above is the set of those eight calculated unions.

We also discussed the union-closure of: the set of bounded open
intervals in R. We found that (1,2) u (3,5) is in that union-closure,
but that {1} and [1,5) are not. The sets that are in that union closure
are typically called “open subsets of R”. Real analysis in one variable
focuses on using calculus to study partial functions R --+ R. If the
domain D of f : R --+ R is an open subset of R, then, for all p € D,
there’s room to move to the left or right of p, without leaving D;
consequently, concepts like

the limit at p of f or
the tangent line at (p, f(p)) of f

are relatively easy to define. By contrast, if the domain of f were,
say, {1}, then trying to study f via calculus would be hopeless. Even
for a function f whose domain is [1,5), the tangent line to f at the
point (1, f(1)) would be a little sketchy, though we might get at it via
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one-sided limits. Anyway, the upshot is that: Using calculus to study
a function f : R --» R is made easier if dom[f] is a set that is in the
union-closure of the set of bounded open intervals in R.

We also discussed the union-closure of: the set of open disks in R2.
The sets that are in that union closure are typically called “open subsets
of R?”. Real analysis in two variable focuses on using calculus to study
partial functions R? --» R. If the domain D of f : R? --s R is an open
subset of R?, then, for all p € D, there’s room to move in all directions
off of p, without leaving D; consequently, concepts like

the limit at p of f or
the tangent line at (p, f(p)) of f

are relatively easy to define. The upshot is that: Using calculus to
study a function f : R? --» R is made easier if dom[f] is a set that is
in the union-closure of the set of open disks in R2.

We have three basic properties of union-closure:

REMARK 11.2. The following are all true:
(1) Vset S of sets, (S), 2 S.
(2) Vset S of sets, ({(S), ), ={(S)o.
(3) Vsets S, T of sets, [(S = T) = ((S)o < {(T),) |
In Remark 11.2,

(1) is called the superset property of (e)_,
(2) is called the idempotence property of (o), and
(3) is called the monotonic property of {e)_.

Assigned HW#26 and HW#27.
The next lemma will be called the Exact Covering Lemma.
LEMMA 11.3. For any set S of sets, for any set X, we have
(XedlS,) < (Ve X, JAeS st.pe Ac X).
Proof. = is HW#26, and < is HW#27. 0

The clause “X € (S),” means that X is a union of some of the sets
from S, and might be colloquially rendered by saying, “X can be ex-
actly covered by well-chosen sets from §”. Here, “exactly” means that
every point of X is covered, but, ALSO, that NO point outside of X
is covered. The clause “p € A < X7 might be colloquially rendered
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by saying “A covers p without going outside X”. With these colloqui-
alisms, the Exact Covering Lemma asserts: for any collection S of sets,
a set X can be exactly covered by sets from S iff each point of X can
be covered without going outside X.

Single-variable real analysis focuses on functions defined on a subset
of R, typically an open subset. Two-variable real analysis focuses on
functions defined on a subset of R?, typically an open subset. Under-
standing R and R? becomes crucial and some of the basic properties of
R and R? are algebraic properties, particularly linear algebraic proper-
ties. We therefore pause to develop a bit of algebra and linear algebra.

DEFINITION 11.4. Let S be a set and let = : S x S — S. Then
IDS] = {eeS|VexeS z+e=a=-cxa}

The set IDS? will be called the Identities Set for « in S.
Let + : R x R — R be ordinary addition of real numbers. Then the
Identities Set for + on R is IDS% = {0}.

Let - : R x R — R be ordinary multiplication of real numbers. Then
the Identities Set for - on R is IDS® = {1}.

REMARK 11.5. Let S be a set and let + : S xS — S. Then
#[IDST] < 1.

Proof. We wish to show: Ve,e € IDS?, e = . Let Ve,e € IDS? be
given. We wish to show e = ¢.
Since e € IDS?

-, we conclude, for all z € S, that x xe = z = e * x.
Replacing x by €, we get exe = =e=*e. Then e e = €.

Since ¢ € IDS?

-, we conclude, for all z € S, that x e = 2 = ¢ * .

Replacing x by e, we get exc = e =cxe. Then e = ¢ xe.

Then e = € * e = ¢, as desired. O
DEFINITION 11.6. Let S be a set and let = : S x S — S. Then
(1) = is commutative means: Vx,y € S, x =y =y = x, and

(2) = is associative means: Yx,y,z€ S, (xxy) 2z =x* (y * 2).
DEFINITION 11.7. By (V,®, e) is a real vector space, we mean
that all of the following are true:

(1) V is a nonempty set;

(2) ®@:VxV->V;

(3) e :RxV —V;
(4)

4) @ is commutative and associative;
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(5) VeV,
(5a) O ez € IDSY  and
(5b) lex = x;

(6) Va,be R, Yx eV,
(6a) (a+b)ex=(aex)D(bex) and
(6b) (ab)ex =ae (bex); and
(7) YaeR, for allz,y € V, we have: ae (x@y) = (aex) D (aey).

We can define complex vector space in the same way, except that
each R would be replaced by C. This is a real analysis course, so
by vector space, we will always mean real vector space. In a complex
analysis course, the term “vector space” would probably mean complex
vector space.

Let + : R x R — R be ordinary addition of real numbers. Let
- R xR — R be ordinary multiplication of real numbers. Then
(R, +, ) is a vector space.

Let n € N. Recall that R® = R{bm . That is, R” is equal to the
set of all functions {1,...,n} — R. Also, for any z € R", for any
je{l,...,n}, we sometimes denote x(j) by x;. Also, for any = € R",
the function z : {1,...,n} — R is sometimes denoted (z1,...,z,).

Let n e N. Define @ : R" x R” - R" by (z@®vy); = z; + y;. NOTE:
To be more detailed, we would say “...by:

VeeR" VyeR" Vie{l,....,n}, (z®y); =z;+vy;.~

Define e : R x R” — R" by (a®x); = a-z;. NOTE: To be more
detailed, we would say “...by:

VaeR, Ve eR", Vje{l,...,n}, (aex);=a-x;”

Then (R™, @, e) is a vector space.

We demonstrated how to view elements of R? as arrows in a co-
ordinate plane that start at (0,0). We showed how to think about
@ :R?xR? - R? and o : R x R? —» R? geometrically. In particular,
20 (3,4) = (6,8) is viewed geometrically as saying that if we double
the arrow from (0,0) to (3,4), we get the arrow from (0,0) to (6,8).
This idea of multiplying an arrow by a number is called “rescaling”
the arrow, and the number you use is sometimes called a “scalar”.
That is, by “scalar” we mean number. Because this is a real analysis
course, by scalar we mean real number. In a complex analysis course,
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by scalar we would likely mean complex number. When we are focused
on a specific vector space (V, @, e), an element of V' is called a vector.
Every vector space has a unique additive identity:

REMARK 11.8. Let (V,®, ) be a vector space. Then #[IDSg] = 1.

Proof. By Remark 11.5, #[IDSé] < 1. It therefore suffices to show:
#[IDSg] = 1. It therefore suffices to show: #[IDSY] # 0. It therefore
suffices to show: IDSé #* .

By (1) of Definition 11.7, choose z € V. By (5a) of Definition 11.7,
we have 0 e x € IDS;. Then IDS; # (J, as desired. O

Some notational conventions: For any vector space (V,®,e),

(1) (V,@, o) is usually abbreviated V;

(2) we define Oy := ELT(IDSY);

(3) Vo e V, we define —x := (—1) o x;

(4) Vo,y e V, wedefine x+y = @y and 2 —y = 2D (—y); and
(5) YVae R, Vz € V, we define ax = a e x.

Following (1) above, the vector space (R, +, -) is denoted R, and, for
all n € N, the vector space (R",®, e) is denoted R".

Because of (2) above, for any vector space V, we have: IDSY = {0y }.

Note that, technically, R # R! because R is a set of numbers,
whereas R is the set of functions {1} — R. Nevertheless, to a vec-
tor space expert, R looks and feels like R'. The tecnical phrasing for
this is: “R is isomorphic to R'.” We will define “isomorphic” later.

Let (V,@®,e) be a vector space. Then @ : V x V — V is often
called vector addition. Also, e : R x V' — V is often called scalar
multiplication. The linear operations of the vector space V are
@ and e; that is, they are vector addition and scalar multiplication.

DEFINITION 11.9. For alln € N, we define 0,, 1= Ogn.

DEFINITION 11.10. For any set S, for any a, we define the func-
tion C% . S — {a} by Ci(x) = a.

For any set S for any a, the function C§ is called the constant
function on S with value a. Note that, for all n € N, we have

On — C?l c R{l ..... n} _ Rn7

or, equivalently, 0,, = (0,...,0) € R™.
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Let S be any set. Define @ : R® x R® — R* by (z @ y); = z; + yj.
Define o : R x R — R by (a e 2); = ax;. Then (RY @, ) is a vector
space, typically denoted R¥.

DEFINITION 11.11. For any set S, we define Og := Ops.

Let S be a set. If 45 = 1, then R® looks and feels like R. Moreover,
R looks and feels like a coordinatized line. So, if #S = 1, then we
can understand R® intuitively, by looking at a coordinatized line. If
#S = 2, then R? looks and feels like R?. Moreover, R? looks and
feels like a coordinatized plane. So, if #S = 2, then we can understand
R¥ intuitively, by looking at a coordinatized plane. Coordinatized lines
and planes can be drawn easily on a blackboard. When #.S5 = 3, things
get a little harder because the intuition doesn’t fit on a blackboard, but
it’s not too bad. When 3 < #S < oo, things get harder still, but there
are ways to think about R®. When #S = o0, we need a whole new
branch of mathematics (called “functional analysis”) to deal with R,

In this course, we’ll mainly focus on the vector spaces R, R?, R3, .. ..

REMARK 11.12. For any vector space V', for any x € V', we have
z+ (—z) =0y = (—z) + x.

Proof. Let a vector space V' be given and let z € V' be given. We wish
to show that z + (—z) = 0y = (—x) + .
We have

v+ (=z) = [ea]+[(-1)ea] = [1+(-1)]ex
= 0ex € IDSY = {Ov},

so  + (—z) = Oy. It remains to show: (—z) + x = Oy.

We have
(~a)+a = [(~Dea]+[lea] = [(-1)+1] ez
= 0ex € IDSE = {Ov},
so (—x) + x = Oy, as desired. O
Assigned HW#28, HW#29, HW#30.
DEFINITION 11.13. For any vector space V', for any S <V,
Sy = v} | { ez +- +comn |

neN, ¢,...,c, R, xy,...,2,€ 8 }.
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Note, for any vector space V', that <®>¥in = {0y }.

When the vector space V' is clear, we will often write (S)};;, to mean
<S>Kn' Recall that V' abbreviates (V, @, o).

Let V' be a vector space. Then, for any S < V, the set (S)y;, is

called the span of S. For any n € N, for any ¢y,...,¢, € R, for any
Z1,...,Tn € V, the vector ciz1 + - - - + ¢, 2, is called the linear com-
bination of z1,...,z, with coefficients ¢, ..., c,.

REMARK 11.14. LetV be a vector space. The following are all true:
(1) VSV, Sy, 2S.

(2) VS <V, Lin1in = in-
B)YVS, TV, [(ScT) = ({Sn € D) /-

In Remark 11.14,

(1) is called the superset property of {(e);,,,
(2) is called the idempotence property of {(e)};, and
(3) is called the monotonic property of (o), .

FACT 11.15. Let V be a vector space, k € N, x1,...,x, € V. Then:
Ao, oomd )y = {am++aap | e, e R

Proof. Omitted. O

12. CLAss 12 oN 17 OCTOBER 2017, Tu oF WEEK 7

We discussed several examples of “quantified equivalence”. A few
of these are detailed at the end of the exposition handout.

Here’s an example of a quantified equivalence: For any set S of sets,
for any x, we have:

[meUS] « [3AeSst.zeAl]

On the left-hand side of <, we have “x e US”, which exhibits no
quantifiers. On the right-hand side, we have “dJA € § s.t. x € A7,
which exhibits the quantifier 4. In that kind of situation, we refer to the
statement as a “quantified equivalence”. In a proof, if we need to show
that some object is in a union of a set of sets, we can now reinterpret
that as a “Want: 3A...” statement, and, to try to deal with that,
we have template [11] of the exposition handout. Also, in a proof, if
we know that some object is in a union of a set of sets, we can now
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7

reinterpret that as a “Know: JA...” statement, and by replacement

rule [21] of the exposition handout, we can “Choose A...”.
Another quantified equivalence: For any sets A and B, we have:

[ A= DB] < [V, ([re Al < [re B]) ]
Another quantified equivalence: For any set S of sets, for any set X,
[ X (S, ] < [Vze X,JAeSst.ze A X |

We worked through III.3 of Midterm 1, using quantified equivalnce
as part of the motivation.
We reviewed Definition 11.13 and Remark 11.14.

Assigned HW#31.

We visualized several spans:

(1) ¢ (1,2) } i

(2) (£ (1,2)5 (3,4) } Din

(3) ({(1,0,0), (0,1,0) } )jip

(4) ({(1,0,0), (0,1,0), (1,1,0) } )1jpy

(5) ¢{(1,0,0), (0,1,0), (0,0,1) } )y
DEFINITION 12.1. For any vector space V', for any U, by U 1is a
subspace of V', we mean: (U <V ) and ({U), =U ).
REMARK 12.2. For any vector space V, for any nonempty U <V,
[ U is a subspace of V| =
| Vz,yeU,z+yelU) & (VaeR,VreU, cxel) |
Proof. Omitted. O

Remark 12.2 asserts: a nonempty subset of a vector space is a sub-
space iff it respects both vector addition and scalar multiplication.
Let (V,®, e) be a vector space and let U be a subspace of V. Then

(U, @(UxU), o(RxU) )

is a vector space, and we typically denote this vector space by U. We
would say that the linear operations (vector addition and scalar mul-
tiplcation) of U are “inherited” from V.

We define R? := {0}. Then R° = R, and R° is a vector space, with
its linear operations inherited from R.

Assigned HW#32
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Any nonzero subspace of a vector space has continuum cardinality.
So, to specify such a subspace, it’s impractical to try to write out all
of its elements. Instead, we hope that there’s a finite set that spans
the subspace and we can communicate the subspace to someone else
by simply writing out the set that spans. This prompts the following
definition:

DEFINITION 12.3. Let V' be a vector space and let U be a subspace
of V. For any S, by

S spans U or

S is a spanning set for U or

U is spanned by S,

we mean: both (S < U ) and ({(S)j;, =U ).

Assigned HW#33.

For example, let V := R® and U := {(z,v,0)|z,y € R}. Let S :=
{(1,0,0),(0,1,0),(3,4,0)} and let T":= {(1,0,0), (0,1,0)}. Then S and
T are both spanning sets for U. Let x := (3,4,0). Then T' = S\{x}.
In some sense T' is a better spanning set than S, because the vector
x is extraneous, so it’s good to omit it. We now home in on why =z is
extraneous. Note that » = [3 e (1,0,0)] + [4 e (0,1,0)] € (T);,- So
since T' = S\{x}, we see that x € (S\{z})};,,- According to HW#33, it
follows that (S)1;,, = (S\{})};;,, so the vector z can be omitted from
S to create a new set with the same span as S.

We will say that a set of vectors is “linearly dependent” if at least
one of them is extraneous in this sense:

DEFINITION 12.4. For any vector space V', for any S, by S is
linearly dependent in V', we mean:

both (S<V ) and (3JveS st xelS\{z})y, )
The opposite of linearly dependent is “linearly independent”:

DEFINITION 12.5. For any vector space V', for any S, by S 1is
linearly independent in V', we mean:

both (S< V) and (S isnotlinearly dependent in V' ).

Applying NOT to ( 3z € S s.t. x € (S\{z})};, ), We see that a subset
S of a vector space V is linearly independent iff none of the vectors in
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S is extraneous, i.e. iff

Vee S, x¢S\{zh)y

Following this, if we want to check that a set of vectors is linearly
independent, we have to look at each one and check that it cannot
be omitted without changing the span. The following gives a more
practical quantified equivalence for linear independence.

FACT 12.6. Let V be a vector space Let k € N. Let x1,...,x, € V.
Assume, for all i,5 € {1,... k}, that: [ (i # j) = (z; # x;)]. Then:

[ {x1,..., 2k} is linearly independent in V| =
[ Vcl,...,ckeR,
(clzr+ -+ g =0v) = (a==¢=0) |
Proof. Omitted. O

In general terms, Fact 12.6 asserts that a finite set of vectors is lin-
early independent iff the only linear combination of them that vanishes
is the one with vanishing coefficients. The linear combination with
vanishing coefficients is sometimes said to be “trivial”. Then Fact 12.6
asserts that a finite set of vectors is linearly independent iff it has no
nontrivial vanishing linear combination.

Note, for example, that {(1,0,0),(0,1,0),(3,4,0)} has a nontrivial
vanishing linear combination:

[3-(1,0,0)] + [4-(0,1,0)] + [(—1)-(3,4,0)] = (0,0,0).

So, by Fact 12.6, {(1,0,0), (0,1,0), (3,4,0)} is linearly dependent in R3.
We leave it as an unassigned exercise to show that {(1,0,0),(0,1,0)}
has no nontrivial vanishing linear combination. So, by Fact 12.6,
{(1,0,0), (0,1,0)} is linearly independent in R3.

Assigned HW#34.

A “basis” for a vector space is a spanning set without extraneous
vectors. That is:

DEFINITION 12.7. For any vector space V', for any B, by B is a
basis for V, we mean:

( B spans V') & ( B is linearly independent in V).
)

For example, {(1

)
,0,0),(0,1,0)} is a basis for {(z,y,0)|z,y € R}.
Also {(1,0,0),(0,1,0)

(
,(0,0,1)} is a basis for R3.
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Assigned HW#35.

We next examine the basis {(1,0,0), (0,1,0), (0,0,1)} for R3. Recall
that R? is, technically, equal to the set R{1%3} consisting of all functions
{1,2,3} — R. In particular, looking “under the hood” at say (7,—9,4),
we see that (7,—9,4) is the function {1,2,3} — R that maps 1 to 7,

1—7
maps 2 to —9 and maps 3 to 4. That is, (7,-9,4)= [ 2— —9
3—4
Similary, we have
1—1
(1,0,0) = 20 e RU23 - RS
3—0
Similarly, we have
1—0
(0,1,0) = 21 e RL2} = RS
3—0
Similarly, we have
1—0
(0,0,1) = 20 e R} — RS
3—1
Recall Definition 7.2. Note that
1—1 1—0 1—0
{1,2,3} {1 2,3} _ {1,2,3}
3—0 3—0 3—1

Thus we have x{;1*” = (1,0,0), x{3"** = (0,1,0), x5"* = (0,0,1).
Let S := {1,2,3}. Then {(1,0, 0),(0,1,0),(0,0,1)} = {X{j}|] e S}.

This generalizes from R? to give, for all d € N, a basis for R%.

DEFINITION 12.8. Let d e N, S :={1,...,d}. Forall j € S, let
g 1= xf‘j}. Then {1, ...,eq4} is the standard basis for R%.

DEFINITION 12.9. For any vector space V', we define

Bas(V) := {B< V|B is a basis for V}
DIMS(V) = {#B]|B e Bas(V)}.
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For example, let S := {(1,0,0),(0,1,0),(0,0,1)}, so that S is the
standard basis for R3. In particular, S € Bas (R?). Since #S = 3, we
get 3 € DIMS (R?). Mathematicians have studied bases of R? intensely,
and have verified that, for every B € Bas (R3), we have #B = 3. That
is, DIMS (R?) = {3}. Consequently, #[DIMS (R?)] = #{3} = 1.

For example, let U := {(z,y,0)|x,y € R}, T := {(1,0,0),(0,1,0)}.
Then T € Bas(U), so, since #T = 2, we get 2 € DIMS (U). Math-
ematicians have studied bases of U intensely, and have verified that,
for every B € Bas(U), we have #B = 2. That is, DIMS (U) = {2}.
Consequently, #[DIMS (U)] = #{2} = 1.

Mathematicians have studied bases of vector spaces intensely, and
have verified that, for every vector space V', we have #[DIMS (V)] = 1.
A single vector space of nonzero dimension will always have uncount-
ably many bases, and yet any time we find two bases for the same
vector space, it turns out that the two bases have the same number of
elements. That number is called the dimension of the vector space:

DEFINITION 12.10. Yvector space V, dimV := ELT(DIMS(V)).

Unassigned exercise: Show, for any vector space V', that: if dim V' =
0, then V' = {0Oy}. In particular, every 0-dimensional vector space
has only one vector. By contrast, we will see that every positive-
dimensional vector space has continuum cardinality.

For example,

dmR® = ELT{3} = 3  and
dim{(z,y,0) | z,y € R} ELT{2} = 2

DEFINITION 12.11. Let V' be a vector space. By V s finite di-
mensional, we mean dimV < co. By V is infinite dimensional, we
mean dimV = o0.

13. CrLAss 13 oN 19 OCTOBER 2017, TH OF WEEK 7
let S be a set and let £ € N. Recall that

Sk — gtk — ffunctions {1,...,k} — S}.
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Also, recall that, for all z € S*, we have

1—x

r = : = (z1,...,2p),
k— xy

and so im[z] = {x1,..., 24}

’0) ) c (RQ){IQ} _ (RQ)Q.

, so im[e] is a basis for R%. Note also that

11
e = (L0) = <2H0) = xpy

1—0
and g = (0,1) = (2'_)1) _ ng}'

DEFINITION 13.1. For any finite dimensional vector space V', for
any B, by B is an ordered basis or OB for V', we mean:
(Be de'mv) and (im[B] is a basis for V).
For example, ((1,0), (0, 1)) is an ordered basis for R?, and ((0, 1), (1,0))

is a different ordered basis for R2.

DEFINITION 13.2. Let d € N. For every j € {1,...,d}, define
gj 1= X?;i”"d}. Then the standard OB for R? is (e1,...,&4).

For example, the standard ordered basis for R? is ((1,0), (0,1)).
DEFINITION 13.3. For any finite dimensional vector space V', we
define OB(V) := {OBs for V'}.

For example, ((0,1),(1,0)) € OB(R?).

We leave it as an unassigned exercise to show, for any finite dimen-

sional vector space V', that, because V' has a finite basis, OB(V) # (.
DEFINITION 13.4. Let V and W be vector spaces. LetT : V — W.

Then T is linear means:

(1) Vo,yeV, (T(x+y) = [T@)]+[TW])  and
(2) Vae R, Vx eV, (T(ax) = ae [T (z)]).

DEFINITION 13.5. Let V and W be vector spaces. LetT : V — W.
Then T is an isomorphism onto W means:
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(1) T is linear and
2) T:V > W.

When the vector space W is clear, we will sometimes just say “7" is
an isomorphism”, instead of “T" is an isomorphism onto W”.

The word “isomorphism” is used in many different ways in math-
ematics. The “isomorphism” of Definition 13.5 is sometimes called a
vector space isomorphism or linear isomorphism, to distinguish
it from other kinds of isomorphisms.

LEMMA 13.6. Let V and W be vector spaces and let T :'V — W.
Assume that T is an isomorphism onto W. Then T~ is an isomor-
phism onto V| i.e.,

(1) T is linear and
2) T W > V.
Proof. Omitted. O

DEFINITION 13.7. Let V and W be vector spaces. Then V' is iso-
morphic to W means: 3T s.t.

(1) T is linear and

(2) T:V —>>W.

That is, two vector spaces are isomorphic if there exists an isomor-
phism from one of them onto the other.
For example, while

R' = R = {functions {1} - R} # R,

it is nevertheless true that R! “looks and feels like” R. In more techical
language, we say: R! is isomorphic to R. To describe the isomorphism,
first note that, for all ¢ € R, (¢) is the 1-tuple whose only entry is ;
that is, (¢) is the function {1} — R that is described by 1+ t. So,

Vte R, t) = (1—t) e RY = RL

So, for all ¢ € R, if we evaluate the function (¢) at 1, we get ¢. Thus,
for all t € R, while (¢) # ¢, we do have (t); = t. Unassigned exercise:
Show that the function

t— () : R —-R
is a vector space isomorphism, and that its inverse is

v —> v . R SR
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In particular, R and R! are isomorphic vector spaces..

For another example, let U := {(z,y,0)|z,y € R}. Recall that
U inherits vector addition and scalar multiplication from R3, and with
these linear operations, U is a vector space. Unassigned exercise: Show
that the function

(x,y) — (x,9,0) R? - U

is a vector space isomorphism. In particular, R? and U are isomorphic
vector spaces.

For another example, recall that, for any set S, R has linear oper-
ations making it into a vector space. In particular, R{>7# is a vector
space. Unassigned exercise: Show that the function

2—x
(x7y7z) —> 7'_>y : RS — R{27778}
88—z

is a vector space isomorphism. In particular, R® and R{*7# are iso-
morphic vector spaces.

For finite dimensional vector spaces, we can connect ordered bases
with isomorphisms, as follows.

DEFINITION 13.8. Let V' be a vector space, let d := dimV and let
Be OB(V). Assume d < wo. Then Lg : R* -V is defined by

LB(xl,...,xd) = IlBl + -+ l’dBd.

Recall that R = {0} < R, and that R® is a vector space, with
linear operations inherited from R. In Definition 13.8, if d = 0, then
V = {0y}, and we define L : RY — V by Lg(0) = 0y. In theorems
about Lpg, we will often omit discussion of the O-dimensional case,
leaving that detail to the reader.

For example, let U := {(z,y,0) |x,y € R}, B := ((1,0,0), (0,1,0)).
Recall that dimU = 2 and that B € OB(V). We “calculate” the map
Lg:R? - U: For all z,y € R, we have

Lg(z,y) = xB1 + yB,
— 2(1,0,0) + y(0,1,0)
= (z,y,0).

Note that Lp is the isomorphism R? — U that we described earlier.
Let C' := ((0,1,0), (1,0,0)). Note that B and C are different ordered
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bases of U, even though they give rise to the same (unordered) basis:
im[B] = {(1,0,0),(0,1,0)} = {(0,1,0),(1,0,0)} = im[C].
For all x,y € R, we have
Lo(z,y) = 201 + yCy
= 2(0,1,0) + y(1,0,0)
= (y,z,0).

Note that L¢ is slightly different from Lg. Unassigned exercise: Show
that Lo : R?2 — U is an isomorphism of vector spaces.

Quite generally, any time B is an ordered basis of any finite dimen-
sional vector space, the function Lg is an isomorphism:

THEOREM 13.9. Let V' be a vector space, d := dimV, B € OB(V).

Assume d < 0. Then Lg : R — V is a vector space isomorphism.

Proof. Omitted. 0

If we think of a vector space isomorphism as a dictionary that

e allows us to tranlsate questions about one vector space over
to another, better understood, vector space, and, also,
e allows us to translate answers back,

then the importance of the isomorphism Lp of Theorem 13.9 can be
expressed this way: For any d € N, if some d-dimensional vector space V'
seems very abstract and recondite, just seek out an ordered basis B
for V, and then use the “dictionary” Lp : R? — V; this connects the
abstract V to the concrete, well-understood vector space R? of d-tuples
of real numbers. In particular, if d € {0, 1,2, 3}, then we can “see” R,
and, therefore, we can “see” V. Following this thinking, we have:

COROLLARY 13.10. Let V' be a finite dimensional vector space.
Then V' is isomorphic to RA&MV

Proof. Let d := dim V. We wish to show that V is isomorphic to R%.
Since OB(V) # &, choose B € OB(V). Then Lp : R — V is an

isomorphism. Then ngl : V — R? is an isomorphism. Then V is

isomorphic to R 0

This finishes our introduction to linear algebra. We move on to the
study of norms, metrics, topology, after which we can begin analysis:
limits, derivatives and integrals.
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DEFINITION 13.11. Let V be a vector space. Let |e|:V — [0, 00).
Then | o | is a norm on V means:

1) vVeeV, [(2[=0) & @=0)] ),

(2) ( YaeR,VxeV, [laz|=la|-|z]] ) and

) VeyeV, [lr+yl<fzf+y[] )

In (2) of Definition 13.11, |a| is the absolute value of a. In the rest
of the definition, every use of | e | is the norm |e|:V — [0, 0).
Some terminology about Definition 13.11:
e We express (1) by saying: “| e | distinguishes zero”.
e We express (2) by saying: “| e | is positive-homogeneous”.
e We express (3) by saying: “| e | is subadditive”.
Absolute value |e | : R — [0,00) is a norm on the vector space R. It
might be called the standard norm on R. Note: Vz € R, |z| = V2.

We can generalize that formula to higher dimensions, as follows.
Let d € N. Define | o | : R? — [0,0) by

‘(xla"'amd)‘ = \/l'%++l'?l

Then | o | is a norm on the vector space R?, and is called the standard
norm on R%. Note: Vzi,..., 24 € R,

|(5L’1,...,$d)| = ( |I1|2 + - + |.Td’2 )1/2.
We can generalize that formula to other exponents, as follows.
Let d e N and p € [1,0). Define | o | : RY — [0, 0) by
@1zl = (o + o+ 2 ).

Then | o | is a norm on the vector space R¢, and is called the p-norm
or LP-norm on R
Let d € N. Define | o | : R? — [0,00) by

(@1, xa)l = max{lza, .. zal}.

Then | e | is a norm on the vector space R?, and is called the co-norm
or L*-norm on R<.
Note: Vd € N, [ ( standard norm on R? ) = ( 2-norm on R? ) ].

DEFINITION 13.12. For any vector space V', we define
N(V) = {norms on V}.

DEFINITION 13.13. By (V,| ¢ |) is a normed vector space, we
mean: ( V is a vector space ) and  (|e]eN(V)).
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DEFINITION 13.14. For any normed vector space (V, |e|), we define

BM = {.1' eV s.t. ]x\ < 1},
S = {reVst |z=1} and
EM = {:C eV s.t. ‘ZE’ < 1}.

For any normed vector space (V)| o),

the set Bj,| is called the unit ball of | e |,
the set S| is called the unit sphere of | e | and
the set By, is called the closed unit ball of | e |.

Assigned HW#36, due 31 October.

We played a game: I told you I had a secret norm | e | on R?. I
drew a picture for you of E\*I‘ I picked a point x in the plane slightly
outside of B),. I asked you to estimate |z|. We determined that |z| > 1
exactly because x is not an element of EI-\- We dilated E\-l by a factor
of 2, and saw that (the point = ) is an element of ( that dilated set ).
Therefore, || < 2. Continuing, we determined that |z| is only slightly
bigger than 1, because z is only slightly outside EI-\- In fact, |z| is the
minimum of the set of all dilation factors such that

( the dilation of Bj,|) covers (the point x ).

The upshot of this kind of thinking is that any norm is determined
by its closed unit ball. Consequently, there’s a close connection be-
tween norms and geometry. If someone shows you a norm on a finite
dimensional vector space, and you would like to understand it, one ap-
proach is to try to understand, geometrically, what its closed unit ball
looks like. Mathematicians have intensively studied closed unit balls of
norms, and know exactly which kinds of sets arise. Suppose you would
like to make your own personal norm on R2. Proceed as follows: Draw
a subset S of R? such that

(1) S contains all of its boundary points,
(2) S contains a disk about (0,0),
(3) Vpe S, we have —p e S and
(4) V¥p,q € S, the line segment from p to ¢ is contained in S.
It will then turn out that there is a unique norm | e | on R? such that
§|.| = 5. That norm is your personal norm.
Some terminology:
e We express (1) by saying: “S is closed”.
e We express (2) by saying: “the origin is in the interior of S”.



102 SCOT ADAMS

e We express (3) by saying: “S is symmetric through the origin”.
e We express (4) by saying: “S is convex”.
Let p := 1/2 and define a function | e | : R* — [0, 20) by
(a,0)] = (la]” + [p] )",

Let S := {x € R? s.t. |x| < 1}. T drew the graph of S, and we verified
that the resulting set is not convex. It turns out that the nonconvexity
of S is driven exactly by the fact that | e | is NOT subadditive. Conse-
quently, | e | is not a norm. Recall: In defining “p-norm”, we required
that p € [1,00]. This explains what goes wrong when p < 1.

The key point, though, is that we have a geometric way to “see”
the algebraic property of subadditivity; you just have to know where
to look. For all p > 1, we “see” subadditivity in the p-norm. For all
p < 1, we do not, so those functions are not norms. Also, following
this same line of thought, HW#36 explains how to “see” the co-norm:
Vp e [1,00), we “see” the p-norm; we then take the limit as p — oo.

In the sequel, we will not be discussing p-norms, except for 2-norms,
a.k.a. standard norms.

This concludes our introduction to norms. Next up are metrics.
First, keep in mind that the word “metric” is used different ways.
In a course on Riemannian geometry, “metric” is short for “Riemannian
metric” and we will not be discussing that kind of metric in this course.
Here, by “metric”, we will mean “distance-metric”, defined as follows:

DEFINITION 13.15. Let X be a set. Letd: X x X — [0,00). Then

d is a metric or distance-metric on X means:

(1) VYpgeX, [(dpqg=0) < (p=q] ),
2) ( VpqeX, [dlpg=dlgp] ) and
3) ( VYpgreX, [dpr)<(dpq)+(dgr)] )
Some terminology about Definition 13.15:
e We express (1) by: “d distinguishes points”.
e We express (2) by: “d is symmetric”.
e We express (3) by: “d is satisfies the triangle inequality”.

DEFINITION 13.16. For any set X, we define
M(X) = {metrics on X}.

DEFINITION 13.17. By (X,d) is a metric space, we mean:
( X is a set) and (de M(X) ).
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DEFINITION 13.18. Let (V.| o |) be a normed vector space. Then
dje € M(V') is defined by dja(z,y) = |v — y|.

In Definition 13.18, we call dj,| the induced metric from | e |.
Assigned HW#37, due 31 October.

According to HW#37, for any vector space V, for any | e | € N (V),
if we measure distance in V' by dj,| and if we measure distance in R
by dg, then the mapping | e |: V' — R is distance-semidecreasing (i.e.,
distance-nonincreasing). This property of norms is often useful.

We now start to move toward topology. Intuitively, a topology cap-
tures ideas of closeness, through what are called “neighborhoods” (to be
defined later). Each neighborhood is a set of points that are, in some
way, “close” to a given point. A collection of neighborhoods is a set
of sets. One way to get a collection of neighborhoods is to find a metric
space and take the set of all “balls” in the metric space. So we begin
by defining what a ball in a metric space is:

DEFINITION 13.19. Let (X,d) be a metric space. Then, for all
pe X, for all r > 0, we define

Bay(p,r) = {qe X|d(p,q) <r}.

In Definition 13.19, By(p,r) is called the ball about p of radius r.
(Sometimes, instead of “about p”, we say “centered at p”.) When the
metric d is clear, we will often omit it from the notation, and write
B(p,r) in place of By(p, ).

DEFINITION 13.20. Let (X,d) be a metric space. Then, for all
p e X, we define By(p) := {B(p,r)|r > 0}.

In Definition 13.20, when d is clear, we omit it from B,(p), and write
B(p) instead.

For any metric space (X,d), for any p € X, the set B(p) is the
collection of all balls centered at p; it is a set of sets.

DEFINITION 13.21. Let (X,d) be a metric space. Then we define
By = {B(p,’f‘) |p€ X,r> 0}

For any metric space (X, d), the set B, is the collection of all balls
in X; it is a set of sets.

Assigned HW#38, due 31 October.
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14. CrAss 14 oN 24 OCTOBER 2017, Tu or WEEK 8

Recall: (V,|e]) is a normed vector space means that V' is a vector

space and that |e|: V — [0, 00) satisfies:
distinguishes 0y, positive homogeneous, subadditive.

Recall: (X,d) is a metric space means that X is a set and that

d: X x X —[0,00) satisfies:
distinguishes points, symmetric, triangle inequality.

We now start moving toward topology which is all about closeness.
One way to talk about closeness is through “balls”. The points that are
close to a given point p might be the points that are a small distance
away, i.e., the points that are in a small ball about the point (with

respect to some metric). Following this, we recall: Let (X,d) be a
metric space. Then

e Vpe X, ¥r>0, B(pr):={qeX|dpq) <r},
e Vpe X, B(p) := {B(p,r)|r >0} and
e B, := {B(p,7)|pe X, r> 0}

Recalled HW#38.
Assigned HW#309.
Here are some facts about set theory that may prove useful:

FACT 14.1. Let S be a set of sets. Then

(1) VX €S, Xcls,
(2) VX €S, X e(S).,

B) g, US € S). and
4) s U g} U{USs} (S)o-

Proof. Omitted. O

IN

Assigned HW#40.
You may find (1) of Fact 14.1 to be useful in doing HW#40.

The next lemma will be called the Recentering Down Lemma.
It is an easy consequence of HW#38.

LEMMA 14.2. Let (X, d) be a metric space, let B € By and letp € B.
Then there exists By € B(p) such that By < B.
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Lemma 14.2 states: For any a point inside any ball, we can find
a new ball centered at that point that’s so small that it’s contained
in the original ball. Of course, if the point is close to the boundary
of the original ball, then the new ball will have to have a very small
radius. HW#38 tells how to compute the radius of the new ball.

Proof. Since B € B, choose ¢ € X and s > 0 such that B = B(q, s).
Let r := s — [d(p,q)]. By HW#38, r > 0 and B(p,r) < B. Let
By := B(p,r). Then, as By is centered at p, we see that By € B(p). We
wish to show that By < B.

We have By = B(p,r) € B, as desired. d
DEFINITION 14.3. For any set S of sets, we define
1) (S)n = {NA|T#+ASS} and
2) S)pn., = {NAJ(@PT#ACSS) and (#A < x) }.

The set (S). is called the intersection closure of S. The set
{(8)fp . is called the finite intersection closure of S.
The operators (e)~ and ()5, . both have the usual properties:

superset, idempotent, monotonic.

To say this more specifically:

REMARK 14.4. The following are all true:
(1A) Vset S of sets, (S), 2 S.
(1B) Vset S of sets, ({S)n )rn = (S)A.
(1C) Vsets R, S of sets, [RcS] = [(R)A € (S]]
(2A) Vset S of sets, (S)gp . 2 S.
(2B) Vset S of sets, {{S)fin - Yinn = Sfipa-
(2C) Vsets R, S of sets, [R<cS] = [(Rfn. € Sfnal

Proof. Omitted. O

We will need a basic fact about finite nonempty sets: in any such
set, you can put the elements into a finite list. More specifically:

FACT 14.5. Let S be a set and let k := #S. Assume 0 < k < oo.
Then El%l, ey Tk s.t. S = {Il, c. ,.ka}.

Proof. Omitted. O

PROPOSITION 14.6. Let S be a set of sets. We assume that, for
allU,V €8, we have UnV eS. Then{(S)g, . =S.
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Proposition 14.6 can be expressed as: “If a set of sets is closed under
pairwise-intersection, then it’s closed under finite intersection.”

Proof. Claim: Yk e N, VXy,..., Xy eS8, Xin---nXpeS. Proof of
claim: For all k € N, let

Pk = [VXl,...,XkES, Xlﬁ"'ﬂXkES].

We wish to show: Vk € N, P,. We have VX; € §, X; € §, and so
P, follows. By the Principle of Mathematical Induction, it suffices
to show: Vk € N, (P, = Piy1). Let k € N be given. We wish to
show: P, = P,.1. Assume P,. We wish to show Pj,.;. We know the
induction assumption: VX4,..., Xz €S8, Xin---nX, € S. We want to
prove: VXq,..., X 1€S, Xin---NnXp1 €8S Let Xq,..., X1 €8
be given. We wish to prove: X; n---n X1 €8.

By the induction assumption, X; n---n X € S. Recall: X, € S.
Let U := Xin---nX,and let V := X;.1. Then U,V € §. Then,
by hypothesis, U n'V € §. Then

Xin-nXppr = (Xin-nXy)n Xiaq
= UnV e S,
as desired. End of proof of claim.

By (2A) of Remark 14.4, we have (S)g,, . 2 S. It remains to show:
(S~ ES. We wish to show: VZ € (S)g,, ., € S. Let Z € (S)g,,
be given. We wish to show: Z € S.

By definition of (e)g,, _, since Z € (S)g,, ., choose A such that

(F#AcS)and (#A<ow)and ([A=2).

Since A # &, we get #A > 0. Then 0 < #A < 0. Let k := #A.
Then we have 0 < k£ < o0, so, by Fact 14.5, choose Xj,..., X} such
that A = {X1,...,X;}. Then X; n---n X}, = () A. By the claim,
Xin-nXpeS. Then Z = (NA=Xn---nX; eS8, as desired. [

Because intersection distributes over union, we get many “expansion
formulas”, like the one in the following fact.

FACT 14.7. Let X1, X5, Y1, Y5, Y3 be sets. Then
(X1uXs) n (TuYouYs) =
(XinY) u (XinYs) u (X1nY;) U
(XonY)) U (XonYs) U (XonY3).
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Proof. Omitted, but this result is a special case of the next lemma. [

Rather than proving Fact 14.7, along with lots of similar expansion
formulas, we will prove a general result:

LEMMA 14.8. Let A and B be sets of sets. Let
C = {XnY|XeA YeB}.
Then (UA) N(UB) = UC.

Proof. We wish to show: Vp,

re(UAYNUL) ] = [reUe]

Let p be given. We wish to show:

e (UYNWUB) ] = [r=Uc]

Proof of =: Assume: p e (| JA)(UB). Want: pe | JC.

We have pe | JA and pe | JB. Aspe | JA, choose X € A such that
pe X. As pe B, choose Y € B such that p € Y. Since p € X and
peY weget pe X nY. Let Z:= X nY. Then, by definition of C,
ZeC,s0Z<|JC. Thenpe X nY =Z < |JC. End of proof of =.

Proof of «<=: Assume: p e | JC. Want: pe (J.A) N (UB).

As p € | JC, choose Z € C such that p € Z. By definition of C,
since Z € C, choose X € A and Y € B such that Z = X nY. As
XeA weget X € |JA AsY € B, we get Y < | JB. We have
peZ=XnYcXc|JAdandpeZ=XnY Y c|JB. Since
peUAandpe B, pe (JA) NUB). End of proof of <. O

DEFINITION 14.9. For all T, by T is a topology, we mean:
(1) T is a set of sets and

2) To =T = Dfinn

That is, a topology is a set of sets that is closed under arbitrary
union and finite intersection.

We described, intuitively what open and closed subsets of R? are.
(More rigorous definition later.) We described why if the domain of
a function R? --» R is not an open set, then it’s hard to study that
function at boundary points using, say, directional derivatives. Conse-
quently, it’s natural for analysts to be interested in open sets, and to
want to define what they are in a rigorous way.
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We defined T := {open subsets of R?}. We drew some pictures and
made the case that this set T is closed under arbitrary union and finite
intersection. We also showed that it is NOT under countably infinite
intersection, because a closed disk is not open, but can be written as a
countably infinite decreasing intersection of open disks.

Let T be a topology. In particular, T is a set of sets, so every element
of T is a set. We have | JT € (T), = T. Then |J7T is an element of T
that is a superset of all the elements of T it’s “the biggest set in 7.

DEFINITION 14.10. Let X be a set. Then, for all T, by T is a
topology on X, we mean

(1) T is a topology and
2 UT = X.

DEFINITION 14.11. By (X,7) is a topological space, we mean

(1) X is a set and
(2) T is a topology on X.

DEFINITION 14.12. Let T be a topology and let U be a set. By U
is T-open, we mean: U € T.

When the topology T is well-understood, we may simply say open
instead of T-open. Also, we often abbreviate a topological space (X, T)
as X. Also, we often study sets that have a “standard topology” that
we all know about, but that, in most situations, goes unnamed. In
such a situation, if we say that a subset is “open”, we mean that it’s
an element of that anonymous topology.

For example, we will soon be defining the standard topology on R?.
After that, when we say that a subset U of R? is “open”, we're saying
“U is an element of the standard topology on R*”, and the reader is
expected to know how that standard topology is defined.

If T want to describe a topology, e.g. the standard topology on R?
it’s impractical to try to list all of its elements; the typical topology
isn’t countable. We faced the same problem when we wanted to try
to describe a subspace of a vector space. Our solution was: For me
to describe to you a subspace, I should tell you a spanning set, or,
even better, a basis for the subspace. A similar situation arises with
topologies. The analogue for a spanning set is called a “base” for the
topology:
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DEFINITION 14.13. Let T be a topology. Then, for all B, by B is
a base for T, we mean:

(1) BT and

(2) B, =T.

Some mathematicians use “basis” instead of “base”. Be aware that,
whatever you call it, it’s more like a spanning set of a subspace than a
basis of a subspace. There’s NO assumption that each set in B is in any
way independent of the rest. In fact, in many bases, if you select any
element of the base, and then remove it, that resulting set of sets is
still a base for the same topology.

In our course, the vector spaces of interest will typically be finite
dimensional, so their subspaces always have a finite spanning set. By
contrast, most interesting topologies don’t have a finite base. However,
many interesting topologies DO have a countable base. So, even if you
can’t list all the elements of the topology (in an infinite list), you can
list the elements of a base. So, if I'm interested in a topology, and if I
want to describe it to you, if I can find a countable base for it, then I
can show you the first few elements of the base, and hope that you can
pick up the pattern, and figure out the rest. If so, then I've told you
my topology of interest.

Every subset of a vector space is a spanning set for some subspace.
By contrast, a set of sets may or may not be a base for a topology.
So one problem that faces us in this situation (that didn’t come up
in linear algebra) is to know when a certain collection of sets has a
possibility to be a base for a topology. So, if we’re staring at a set of
sets, how can we know if it’s a base for a topology? Here’s our answer:

PROPOSITION 14.14. Let § be a set of sets, and assume, for
al X, Y €8, that X nY €{(S),. Then{S), is a topology.

By Definition 14.13, once we know (S)_ is a topology, it follows
that S is a base for that topology. So a buzz phrase to summarize
Proposition 14.14 is: “If every pairwise-intersection is a union, then
the set of sets is a base for some topology.”

We considered the case where S = {open disks in R?}, and explained
why, even though an intersection of two open disks is typically NOT
a disk, it will always be a union of open disks. Then, by Proposi-
tion 14.14, that set S is a base for some topology, namely (S).. That
topology is called the “standard topology” on R?. More on this later.
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Proof. Let T :=(S),. We wish to show that 7 is a topology. By (2)
of Remark 11.2 we have ((S), ), = (S),. Then

<T>u = <<S>u >u = <S>u = T,

so{T), = T. So, by Definition 14.9, it remains to show: (T )g, . =T.
Then, by Proposition 14.6, it suffices to show: YU,V e T, UnV e T.
Let U,V € T be given. We wish to show: U nV e T.

We have U € T = (S),, so we choose A < S such that U = | JA.
We have V e T = (S)., so we choose B < S such that V = | JB. Let
C:={XnY|XeA Y eB} By Lemma 14.8, (JA) n (UB) =C.

Claim: C < T. Proof of claim: We wish to show: YZ € C, Z € T.
Let Z € C be given. We wish to show: Z € T.

By definition of C, since Z € C, choose X € A and Y € B such
that Z = X nY. Wehave X e AcCandY e B< (. As X,Y €C,
by hypothesis, we see that XnY € (S),. Then Z = XnY € (S), =T,
as desired. End of proof of claim.

By the claim and by (3) of Remark 11.2, we have (C), < (T )..
By (3) of Fact 14.1, [ JC € {C),. Recall that (T), = 7. Then we have
UnV=(UAn(UB)=Cell), =(T), =T, as desired. O

In the next class, we will focus on using Proposition 14.14 to show:
Vset X, Vd € M(X), (B;), is a topology on X. That is, we will
construct a topology on any metric space, such that set of balls in the
metric space is a base for that topology. From this, every metric space
will have a standard topology. So, since R? has a standard metric, we
can use that metric to create a standard topology on R?: Specifically,
that topology will be the union-closure of the set of all open disks in R2.

15. CLAss 15 ON 26 OCTOBER 2017, TH OF WEEK &
Midterm 2 will be on 2 November 2017, and will cover < 17 October.

Recall: Let T be a set of sets. Then T is a topology means:

o =T = (TDfin

Recall: Let 7 be a set of sets and let X be a set. Then T is a
topology on X means: ( 7 is a topology ) and ( |7 = X ).

Recall: Let 7 be a topology and let B < 7. Then B is a base for T
means: By, =T.

Recall: Let § be a set of sets. Then both of the following are true:
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(1) (VXY eSS, XnYeS)= ({Sqy. =9S)
(2) (VX, Y eS8 XnYelS,) = ((S), is a topology).
The buzz phrase for (1) is “if a set of sets is pairwise-intersection closed,
then it’s finite-intersection closed.” The buzz phrase for (2) is “if every
pairwise-intersection is a union, then the collection of sets forms a base
for some topology.” Also, note that (2) is Proposition 14.14, proved in
the last class.
Recall: Let (X, d) be a metric space, let p e X and let U,V € B(p).
Then both of the following are true:
(1) (UcV)or (VcU).
(2) UnVe{UV}.
Recall the quantified equivalence for union-closure: Let B be
a set of sets and let S be a set. Then: (S e (B), ) iff

Vpe S, dJAeBst.pe AcS.

Recall the Recentering Down Lemma (Lemma 14.2): Let (X, d)
be a metric space, let B € By and let p € B. Then 3B, € B(p)
s.t. By € B.

FACT 15.1. Let (X, d) be a metric space, let pe X and let B € B(p).
Then p e B.

Proof. Omitted. 0
Fact 15.1 asserts: Any ball in a metric space covers its center.

FACT 15.2. Let B and C be sets. Let By < B and let Coy < C. Then
BonCyc BnC.

Proof. Omitted. O

The next lemma asserts that, in any metric space, any intersection
of balls is a union of balls; consequently, by Proposition 14.14, the set
of balls is a base for some topology.

LEMMA 15.3. Let (X,d) be a metric space. Let B,C € By. Then
BnCe <Bd>u'

Proof. By quantified-equivalence for union-closure, we wish to prove:
Vpe BnC,dAeB;st.pe A BnC. Let pe Bn C be given. We
wish to show: JA e Byst.pe Ac Bn C.
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By the Recentering Down Lemma (Lemma 14.2), choose By € B(p)
such that By € B, and choose Cy € B(p) such that Cy < C. Then
Bon Cy € {By,Co} < B(p) < By. Let A:= Byn Cy. Then A € By, and
we wish to show: pe A< Bn C.

By Fact 15.1, since By € B(p), it follows that p € By. By Fact 15.1,
since Cy € B(p), it follows that p € Cy. Since p € By and p € Cy, we get
p€ Byn Cy. Then pe Byn Cy = A. It remains to show: A < Bn C.

By Fact 15.2, Byn Co € BnC. Then A=BynCyc BnC. [

DEFINITION 15.4. Let (X,d) be a metric space. Then we define
721 = <Bd>u'

FACT 15.5. Let (X, d) be a metric space. Then | JBq = X.
COROLLARY 15.6. Let (X,d) be a metric space. Then |JTq = X.

COROLLARY 15.7. Let (X,d) be a metric space. Then Ty is a
topology on X.

DEFINITION 15.8. Let (X,d) be a metric space. Then Ty is called
the standard topology on (X, d).

We described (V.| e|) — (V,d}.|) as a “functor” from the “category”
of normed vector spaces to the “category” of metric spaces.

We described (X, d) — (X, 7T;) as a “functor” from the “category”
of metric spaces to the “category” of topological spaces.

DEFINITION 15.9. For all k € N, we define

||, := the standard norm on R”,
dy = d)y,
B = DBy, and
T = Ta,.

Let k € N. Then, for all p € R¥, we have
ple = /Pt + -+ Pk
Also, for all p, ¢ € R¥, we have

d(pq) = - @)+ (e — )
Also, for all p e R*, for all r > 0, we have

B(p,r) = {qeRF|dy(p,q) <r}.
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Also, By, = {B(p,7) |p e Rk, r > 0}. Also, Ty = (Bp)o.
We described some open and non-open subsets of R2.

DEFINITION 15.10. Let | o | denote absolute value on R. Then we
define B := By,

We drew a few pictures and concluded that By is the set of bounded
open intervals in R. We also noticed that, for all U,V € Bg, we have

UnV € Bru{g} < Bryo.
DEFINITION 15.11. We define
B = {(M,]|MeR},
B_, = {[-0o,N)| NeR} and
B. == By | B | Be
We drew a few pictures, and noticed that, for all U,V € B,, we have
UnV € B,u{g} < Boo.

So, in B,, every pairwise-intersection is a union. It follows that B, is
a base for some topology.

DEFINITION 15.12. We define T, := (B ). .

FACT 15.13. We have: | J B, = R*.

COROLLARY 15.14. We have: | J T, = R*.

COROLLARY 15.15. We have: T, is a topology on R*.
DEFINITION 15.16. We call T, the standard topology on R*.

DEFINITION 15.17. Let (X, T) be a topological space. We say that
(X, T) is metrizable if there exists d € M(X) such that T = Ty.

Let R* be an abbreviation for (R*,7,). We discussed the question:
Is R* metrizable? The answer is yes, but, unfortunately, there’s no
“standard metric” on R*, so it’s really not so helpful to think of R* as
a metric space. After all, what element of [0, 00) should represent the
distance from —oo to c0? There’s no obvious choice. However, there is
a standard TOPOLOGY on R* namely 7,.

A reasonable question is: Is every topological space metrizable? In
other words, is the functor (X,d) — (X, 7Ty) : {TSs} — {MSs} surjec-
tive? The answer turns out to be no, and we next explain why.
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DEFINITION 15.18. Let X be a topological space. By X is Haus-
dorff, we mean: Vp,q e X, if p # q, then

Jopen sets U,V in X st [(pelU)&(qeV)&(UnNV =)].
We explained why metrizable topological spaces are Hausdorff.

DEFINITION 15.19. Let X be a set. Then {5, X} is a topology
on X, and is called the indiscrete topology on X.

DEFINITION 15.20. Let (X, T) be a topological space. We say that
(X, T) is indiscrete if T is the indiscrete topology on X .

We briefly expained why, if X is a set and if #X > 2, then the
topological space (X, {d, X}) is NOT Hausdorff, and is therefore not
metrizable. So not every topological space is metrizable.

In this course, we will take the point of view that a every interesting
topological space is metrizable. (A value judgment!) Consequently,
any non-Hausdorff topological space is uninteresting.

DEFINITION 15.21. Let A and B be sets of sets. By (A is finer
than B ) or by ( B is coarser than A ), we mean: A 2 B.

Let X be a set. Recall that 2% denotes the set of all subsets of X.
Among the topologies on X, the coarsest is {F, X}. There is also a
finest topology on X, namely 2.

DEFINITION 15.22. Let X be a set. Then 2% is a topology on X,
and is called the discrete topology on X.

DEFINITION 15.23. Let (X, T) be a topological space. We say that
(X, T) is discrete if T is the discrete topology on X.

So, on R?, we now have introduced three topologies: indiscrete, dis-
crete and 75. The indiscrete topology on R? is uninteresting because
it’s not even Hausdorff (and hence not metrizable). It turns out that
the discrete topology on R? is too fine to be useful, so it’s also uninter-
esting. (More on this later.) Following Goldilocks, T3 is “just right”.

The same situation arises on R*. The indiscrete topology on R* is
too coarse to be useful, the discrete topology on R* is too fine to be
useful, and the standard topology 7 is just right.

Let k € N. The same situation arises on R¥. The indiscrete topology
on R* is too coarse to be useful, the discrete topology on R is too fine
to be useful, and T}, is just right.
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Recall: For any topological space (X, T), for any U < X, by U is
open or T-open, we mean: U € T.

DEFINITION 15.24. Let (X, T) be a topological space. Let C < X.
By C' is closed or T-closed, we mean: X\C € T.

That is, a set is closed iff its complement is open.

We studied various sets in R2. Intuitively, a set in R? is T3-open iff
it contains NONE of its boundary points. Intuitively, a set in R? is
T>-closed iff it contains ALL of its boundary points. We verified that
many sets in R? are neither Ta-open nor Ta-closed.

So be aware: open is NOT the opposite of closed. So, for example,
if you are asked to show that some set is closed, it is NOT enough
to show that it’s not open.

In any topological space X, both ¢ and X are “clopen” meaning
“both closed and open”. So every topological space has at least two
clopen sets. We'll eventually see that some topological spaces have
more than two, but, first, it will be very helpful to define and study

(1) relative norms,
(2) relative metrics and
(3) relative topologies.

DEFINITION 15.25. Let (V| o |) be a normed vector space and let
S be a subspace of V.. Then |e|s:= (|o|)|S € N(S), and | e |s is called
the relative norm on S inherited from (V,|e|).

DEFINITION 15.26. Let (X,d) be a metric space and let S < X.
Then dg = d|(S x S) € M(S), and dg is called the relative metric
on S inherited from (X,d).

DEFINITION 15.27. Let S be a set of sets and let A be a set. Then
the restriction of S to A is {X n A| X € S}, and is denoted either
by Sa or by S|A.

FACT 15.28. Let S be a set of sets and let A be a set. Then we have:
(S1A)s = ((8)u)lA.

Fact 15.28 is sometimes expressed by saying that “restriction and
union-closure commute”.

DEFINITION 15.29. Let (X,T) be a topological space. Let A < X.
Then Ta is a topology on A, and Ty is called the relative topology
on A inherited from (X, T).
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We looked at the unit circle in R%. We discussed

e its relative metric inherited from (R?, dy) and
e its relative topology inherited from (R?, 73).

NOTE: That relative metric is sometimes called the “chord metric”, for
which the distance between two points on the circle is the length of the
chord connecting them. There is also the “Riemannian metric”, and,
for that metric, the distance between two points is the length of the
arc connecting them. We will not study Riemannian metrics.

We looked at the unit sphere in R3. We discussed

e its relative metric inherited from (R3, d3) and
e its relative topology inherited from (R3, 7T3).

NOTE: That relative metric is sometimes called the “chord metric”,
for which the distance between two points on the sphere is the length
of the chord connecting them. There is also the “Riemannian metric”,
and, for that metric, the distance between two points is the length
of the arc connecting them. We will not study Riemannian metrics.
Fix a moment in time. Let T be the function that, to any point
on the surface of the earth, associates the temperature at that point
at that moment. We think of the surface of the earth as a sphere in R3.
Then T is a function whose domain is that sphere. To analyze T using
techniques from calculus, we want to “do calculus” on that sphere.
Even to talk about limits (much less derivatives and integrals), we will
need to specify a topology on that sphere. There are many topologies,
some too coarse to be useful, some too fine. Experience has shown: the
“just right” topology is the relative topology inherited from (R3, 7).

16. CrAss 16 oN 31 OCTOBER 2017, Tu oF WEEK 9
Assigned HW#41.

DEFINITION 16.1. Let X be a topological space, g € X, V < X.
By V is a neighborhood of ¢ in X, we mean: U s.t. U is open in X
and s.t. qe U < V.

We use nbd as an abbreviation for “neighborhood”.
We gave some examples of neighborhoods of a point in R2.

DEFINITION 16.2. For any topological space X, for any q € X, we
define Nx(q) :={V < X |V is a neighborhood of q in X}.
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When X is clear, we sometimes write A/(g) for Nx(q).

REMARK 16.3. Let X be a topological space, g € X. Then

(1) VW e Nx(q), ¢V,
(2) VW e Nx(q), VW < X, [(W=2V) = (WeNx(q))] and
(3) YV, W e Nx(q), VnW e Nx(q).

Proof. Omitted. O

We next prove that an open set is a neighborhood of any of its points:

REMARK 16.4. Let X be a topological space, let V' be an open subset
of X and let e V. Then V € Nx(q).

Proof. We wish to show that Jopen U in X such that ge U < V.

Let U := V. By assumption, V is open in X, so U is open in X. We
wish to show: g € U < V. By assumption, g€ V. Then ge V =U. It
remains to show: U € V. We have U =V < V, as desired. 0

COROLLARY 16.5. Let X be a topological space and let W < X.
Assume that W is open in X. Then, Yge W, 3V € Nx(q) s.t. V. < W.

Proof. Given q € W. We wish to show: 3V € Nx(q) s.t. V. <€ W. Let
V:=W. Then V =W < W. It remains only to show that V € Nx(q).

Since W is open in X and q € W, it follows, from Remark 16.4, that
W e Nx(q). Then V =W € Nx(q), as desired. O

Assigned HW#42 and HW#43.
Recall that, by Proposition 14.14, for any set R of sets, if
every pairwise-[ | is a | J, i.e., YW,W e R, W n W' € (R),,
then
R is a base for a topology, i.e., (R), is a topology.
FACT 16.6. Let S and T be topologies. Let
R = {UxV|UeS VeT}
Then (R, is a topology.
Proof. By Proposition 14.14, we wish to show, for all W, W’ e R, that
WnW"e(R),. Given W, W' € R. We wish to show: WnW'e (R),.
By definition of (e)s,, , we have W W' e (R)g,, .. By HW#43, we

get (R)gy, . = R. By the superset property of (o), we get R < (R)..
Then W n W' e (R)g, . = R S (R)y, as desired. O
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If (X,S8) and (Y, T) are topological spaces, then an open rectangle
in X xY is asubset U xV of X xY such that U ¢ Sand V € T.
That is, an open rectangle is the Cartesian product of an open set in
X by an open set in Y.

HW#43 essentially says that, for any two topological spaces X and
Y, the set of open rectangles in X x Y is closed under finite intersec-
tion. It’s easy to see that, if a collection of sets is closed under finite
intersection, then any pairwise-intersection is a union, and so that col-
lection of sets is a base for some topology. Putting this together, we get
Fact 16.6, which asserts that for any two topological spaces X and Y,
the set of open rectangles forms a base for a topology on X x Y’; that
topology is called the product topology.

Under the standard bijection R x R «<»> R?, the standard metric
on R? corresponds to a metric d on R x R. Then T3 = (By), is the
topology whose base is the set By of all open d-balls. We explained
why the product topology on R x R is equal to 7y.

Recall: For any normed vector space (V| e |), for any subspace S of
V, we defined | e |5 := (] o ])|S € N(S). Recall: For any metric space
(M,d), for any S < M, we defined dg := d|(Sx S) € M(S). Recall: For
any set V of sets, for any set S, we defined V|S := {U S |U € V} and
Vs := V|S. Recall: For any topological space (X, T), for any S < X,
that 7s is a topology on X.

We have the following “transitivity” result:

PROPOSITION 16.7. All of the following are true:

(1) Vnormed vector space (V,|e ), Vsubspace S of V, Vsubspace R
of S, we have: (| ®|s)r =|®|r.

(2) VYmetric space (M,d), ¥VS < M, VR < S, we have: (ds)r = dg.

(3) Vtop. space (X,T), VS < X, YRS S, we have: (Ts)r = Tr.

Proof. Unassigned HW. O

We can generalize (3) of Proposition 16.7: Vset V of sets, Vset S,
VR < S, we have: (Vs)r = Vg. The proof is again unassigned HW.

Let (V,]e|) be a normed vector space and let S be a subspace of V.
Then there are TWO possible metrics on S: First, we can restrict the
norm, and then form the metric of the restricted norm. This yields
djs|s- Second, we can form the metric of the orignal norm, and then
restrict that metric. This yields (djs)s. These two agree:
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PROPOSITION 16.8. For any normed vector space (V, |e|), for any
subspace S of V', we have: djsg = (djs)s.

Proof. Unassigned HW. O

Let (X, d) be a metric space and let S < X. Then there are TWO
possible topologies on S: First, we can restrict the metric, and then
form the topology of the restricted metric. This yields 74,. Second,
we can form the topology of the orignal metric, and then restrict that
topology. This yields (73)s. These two agree:

PROPOSITION 16.9. For any metric space (X,d), for any S < X,
we have: Ta, = (Ta)s-

Proof. Unassigned HW. U

Recall, for all k € N, that | e [, denotes the standard norm on R¥,
that dj, = dj.|, denotes the standard metric in R”* and that 7, = By,
denotes the standard topology on R*.

DEFINITION 16.10. Let k € N. Then:
(1) Vsubspace S of R*, we define | o |s:= (| ®|1)s
(2) VS = R*, we define ds := (di)s-
(3) VS < R¥, we define Ts := (Ti)s.

Next, we turn to one-dimensional topology. That is, we look to R
and R*, and discuss relative structures on subsets. Recall that R has
a standard vector space structure, where vector addition is addition of
real numbers and scalr multiplication is multiplication of real numbers.
On the other hand, R* isn’t, in any natural way, a vector space, so we
can’t really discuss norms on R*. We do have a standard norm on R,
namely absolute value. However, there are only two subspaces of the
vector space R, namely {0} and R, and these aren’t interesting enough
to make it worthwhile to restrict the absolute value norm. So we move
on to metrics. We’ll talk about the difficulties in metrizing R* later,
but, for now, let’s focus R and its subsets:

DEFINITION 16.11. Let | o | € N(R) denote absolute value. For all
S c R, we define dg := (da))s-

Let | o | € N(R) continue to denote absolute value. Then |e|g = | o],
and so, by Definition 16.11, we get dg = d|,|. Then, for all a,b € R, we
have dg(a,b) = |a — b|.
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Next, let’s recall the standard topology T, on R*. Let | e | € N(R)
continue to denote absolute value. We defined

BR = Bdl-l = BdR,

By = {(M,o] | MeR},

B_y = {[-o0,N)|NeR},

B. = B |J Be|J B, and
T = B

Recall that, for any metric space (X, c¢), we defined T, := (B.),; it
is the union-closure of the set of all balls in the ¢ metric.

Let |o| € N'(R) continue to denote absolute value; then dg = dj.|. For
any metric ¢ on R*, recall that 7. = (B.)_ denotes the topology on R*
generated by the set of balls in the ¢ metric. For any metric ¢ on R*,
recall that cg = ¢|(R x R) denotes the restriction of ¢ to a relative
metric on R. It turns out that there exist a metric ¢ on R* such that
T. = T.. In fact, there are many such metrics, and none of them is,
in any way, a natural choice. There also exists a metric ¢ on R* such
that cg = dr. Once again, there are many such metrics, and none
of them is, in any way, a natural choice. It is not too hard to prove
that there does NOT exist a metric ¢ on R* such that both 7, = 7, and
cr = dg. From these remarks, we take the point of view that, while
(R*, T.) is metrizable, there is no standard metric on R*.

We now have TWO different natural ways to get a topology on R.
First, we can take the topology T, and restrict it to R. This yields (7).
Second, we can take the metric dg, and use it to create a topology. This
yields 7g,. These two agree:

PROPOSITION 16.12. We have: (Ty)r = Tay-
Proof. Unassigned HW. O
DEFINITION 16.13. For any subset S < R*, we define Ts := (T:)s-

According to Definition 16.13, we have Tg = (T;)r. So, by Proposi-
tion 16.12, we have Tg = (T)r = Ty

Let (X,7T) be a topological space, let S < X and let U < S. If we
were to say that U is “open”, there would be some amiguity: We might
mean that U is an element of the topology 7 on X, OR we might mean
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that U is an element of the relative topology 7S on S. We typically
distinguish these cases as follows: In the former case, we would say
“U is open in X”. In the latter case, we would say “U is open in S”.

REMARK 16.14. Let X be a topological space, S < X. Then
{open subsets of X} | S = {open subsets of S}.
Proof. This is the definition of the relative topology. 0

COROLLARY 16.15. Let X be a topological space, S < X. Then

(1) Yopen V in X, V NS is open in S and
(2) Yopen U in S, Jopen V in X s.t. U=V n S.

Proof. We leave it as unassigned HW to show that < in Remark 16.14
implies (1), and that 2 in Remark 16.14 implies (2). O

We call (1) of Corollary 16.15 the “restriction result for open sets”.
We call (2) of Corollary 16.15 the “extension result for open sets”.

Recall that a subset C' of a topological space X is said to be “closed”
if X\C' is closed.

Let X be a topological space, let S € X and let C' < S. Then,
by “C'is closed in X”, we mean: X\C' is open in X. Also, by “C'is
closed in S”, we mean: S\C' is open in S.

REMARK 16.16. Let X be a topological space, S < X. Then
{closed subsets of X} | S = {closed subsets of S}.
Proof. Unassigned HW. O

COROLLARY 16.17. Let X be a topological space, S < X. Then

(1) Velosed D in X, D n S is closed in S and
(2) Yelosed C in S, Iclosed D in X s.t. C =D nS.

Proof. We leave it as unassigned HW to show that < in Remark 16.16
implies (1), and that © in Remark 16.16 implies (2). O

We call (1) of Corollary 16.17 the “restriction result for closed sets”.
We call (2) of Corollary 16.17 the “extension result for closed sets”.

Let (X,7T) be a topological space, let S < X and let ¢ € S. Then
Nx(q) denotes the set of all neighborhoods of ¢ in (X, T), while Ns(q)
denotes the set of all neighborhoods of ¢ in (5, T1S).
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REMARK 16.18. Let X be a topological space, S < X, g€ S. Then

Nx(@) | S = Ns().
Proof. Unassigned HW. O
COROLLARY 16.19. Let X be a top. space, S < X, qe S. Then
(1) VV e Nx(q), V nSeNs(q) and

(2) YU € Ns(q), IV e Nx(q) s.t. U=V n S.

Proof. We leave it as unassigned HW to show that < in Remark 16.18
implies (1), and that 2 in Remark 16.18 implies (2). O

We call (1) of Corollary 16.19 the “restriction result for nbds”. We
call (2) of Corollary 16.19 the “extension result for nbds”.

Let S :=[1,2] u [3,4) u {b}. We discussed why [1,2], [3,4) and
{5} are all clopen in S. This motivated the following two definitions.

DEFINITION 16.20. Let S be a topological space. Then, by S is
connected, we mean: Yclopen A in S, [ (A=) or (A=S5)].

For example, R is connected. Also, for all £ € N, R¥ is connected.
However, [1,2] U [3,4) u {5} is not connected.

DEFINITION 16.21. Let S be a topological space, p € S. Then,
by p is isolated in S, we mean: {p} is open in S.

For example, 5 is isolated in [1,2]U[3,4) U {5}. So, in the topological
spaces that we study in this course, it can happen that a singleton set
is open, and, in this case, its point is an isolated point.

Next we consider whether singleton sets may not be closed.

DEFINITION 16.22. Let X be a topological space. Then, by X is T,
we mean: Vpe X, {p} is closed.

When using the indiscrete topology on a set with two or more points,
a singleton set is neither open nor closed, so such a topological space
is NOT T'. However, the indiscrete topology is typically too coarse to
be of interest to us.

Typically, the topological spaces we consider are all metrizable. We
explained earlier why metrizable implies Haudsdorff. The next result
states that Hausdorff implies 7. Consequently, the topological spaces
of interest to us are always T". So, in our topological spaces, singleton
sets are closed. So, throughout this course, when we encounter an
isolated point, its singleton set isn’t just open; it is clopen.
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FACT 16.23. Let X be a Hausdorff topological space. Then X is T".

Proof. We wish to prove: ¥p € X, {p} is closed in X. Let p € X be
given. We wish to prove: {p} is closed in X. That is, we wish to prove
X\{p} is open in X. Let W := X\{p}. We wish to prove W is open
in X. By HW#42, it suffices to show: Vg e W, 3V € Nx(q)s.t. V < W.
Let g € W be given. We wish to show: 3V € Nx(q) s.t. V. W.

Since ¢ € W = X\{p}, it follows that p # ¢. So, since X is Hausdorff,
by Definition 15.18, choose open set U,V in X s.t. pe U and ¢ € V and
UnV =¢. By Remark 16.4, V € Nx(q). We wish to show: V < W.

Since p € U, we get X\{p} 2 X\U. Since V.S X andUnV = ¢, it
follows that V' < X\U. Then V < X\U < X\{p} = W, as desired. [

17. CLAss 17 oN 7 NOVEMBER 2017, Tu orF WEEK 10
Assigned HW#46 and HW#47.
DEFINITION 17.1. For any set Z, for any S < 2%, we define
M?s - {ms, ifS+ o
Z, ifS=¢.

FACT 17.2. Let Z be a set and let S < 2%. For all A < Z, define
A" :=Z\A. Define §' .= {A'|Ae S}. Then

M (N*s) = Us)  and
@) (Us) = ().
Proof. Unassigned HW. O
DEFINITION 17.3. Let Z be a set and let S < 22. Then we define
(8L = (S~ v {Z},  and
S = Sfinn v 12}
DEFINITION 17.4. Let S be a set of sets. Then we define
Sy, = { | JA| (@ #A<SS) and (#A < ) }
Assigned HW#48.
A topological space is discrete iff all of its points are isolated:

THEOREM 17.5. Let Z be a topological space. Then
[ Z is discrete | < [ Vpe Z, {p} is open in Z |.



124 SCOT ADAMS

Proof. Let T := {open subsets of Z}. We wish to show:
[T=2"] = [WeZ {p}eT]

Proof of =: Assume T = 2Z. We wish to show: Vp e Z, {p} e T.
Let p € Z be given. We wish to show: {p} e T.

Since p € Z, we get {p} = Z, so {p} € 2. Then {p} € 22 = T, as
desired. End of proof of =.

Proof of <: Assume Vp € Z, {p} € T. We wish to show: T = 2. We
have T = {open subsets of Z} < 2Z. Tt remains to show: 22 < T. So,
by the quantified equivalence for <, we wish to show: VS €27, Se T.
Let S € 22 be given. We wish to show: S e T.

We know: Vp € S, {p} € 7. Then {{p}|p € S} < T. Then
U{{p}p e S} < (T),. We have S = [ J{{p}|p € S}. Since T is a

topology, we have (T), = T. Then S = (J{{p}|pe S} < {(T), =T,
as desired. End of proof of <. 0

DEFINITION 17.6. For any set A, for any p, let AY := A\{p}.

DEFINITION 17.7. For any set S of sets, for any p, we define
S ={A)|Ae S}

DEFINITION 17.8. For any metric space (M,d), for any p € M,
for any r >0, we define Bf (p,r) := (Ba(p, 7)),

If d is clear, we write B(p,r) for By(p,r), and B*(p,r) for B} (p,r).

DEFINITION 17.9. For any metric space (M,d), for any p € M,
we define By (p) := (Ba(p)), ™

If d is clear, we write B(p) for By(p), and B*(p) for B} (p).

DEFINITION 17.10. For any topological space Z, for any p € Z, we
define N (p) := (Nz(p)), ™

If Z is clear, we write N(p) for Nz(p), and N*(p) for N (p).
Recall that a set in Nz(p) is called a neighborhood of p in Z. A set
in NV (p) is called a punctured neighborhood or pnbd of p in Z.

REMARK 17.11. Let Z be a topological space, let S < Z and let
yeS. Then (N7 (y))]S = Ng(y).

Proof. Unassigned HW. U
COROLLARY 17.12. Let Z be a top. space, S < Z, ye S. Then
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(1) VQ e N (y), QnSeNg(y) and
(2) VP e NS (y), 3IQ e Ni(y) st. P=Q n S.

Proof. We leave it as unassigned HW to show that < in Remark 17.11
implies (1), and that 2 in Remark 17.11 implies (2). O

We call (1) of Corollary 17.12 the “restriction result for pnbds”. We
call (2) of Corollary 17.12 the “extension result for pnbds”.
We drew a Venn diagram to illustrate the restriction and extension
results for each of the following:
(1) open sets,
(2) closed sets,
(3) neighborhoods and
(4) punctured neighborhoods.

DEFINITION 17.13. Let Z be a topological space, and let p € Z.
For all B, by B is a neighborhood base at p in Z, we mean:

(1) B< Nz(p) and
(2) VW eNz(p),WWeBst. UcV.

Any neighborhood of p covers p, so, in Definition 17.13, if you wish,
you can replace “U < V” by “pe U < V.

FACT 17.14. Let Z be a topological space, let Zy < Z and let p € Z.
Let B be a neighborhood base at p in Z. Let By := B|Zy. Then By is a
neighborhood base at p in Z.

Proof. Since B be a neighborhood base at p in Z, it follows, from (1)
of Definition 17.13, that B < Nz(p). So, since restriction is monotonic,
we get B|Zy < (Nz(p))|Zo. By Remark 16.18, (Nz(p))|Zo = Nz, (p).
Then By = B|Zy < (Nz(p))|Zo = Nz,(p). Following Definition 17.13
(replacing Z by Zy, U by Uy and V' by 1}), it remains only to show:
VWVo € Nz, (p), 3Uy € By s.t. Uy < Vi, Let Vg € Nz (p) be given. We
wish to show: 31Uy € By s.t. Uy < V4.

By extension of neighborhhoods (see (2) of Corollary 16.19), choose
Ve Nz(p) s.t. Vo = V n Zy. Then, since B is a neighborhood base at p
in Z, choose U € Bs.t. U < V. Since U € B, we get Un Z € B|Zy. Let
Uy :=U n Zy. Then Uy € B|Zy = By, and we wish to show: Uy < V.

AsUcCV, UnZy<cVinZy ThenUy=UnZy<cVnZy=V, 0O

We assigned HW#49.
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We calll Fact 17.14 the “restriction result for neighborhood bases”.
There is no perfect extension result for neighborhood bases; if you
have a neighborhood base in a subspace, you can extend all of its
neighborhoods, but, if you don’t do it carefully, you won’t end up with
a neighborhood base in the ambient space. However if the subspace
is OPEN in the ambient space, then, by HW#50, the neighborhood
base in the subspace is, without change, a neighborhood base in the
ambient space.

In the next result, when we say “B(p) is a neighborhood base at p
in Z7, it is understood that Z is given the topology 7. So, if you wish
to be more detailed, you could say “B(p) is a neighborhood base at p
in (Z,74)".

THEOREM 17.15. Let (Z,d) be a metric space and let p € Z. Then
B(p) is a neighborhood base at p in Z.

Proof. By Definition 17.13 (with U replaced by B), we wish to show:
(1) B(p) = N(p).
(2) YV e N(p), 3IBe B(p) st. BS V.

Proof of (1): We wish to show: VB € B(p), B € N(p). Let B € B(p)
be given. We wish to show: B € N (p).

We have B € By < (By), = T4, so B is open in Z. Also, since
B € B(p), it follows that p € B. Recall (Remark 16.4) that every open
set is a neighborhood of each of its points. Then B € N (p), as desired.
End of proof of (1).

Proof of (2): Given V e N(p). Want: 3B € B(p) s.t. B< V.

By definition of neighborhood, since V' € N (p), choose an open
subset U of Z st. p e U < V. We have U € Ty = (By),. Then
p € U € By, so, by the quantified equivalence for {(e)_, choose
CeB;st.peC < U. Since p e C € By, by the Recentering Down
Lemma (Lemma 14.2), choose B € B(p) s.t. B < C'. We wish to show:
BcV.

We have B< C < U €V, as desired. End of proof of (2). O

Recall:
(1) BOO = {(M,OO]|MER},
2 B—OO = {[_OO7N)|N€R}a

(2)
(3) B = Bs, = {bounded open intervals in R},
(4) B, = By v Br U B_,

(SN IRON
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5) VU,VeB,, UnV e B, u{d} < (B,

7) N* = N U {oo} and

The standard topology on R* is 7. The standad topology on N* is Tys.
Assigned HW#50.
HW#50 asserts that B, is a neighborhood base at oo in R*.
Unassigned HW: Show: B_, is a neighborhood base at —oo in R*.
By HW#50 and the restriction result for neighborhood bases (Fact 17.14),

we conclude: By, | N* is a neighborhood base at oo in N*. We computed
B |N* = {{jj+1,j+2--} v {o}[jeN}.
Then: (B [N*)2* = {{j,j+1,j+2---}[jeN}
Recall: For any function f, for any set S,
fu(8) = {f(@) |z e (dom[f]) » S}  and
f7(8) = {x e dom[f] | f(x) € S}.

The next result is “forward-image containment equivalency”; see (7)
in the list of quantified equivalencies.

FACT 17.16. For any function f, for any sets S and T,
[ f«(S)=T] < [Vzedom|f], ((xeS) = (f(z)eT)) ]
Proof. Unassigned HW. O

We took the point of view that:

e Analysts like normed vector spaces.
e Geometers like metric spaces.
e Topologists like topological spaces.

From this perspective, Theorem 17.15 gives topologists and geome-
ters something common. When working in a metric space, there’s
a natural topology to use: the union-closure of the set of balls in the
metric. To approximate a point p, the geometer would use smaller
and smaller balls about p, whereas the topologist would use smaller
and smaller neighborhoods of p. The topologist would say “Why work
with something geometric, like balls about a point p? There are lots
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of neighborhoods of p that are not round, but they can be very impor-
tant. Why ignore them?” The savvy geometer might answer, “Why
work with something non-geometric, like some amoeba-like neighbor-
hood of p? I like geometric objects, because they have nice properties,
and because there are fewer of them to track. Anyway, it doesn’t really
matter because the set of balls about p is a neighborhood base at p.
So, for any approximation you might make with some neighborhood
of p, I can make a better approximation using a ball centered at p. So
anything you can do, I can do, and I don’t have to keep track of so
many weird-looking sets.”

When working in a normed vector space, the geometer would use
the norm | e | to create a metric d, defined by d(p,q) = |p — ¢|. To ap-
proximage a point p, the geometer would use smaller and smaller balls
about p. The analyst prefers inequalities, so saying “q approximates p”
would be expressed as “|¢ — p| < r and r is small”. To get better and
better approximations, make r smaller and smaller. From this per-
spective, the next result gives a way of translating between geometric
statements and analytic statements.

FACT 17.17. Let (V,| e |) be a normed vector space, let p,q € V and
let r > 0. Then

(1) [ge Bp,r)] < [|lp—q] <r] and
2) [qge B*(p,r)] < [0<[p—q| <r]

Proof. Unassigned HW. O

A geometer would typically prefer statements involving balls and
punctured balls, e.g., “g€ B(p,r)” or “¢ € B*(p,r)”. Using Fact 17.17,
we can translate these into analytic statements, namely: “|p — q| < r”
and “0 < |p — g| < r”, respectively.

DEFINITION 17.18. Let Y and Z be topological spaces. Let f :
Y -—»Z. LetaeY andbe Z. By

neara mY, f—obinZ or
f—=binZ mnewrainyY or
flz) >binZ asx—ainY,

we mean: YV € Nz(b), U € Ny (a) s.t. f(U) < V.

In Definition 17.18, the text “—” is read “approaches”. Sometimes
Y and Z are clear, and we may omit “in Y” and “in Z”, obtaining
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near a, f—b or
f—0b neara or
f(x) = b asz—a.

In the third choice, “f(x) — b as x — a”, you may choose to use
another variable. So, e.g., “f(t) — b as t — a” is also equivalent to
“f — bnear a”. If you say, e.g., “f(s) — b as s — a”, remember that
s must be unbound at the start, and becomes unbound again at the
end. If s is already bound, then you need to use another variable.

To stress that we use punctured neighborhoods of a, but unpunctured
neighborhoods of b, I sometimes say:

p.near a, f —b or
f—0b ©pmneara or
f(x) > b asz —#a.

Here, “p.near” is an abbreviation for “punctured near”. Also, the text
“r —# a” is read “x approaches a without equaling a”.
We defined a function f:[0,4] — R by

3w -5, ifx#2
X =
i@ {6, if x = 2.

In the next class, we will prove that f — 1 in R near 2 in R. The proof
will be based on the next lemma, which tells us that “in studying limits,
it’s okay to think like a geometer”. More specifically, if we take the
point of view that a geometer likes to work with neighborhood bases,
and particularly with neighborhood bases consisiting of “geometrically
nice” sets (like balls, disks, intervals), then the following will be useful:

LEMMA 17.19. LetY and Z be topological spaces. Let f :Y --» Z.
LetaeY andbe Z. Let A be a neighborhood base of a in'Y, and let
B be a neighborhood base of b in Z. Then

(f—>bneara) < (VBeB,3JAe A " s.t. f.(A) € B).
Proof. Next class. 0

In the case of the function f : [1,4] — R defined above, we consider
that f : R --» R, and wish to prove f — 1 in R near 2 in R. We use
Y =R, Z=R,a=2 b=1. We use the standard metric dg on R, so:
Vo >0, B(2,0) =(2-0,240) and B*(2,0) = (2—0,2+0)\{2}. Also,
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Ve >0, B(l,e) = (1 —¢,1+¢). In applying Lemma 17.19, we use

A = B(2) = {B(2,0)| >0} and
B = B(l) = {B(1,¢)|e > 0}.

Then A = {B*(2,0)|6 > 0}.
In the next class, we will prove: f — 1in R near 2 in R. Equivalently,
by Lemma 17.19,
VBeB, 3JAe A " st. f«(A) < B.
Equivalently,
Ve>0, 36>0 st. fo(B*(2,0)) < B(1,9).

Equivalently, by forward-image containment equivalency (Fact 17.16),

Ve>0, 3§>0 st. Vzedom|[f],
[z e B*(2,0)] = [f(z)e B(le)]

Equivalently, by Fact 17.17,

Ve>0, 3§>0 st. Vzedom[f],
[0 <[z —-2[<d] = [|[fx)] —1|<el

NOTE: We just translated a topological statement
f—1inR near2in R
into a geometric statement

Ve >0, 36>0 st. Vaedom[f],
[z e B*(2,0)] = [[f(x) e B(le)],

and then into an analytic statement

Ve>0, 36§>0 st. Vedom[f],
[0 <[z —2[<d] = [|[f(x)] —1|<e]

This last statement is what we will prove in the next class.
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18. CLAss 18 oN 9 NOVEMBER 2017, TH oF WEEK 10

We recalled Definition 17.18. Combined with Fact 17.16, we obtained
the following triply quantified (with implication) formulation of the
definition of the statement f — b near a.

COROLLARY 18.1. LetY and Z be topological spaces, f Y --+ Z,
aeY,beZ. Then: [ f— b neara ] iff
[ VV e Nz(b), 3U € Ny (a) s.t., Yo € dom|f],
(zelU) = (f(x)eV)].

Proof. Omitted. 0

We also recalled Lemma 17.19. Combined with Fact 17.16, we ob-
tained the following triply quantified (with implication) formulation of
the definition of the statement f — b near a, given neighborhood bases
of a and b.

COROLLARY 18.2. LetY and Z be topological spaces, f Y --+ Z,
a€Y,be Z. Let A be a neighborhood base of a in'Y. Let B be a
neighborhood base of b in Z. Then: | f — b near a | iff
[VV eB, U e A" s.t., Vo e dom[f],
(zeU) = (f(x)eV)].

Proof. Omitted. U

Let Y and Z be metric spaces. Recalled Theorem 17.15 to under-
stand neighborhood bases in metric spaces. We combined this with
Fact 17.17 and obtained the following analyst’s triply quantified (with
implication) quantified equivalence of f — b in Z near a in Y. This
lead to:

COROLLARY 18.3. Let Y and Z be metric spaces, f :Y --+ Z,
aeY,beZ. Then: [ f— b neara | iff

[ Ve > 0,30 >0 s.t., Vo € dom|f],
(0 < dy(z,a) <) = (dz(f(z),b) < ) ].

Proof. Omitted. O

For normed vector spaces, the quantified equivalence reads:
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COROLLARY 18.4. LetY, Z be normed vector spaces, f 1Y --» Z,
aeY,be Z. Then: [ f— b neara | iff

[ Ve > 0, 30 > 0 s.t., YV € dom|f],
(0 <z —aly <9d) = (|lf(x)] —blz <€) ]
Proof. Omitted. U

We also did a hybrid quantified equivalence in the case where the su-
perdomain Y is a topological space, and the superimage 7 is a normed
vector space:

COROLLARY 18.5. LetY be a topological space. Let Z be a normed
vector space. Let f 1Y --» Z, a€Y,be Z. Then: | f — b near a |

uf
[ Ve > 0, 3U € Ny (a) s.t., Yz € dom[f],
(zelU) = (I[f@)] —0blz <e)]
Proof. Omitted. O

Now, let’s move to the one-dimensional case, where Y = Z = R*.

First R = UBgr € (Br), € (Byx), = Ts, so R is open in R*. For
all a € R, by Theorem 17.15, we see that B(a) is a neighborhood base
at a in R. Then, since R is open in R* by HW#49, for all a € R,
we see that B(a) is a neighborhood base at a in R*. We can use this
to understand limits of partial functions f : R* --» R*. Here’s the
quantified equivalence for f — b near a, when a,b € R:

LEMMA 18.6. Let f : R* --» R* a,be R. Then: [ f — b near a |
if
[ Ve > 0,30 >0 s.t., Yo € dom|f],
(0 <fz—al<d) = ([[f(x)] —b] <e)]
Proof. Omitted. 0
We applied this to a special case:

THEOREM 18.7. Define f:[0,4] — R by
3r—5, ifx#2
fz) = { .
6, if x = 2.
Then f — 1 in R* near 2 in R*
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Proof. By Lemma 18.6, we wish to show:

[ Ve > 0,30 > 0 s.t., Vo € dom][f],
(0<|z—-2<d) = ([[fx)] —1] <e)]

Let € > 0 be given. We wish to show:

[ 30 > 0 s.t., Yo € dom[f],
(0 <fz=2[<9d) = ([[f(@)] -1 <e)]

Let € := §/3. We wish to show:

[ Vo € dom|[f],
(0 <]z =2[<9d) = ([[f(@)] - 1] <e)]

Let = € dom[f] be given. We wish to show:
(0 <]z —=2[<9d) = (|[[f@@)] - 1] <e).

Assume 0 < |z — 2| < 6. We wish to show: [[f(z)] — 1| <e.

Since 0 < |z — 2|, we get « # 2. Since z € dom[f] and x # 2, by the
definition of f, we see that f(x) = 3z — 5. Since |z — 2| < J, we get
3|z —2] <3-4. Since § =¢/3, we get 3-0 =¢e. Then

[f(@)] =1 = [32-5-1 = [3z—6] = [3(z —2)|
= 3. |z—2 < 36 = e,

as desired. 0

Let f : [0,4] — R be the function given in Theorem 18.7. We
showed: f — 1 in R* near 2 in R*. Here are some related questions:
(1) Does f — 1 in R* near 2 in R?
2) Does f — 1 in R* near 2 in [0, 4]?
3) Does f — 1 in R near 2 in R*?
) Does f — 1 in R near 2 in R?
5) Does f — 1 in R near 2 in [0, 4]?
6) Does f — 1 in [—5,7] near 2 in R*?
7) Does f — 1in [—5,7] near 2 in R?
8) Does f — 1in [—5, 7] near 2 in [0, 4]?
The next result allows us to conclude, from Theorem 18.7, that the
answer to each of these questions is yes.
We call this result absoluteness of limits:
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THEOREM 18.8. Let Y, Z be topological spaces, Yo €Y, Zy € Z,
f:Yy--»Zy,aeYy, be Zy. Then: [f — bin Zy near a in Yy ] iff
[f—bin Z near a inY |.

Proof. Proof of =: HW#051, due on 21 November. End of proof of =.

Proof of <: Assume: f — bin Zj near in Y. We wish to show:
f — bin Z near in Y. Following Definition 17.18, we wish to show:
VYV e Nz(b), 3U € Ny (a) s.t. f.(U) < V. Let YV € Nz(b) be given.
We wish to show: U € Ny (a) s.t. fo(U) S V.

Let Vo := V n Zy. Then, by (1) of Corollary 16.19, Vy € Nz, (b).
So, following Definition 17.18, since ( f — b in Zy near in Y} ), choose
Uy € Ny, (a) such that f.(Uy) < Vo. By (2) of Corollary 17.12, choose
U € Ny (a) such that Uy = U n'Yy. We wish to show: f.(U) < V. By
Fact 17.16, we wish to show: Yz € dom|f],

[zeU] = [flx)eV]

Let z € dom[f] be given. We wish to show [z € U] = [f(x) € V].
Assume x € U. We wish to show: f(z)e V.

Since f : Yy --» Zy, we get dom[f] < Yy. Then z € dom[f] € Yp.
So, since x € U, we get x € U nYy. So, since U n'Yy = Uy, we
get © € Up. So, since x € dom[f], we get f(z) € fi(Up). So, since
f(Uo) € Vo=V nZy<V, we get f(x) e V. End of proof of <. O

We next return to the one-dimensional case of functions R* — R*.
Then, since R is open in R*, by HW+#49, for all a € R, we see that
B(a) is a neighborhood base at a in R*. Also, by HW#50, B, is a
neighborhood base at oo in R*. Also, by an unassigned HW, B_,, is a
neighborhood base at —oo in R*. So we now have a neighborhood base
in R* at any point of R*.

FACT 18.9. Let f : R* -=-» R* beR. Then: [ f — b near o | iff
[VM e R, 36 > 0 s.t., Yo € dom|f],
(M <z <o) = ([[fz)] -b] <e)]
Proof. Omitted. 0
FACT 18.10. Let f:R*--»R* aeR. Then: [ f — —0 near a] iff

[VN e R, 3§ > 0 s.t., Vr € dom[f],
(0 <lz—al<b) = (f@) <N ]
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Proof. Omitted. O

FACT 18.11. Let f : R* --» R*. Then: [ f — —o0 near | iff

[VN eR, IM € R s.t., Ya € dom[f],
(M <z<m) = (fl) < N)]

Proof. Omitted. O

FACT 18.12. Let f : R* --» R*. Then: [ f — o0 near | iff

[VM e R, 3L e R s.t., Ya € dom]|f],
(L<z<w) = (flz)>M)].

Proof. Omitted. O

FACT 18.13. Let f : R* --» R*. Then: [ f — o0 near — o] iff

[VM e R, 3N € R s.t., Ya € dom[f],
(—o<z<N) = (fx) >M)]

Proof. Omitted. O
DEFINITION 18.14. We define Z* := Z v {0, —o0}.

DEFINITION 18.15. Let a,be R*. If a < b, then we define
e (a.b) :=(a,b) nZ*,
e [a.b) :=[a,b) " Z* and
e (a.b] := (a,b] n Z*.
If a < b, then we define
e [a..b] :==[a,b] N Z*.
Then, for example,
(5.0] = {5,6,7,...} u{w} and
(5.00) = {5,6,7,...}.

Recall that a sequence is a function whose domain is N. Let X be a
topological space. An element of RY is a “sequence of real numbers”.
We wish to discuss limits of sequences of real numbers, as follows. For
every s € RY, we consider s : N* --» R* and try to find b € R*
such that s — b in R* near oo in N*. Recall that the topology on
N* is the relative topology inherited from 7, on R*. Because we are
taking limits “near oo in N*” we want to have an easily described
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neighborhood base at co. We also want to describe the corresponding
set of punctured neighborhoods of oo in N*.

Since B, is a neighborhood base of oo in R, it follows, from Fact 17.14,
that By,|N* is a neighborhood base of c in N*. It is therefore worth-
while to calculate both B, |N* and the corresponding set (B |N*)x*
of punctured neighborhoods of oo in N*. We calculated:

BoN* = {[K.0]| KeN} and
(BoN*)Z* = {[K.0) | KeN}.
FACT 18.16. Let s : N* --» R*. Then: [ s — o0 near | iff
[ VM e R, 3K € N s.t., Vj € dom|s],
(K <j<w) = (s5>M)]
Proof. Omitted. 0
FACT 18.17. Let s : N* --» R*, be R. Then: [ s — b near oo | iff
[ Ve >0, 3K € N s.t., Vj € dom|s],
(K <j<o) = ([s; -0 <e)]
Proof. Omitted. O
FACT 18.18. Let s : N* --» R*. Then: [ s — —0 near o | iff
[ VN e R, 3K € N s.t., Vj € dom|[s],
(K<j<w) = (s;<N)J
Proof. Omitted. 0

19. CrAss 19 oN 14 NOVEMBER 2017, Tu oF WEEK 11
Assigned HW#51 and HW#52 and HW#53.

Recalled Definition 18.15 and Definition 18.14.

For any set S, for any k € N, we have S* = S+,

We recalled:
BoN* = {[K.o]| KeN} and
(B N*)x* = {[K..©) | KeN}.

We recalled the quantified equivalence for f — b near oo, in the
situation where f : R* --» R* and b € R:
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FACT 19.1. Let f : R* --» R*, be R. Then: [ f — b near ©| iff
[ Ve >0,3IM e R s.t., Yz € dom|f],
(0 >z >M) = ([[f(x)] -b] <e)]
Proof. Omitted. O

We developed the quantified equivalence for f — b near oo, in the
situation where f : R --» R* and b € R. Note that there’s no need
to “puncture” the input interval, because the domain of f does not
include co. That is, there’s no need to say “oo > x”:

FACT 19.2. Let f : R --» R*, be R. Then: [ f — b near o] iff
[ Ve > 0,IM € R s.t., Vo € dom[f],
(z > M) = (|[f(x)] —b] <e)]
Proof. Omitted. 0

We recalled the quantified equivalence for s — b near oo, in the
situation where s : N* --» R* and b € R:

FACT 19.3. Let s : N* -—-» R* be R. Then: [s — b near o | iff
[ Ve > 0, IK € N s.1., Vj € dom|s],
(o0>7=2K) = (|s; —bl <e)].
Proof. Omitted. 0

We developed the quantified equivalence for s — b near oo, in the
situation where s : N --» R* and b € R. Note that there’s no need
to “puncture” the input interval, because the domain of s does not
include co. That is, there’s no need to say “oo > j7:

FACT 19.4. Let s : N --» R* beR. Then: [s — b near 0| iff

[ Ve >0, 3K € N s.t., Vj € dom[s],
(j=K) = (s bl <e)]

Proof. Omitted. 0

DEFINITION 19.5. Let Z be a topological space, s : N* --» 7,
be Z. Then s¢ — b in Z means: s — b in Z near oo in N*,
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If Z is clear, we sometimes omit “in Z”, and simply say “s, — b”.

In the situation where Z = R*, where s € RY and where b € R, the
quantified equivalence for s, — b is given by Fact 19.4. Bearing in
mind that, in this situation, dom[s] = N, we get:

FACT 19.6. Let se RY be R. Then: [s. — b] iff

[ Ve >0,dK eN s.t, VjeN,
(j=K) = ([s; —bl <e)]

Proof. Omitted. O

In the situation where Z = R*, where s € RY and where b = o0, the
quantified equivalence for s, — b reads:

FACT 19.7. Let s€ RN, Then: [s, — 0] iff

[VM eR, 3K e N s.t., ¥je N,
(j =2 K) = (s, >M)]

Proof. Omitted. O

In the situation where Z = R*, where s € RY and where b = —c0,
the quantified equivalence for s, — b reads:

FACT 19.8. Let s € RN. Then: [s, — —o0] iff

[VNeR,IK e N s.t., Vje N,
(j=2K) = (s <N)I]

Proof. Omitted. O

We have absoluteness of limits of sequences:

THEOREM 19.9. Let Z be a topological space and let Zo < Z. Let
s:N*--» Zy and let be Zy. Then: [se > binZy | < [s¢e—bin Z

/.
Proof. This is Theorem 18.8 (with Y replaced by N* and f by s). O

Assigned HW#54.
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DEFINITION 19.10. For any set S, for any f,g : S --+ R*, we
define f + g, fg,f —g.f/g: 5 -—>R* by

(f +9)(x) = [f@)]+[g(=)],
(fg)(x) = [f()]lg()],
(f=9)x) = [f@)]-Tl9(=)]  and
(f/9)(x) = [f(@)]/1g(x)]

We sometimes write / for f/g.
)
DEFINITION 19.11. For any set S, for any a € R*, for any g :
S --» R*, we define ag,a/g,g/a : S --+ R* by
(ag)(z) = alg(z)],
(a/g)(x) = a/lg(x)]  and
(g/a)(x) = [g(x)]/a.

a
We sometimes write — for a/g and we sometimes write 9 for g/a.
g a

—

DEFINITION 19.12. For any set S, for any vector space V', for any
frg:5 -V, wedefine f+qg:S5--+V by

(f +9)(x) = [f(o)]+ [g(2)].
DEFINITION 19.13. For any set S, for any vector space V', for any
f:9--2R, forany g:S --+V, we define fg:S5 --+V by

(f9)(x) = [f(@)][g(z)].
DEFINITION 19.14. For any set S, for any vector space V', for any
a€R, forany g: S --+V, we define ag,g/a: S --+V by
(ag)(z) = alg(z)]  and
(9/a)(z) = [1/a][g(2)].

We sometimes write 2 for g/a.
a

Two sequences a,a € (R\{0})" are asymptotic if (a/a), — 1. For
sequences s, 0, t, 7 of positive real numbers, if s is asymptotic to o and
t is asymptotic to 7, then s + ¢ is asymptotic to o + 7:

FACT 19.15. Let s,0,t,7 € (0,00)N. Assume (s/0)s — 1, (t/7)s — 1.
Then ([s + t]/[o + 7])e — 1.
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The next proof was omitted from class.

Proof. We wish to show: Ve > 0, 4K € N s.t., Vj € N,

4t
[i>K] = ||259 4] <.
L |05+ 7T; |
Let € > 0 be given. We wish to show: 3K € N s.t., Vj € N,
SO -
[j>K] = ||255 4 <.
L 105 T T; i
Since (s/0)e — 1, choose L € N s.t., Vj e N,
[7=2L] = - ‘<5].
[ 10
Since (t/7)s — 1, choose M € N s.t., Vj € N|
t:
[j=M] = |:l—1<€].
7j

Let K := max{L, M}. We wish to show: Vj e N,

, S; + 1t
[i>K] = |[3255 4 <.
L [0 +7; |
Let j € N be given. We wish to show:
[ |s; +t; 1
[j=2K] = 21l <e¢
L [0 +7; |
. . Sj+tj .
Assume j > K. We wish to show: | —= — 1| < . We wish to show:
O'j-f—Tj
Sj-l-tj . .
l—-e < ——= < 1+e¢. Since 0; + 7; > 0, we wish to show:
O']'-i-Tj

(1—e)(oj+1) < s;+t; < (I+¢e)(oj+T5).

S.
<e Thenl—e¢ < 2L <1+¢,
O-,

S.
Since j > K > L, we get |2 — 1
gj j

J
so, since o > 0, it follows that

(1—¢)o;, < s; < (1+¢)oy.

ts
Since j > K > M, we get —1—1’ <e. Thenl—¢ < L < 1+4¢,
7j 7j

so, since 7; > 0, it follows that

(1—€)Tj < tj < (1+5)Tj.
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Adding
(1—-¢)o; < s; < (1+¢e)g;
to
l—-eon < t; < ([Q+e9T1,
we get
(1—¢e)(o;+1) < sj+t; < (1+4¢e)(o;+T15),
as desired. U
Assigned HW#55.

The summation change formula asserts: for any vector space Z,
for any w,uq,v,v; € Z,

[y + vi] — [u +v] = Ju —u] + [or — vl
In particular, this formula is true when Z = R.

THEOREM 19.16. Let f,g : R* --» R*. Let a,u,v € R. Assume:
(f—uneara )and (g— v neara ). Then: f+ g — u+ v near a.

Proof. We wish to show: Ve > 0, 36 > 0 s.t., Vo € dom|[f + ¢],
[0<|z—a[<d] = [[[(f+9)(@)]-[utv]]<e]
Let € > 0 be given. We wish to show: 36 > 0 s.t., Vo € dom[f + g],
[0<|z—a[<d] = [[[(f+9)(@)]-[utv]]<e]
Let A := ¢/2. Since f — u near a, choose § > 0 s.t., Yz € dom|[ f],
[O<fz—al<pB] = [I[f@)]-ul<A]
Since g — wu near a, choose v > 0 s.t., Yz € dom|[g],
[0<fz—al<~y] = [llg@)]-v[<A]
Let 0 := min{3,~v}. We wish to show: Vx € dom[f + g¢],
[0<fz—al<d] = [|[(f+9)(x)]—lut+v][<e]
Let = € dom[f + g] be given. We wish to show:
[O<fz—al<d] = [I[(f+9)(@)]-lut+v][<e]

Assume 0 < |z —a| < . We wish to show: |[(f+g)(z)] —[u+v]| <e.

Since z € dom[f + g] € dom[f] and since 0 < |x —a|] < 0 < f3,
by choice of 3, we get | [f(x)]—u]| < A. Since x € dom[f +¢g] < dom][g]
and since 0 < |z —a| < 0 < v, by choice of v, we get | [g(z)] —v]| < A.
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Let u; := f(z) and vy := g(z). Then |u; —u| < X and |v; —v| < A
By the summation change formula,

[ugp + »1] — [u +v] = [w —ul + [vn — v]
We have (f + g)(z) = [f(z)] + [9(x)] = u1 + v1. Then
[+ 9 @)] = lut+o]| = [[ur+ o] = [u+ 0]

[ [u1 — u] + [v1 — ]|

luy — u| + vy — v

A+ A =2\ = 2-[¢/2] = ¢,

as desired. 0

ANV/AN

Next, we “upgrade” the preceding result to a result about partial
functions from any topological space to any normed vector space:

THEOREM 19.17. LetY be a topological space and let Z be a normed
vector space. Let f,qg:Y --» Z. Leta €Y, u,v e Z. Assume that:
( f—wumneara )and (g— v neara ). Then: f+ g — u+ v near a.

Proof. We wish to show: Ve > 0, 3JA € N*(a) s.t., Vo € dom[f + g],
[zeA] = [[[(f+9)@)]-[ut+v][<e]

Let € > 0 be given. We wish to show: 3A € N*(a) s.t., Vo € dom[f+¢],
[zeA] = [[[(f+9)@)]-[utv]]<e]

Let A :=¢/2.
Since f — wu near a, choose B € N*(a) s.t., Vo € dom][f],

[zeB] = [[[fl@)]-ul<X]
Since g — u near a, choose I' e N'*(a) s.t., Va € dom|g],
[zel'] = [llg@)]-vl<Al

Let A := B T. Since B,I' e N*(a), it follows that A € N"*(a). We
wish to show: Va € dom[f + ¢,

[zeA] = [[[(f+9)@)]—-[utv]]<e]
Let = € dom[f + g] be given. We wish to show:

[zeA] = [l[(f+9)@)]-[u+tv][<e]
Assume x € A. We wish to show: | [(f + g)(z)] — [u+v]| <e.
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Since x € dom|f +¢]| < dom|[f] and since x € A € B, by choice of B,
we get |[f(z)] —u]| < A. Since z € dom[f + g] € dom[g]| and since
xe A cT, by choice of T', we get |[g(x)] —v]| < A.

Let u; := f(z) and vy := g(z). Then |u; —u| < X and |v; —v| < .
By the summation change formula,

[y + vi] — [u +v] = Ju —u] + [ur — vl
We have (f + g)(x) = [f(z)] + [g(x)] = u1 + v1. Then

(f+9)@)] = [u+ol| = [lua+o1] = [u+ 0]
[t = u] + [or = o]

< Jup —ul + vy — v

A+X =2\ = 2. [¢/2] = e

A

as desired. ]

Note that, in the proof of Theorem 19.17, we “think like a topologist”
on the input side, using neighborhoods like B, I, A. At the same time,
we “think like an analyst on the output side, using inequalities like
[Lf(@)] —ul <A, lg(@)] —vl <A [[(f +9)(@)] = [u+v]| <e This
is in contrast to the proof of Theorem 19.16, where we're thinking like
an analyst both on the input side and on the output side.

HW+#52 asserts: Let f,g: R* - R* a € R. Assume f — o0 near a
and g — oo near a. Then f + g — o0 near a.

There is another similar statement: Let f,g : R* — R*. Assume
f — oo near o0 and g — o near 0. Then f + g — o0 near co.

There is another similar statement: Let f,g : R* — R*. Assume
f — oo near —o0 and g — o near —oo. Then f + g — o0 near —oo.

HW#52 and the other two statements are all three true, though UN-
PROVED. If we “think like an analyst”, then we cannot avoid having
three different proofs, but we’ll certainly notice that the proofs are sim-
ilar, and we’ll wonder if there might be some way to handle all three
statements at once. The solution is to “think like a topologist” on the
input side, while “thinking like an analyst” on the output side, and
“upgrade” the statement to HW#52 to:

Let Y be a topogical space. Let f,g : Y — R*. Let a € Y.
Assume that f — oo near a, and, also, that ¢ — oo near a.
Then f + g — o0 near a.
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This statement is UNPROVED. However, you might try “upgrading”

your solution to prove it. Perhaps in your solution, you have 3,y > 0

and 6 = min{f3,v}, as in Theorem 19.16. Then, in your upgraded

proof, you'll have B,T' e N*(a) and A = BT, as in Theorem 19.17.
Here’s another similar statement:

Let Y be a topogical space. Let f,g : Y — R*. Let a € Y.
Assume that f — —oo near a and, also, that ¢ — 7 near a.
Then f + g — —o0 near a.

This statement is UNPROVED. You might try to adapt your previous
upgrade of HW#57 to prove it, but it will be unsatisfying, becuase
there are many other similar statements, and it’s natural to wonder
whether they can all be subsumed into one result. To accomplish this,
we need the concept of contingent approaches, denoted —*:

DEFINITION 19.18. Let Y and Z be topological spaces, a € Y,
f:Y -—=s Z. Then, for allb, by f —* b in Z near a in'Y, we mean:
either  [b=® ]
or [(beZ )and (f—binZ neara iny ).

That is, ( f =* bin Z near a in Y ) means either b = ® or we can
“remove the contingency” and change —* to —.

When Y and Z are clear, we somtimes omit the text “in Y” and “in
zZ7.

We now present a very general result about adding functions f and g,
when their superdomain is a topological space Y and their superimage
is R*:

THEOREM 19.19. Let Y be a topological space, f,g : Y --+ R*,
a €Y. Then, for all b, c, we have:

if [(f—*bneara)and (g—*cneara )],
then [ f+ g —* b+ c neara |

Theorem 19.19 is UNPROVED. However, we’ll talk about how one
might prove it: Structuring the proof as usualy, eventually both b and
¢ are bound. Then one of the following must be true:

(1) b=—o0 or
(2) beRor
(3) b= o0 or
(4) b
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Also, one of the following must be true:

(A) c=—wor
(B) ceRor
(C) c =00 or
(D) ¢ = ©®.

This gives us 16 cases:
1A, 1B, 1C, 1D, 2A, 2B, 2C, 2D,
3A, 3B, 3C, 3D, 4A, 4B, 4C, 4D.
Note that Case 2B is proved in Theorem 19.16 (with u replaced by b
and v by ¢). Case 3C is UNPROVED, but our upgrade of HW#052
would prove it. In the nine cases
1C, 3A,
4A, 4B, 4C,
1D, 2D, 3D and
4D,
we have b + ¢ = @; those cases are “easy”’. The remaining cases are
1A, 1B, 2A, 2C, 3B

and are all UNPROVED. They make good problems for homeworks
and exams.

Now we change gears and move from studing sums of functions to
products of functions. We begin with the product change formula:

REMARK 19.20. Let u,uq,v,v; € R. Then
wvy —uv = (u; —uw)v + u(vy —v) + (ug —u)(vy — ).
Proof. Omitted. O

We showed how a rectangle, partitioned into four subrectangles, gives
motivation for Remark 19.20. To prove Remark 19.20, one simply
expands the RHS, and then simplifies.

We can “upgrade” Remark 19.20 to vector spaces:

REMARK 19.21. Let V' be a vector space. Let b,by € R and let
v,v1 € V. Then

b1U1 —bv = (bl — b)v + b(Ul — U) + (bl — b)('l)l — U).
Proof. Omitted. 0
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To prove Remark 19.21, one, again, simply expands the RHS, and
then simplifies.

We now show that the limit of the product is the product of the
limits, for partial functions R* --+ R*.

THEOREM 19.22. Let f,g : R* --» R*. Let a,u,v € R. Assume:
( f—wumneara )and (g— v neara ). Then: fg — uv near a.

Proof. We wish to show: Ve > 0, 36 > 0 s.t., Yz € dom|fg],

[O<lz—al<d] = [[l(fo)(x)]—uww|<e]
Let € > 0 be given. We wish to show: 36 > 0 s.t., Yz € dom| fg],

[0<fz—al<d] = [|[(f9)@)]-uw|<e]

Let A := min< 1, =
b] + |v| +1
Since f — w near a, choose § > 0 s.t., Vo € dom|f],

[O<lz—al<pB] = [Ilf@)]-ul<X]
Since g — u near a, choose v > 0 s.t., Yz € dom|[g],

[O<fz—al<~y] = [[lg@)]-v[<A]
Let § := min{5,~}. We wish to show: Yz € dom|[fg],

[0<fz—al<0] = [|[(f9)@)]-uww|<e]

Let = € dom[fg] be given. We wish to show:

[0<fz—al<0] = [|[(f9)@)]-uww|<e]

Assume 0 < |z — a| < §. We wish to show: |[(fg)(z)] —wv| <e.
Since x € dom[fg] < dom[f] and since 0 < |z —a| < § < 3, by choice
of 5, we get | [f(z)] —u]| < A. Since x € dom[fg| < dom|[g] and since
0 < |z —al <0 <, by choice of 7, we get | [g(z)] —v]| < A
Let u; := f(z) and v, := g(z). Then |u; —u| < X and |v; —v| < A
Then |u; —u|-|v] < A-|v| and |u| - |vy —v| < Ju| - A. By definition of A,
we have A < 1, s0 A < \. Then |u; — ul - [v; — v| < A? < \. Because
g — uf - Jo] < Aol
lul - vy — o] < Jul- A and
luy — | - Jvg —v] < A,
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we conclude:
ur — ul - |vf + [ul - [or — o] + |uy — uf - Jor —v|
< A-|u| 4 Jul- A+ A
By the product change formula,

wvr —uv = (ug —u)v + u(vy —v) + (ug —u)(vy — ).
By definition of A, we have A < ——————— so (Ju| + |v|+ 1) A < e.
u| + [v] + 1
We have (fg)(x) = [f(2)][g(2)] = u1v1. Then

[(fg)@)] —wo| = [uor —uv]

| (ug —u)v + u(vy —v) + (ug —u)(vy —v) |

< up —ul o]+ |ul vy — o]+ Jug — ul - o — o
< A-|u] 4 Jul- A+ A
= (Jul+v][+1)- X < e

as desired. 0

We now “upgrade”:

THEOREM 19.23. LetY be a topological space and let Z be a normed
vector space. Let f:Y --=sRandg:Y --» Z. LetaeY and be R
and v € Z. Assume that: ( f — b near a ) and (g — v near a ).
Then we have: fg — bv near a.

Proof. We wish to show: Ve > 0, A € N*(a) s.t., Yo € dom[fg],

[zeA] = [l[(fo)(@)]-bv|<e]
Let € > 0 be given. We wish to show: 3A € N*(a) s.t., Vo € dom[fg],
[0<le—al<s] = [I[o)a)]—tw|<c]
5
L = mi 1, ——— .
et A mm{ : ]b|—|—]v[+1}
Since f — b near a, choose B € N*(a) s.t., Y € dom|[f],
[zeB] = [[f(@)]-b[<A]
Since g — b near a, choose I' € N*(a) s.t., Vo € dom[g],
[reT] = [[lo)] ol <A]
Let A := BnI'. We wish to show: Yx € dom|[fg],

[zeA] = [l[(fo)@)]-bv|<e]
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Let z € dom[fg] be given. We wish to show:

[zeA] = [l[(fo)@)]-bv|<e]
Assume x € A. We wish to show: | [(fg)(z)] —bv| <e.

Since z € dom[fg] < dom[f] and since x € A < B, by choice of B,
we get |[f(xz)] —b]| < A. Since z € dom[fg|] € dom[g]| and since
x e A cT, by choice of ', we get | [g(x)] —v]| < A

Let by := f(x) and vy := g(x). Then |b; —b| < X and |v; — v| < .
Then |by — b| - |v| < A |v] and |b] - |vy — v| < |b] - A. By definition of A,
we have A < 1, so A < A\. Then |b; — b| - [v; — v| < A? < \. Because

b Jo] < A-Jol,
] - |vg —v| < |b] - A and
|b1—b| : |U1—U| <)\7
we conclude:
by = 0f - [o] + [b] - Jor = v[ + [by = b] - oy = 0]
< Aol 4+ A+ A
By the product change formula,

bll}l —bv = (bl — b)'U + b(’Ul — U) + (bl — b)(Ul - ’U).

By definition of A, we have A < |b|—|—]++1’ so ([b]+ v +1)- A < e
We have (fg)(x) = [f(#)][g(2)] = bror. Then
[[(fg)(@)] =bv| = [broy = bv]

| (b1 —b)v + b(vy —v) + (by — b)(vy — )|

b1 — 0] - [v| + [b] - [y — 0] + [by — ] - o1 — v
Aol + 0] A + A

(16| + |v] +1)- A < ¢

as desired. 0

N

A

Here’s slightly different “upgrade” of Theorem 19.22:

THEOREM 19.24. LetY be a topological space. Let f,q:Y --+ R*.
Let a,u,v € R. Assume: ( f — uneara ) and (g — v near a ). Then:
fg — uv near a.

Proof. We wish to show: Ve > 0, 3A € N'*(a) s.t., Vz € dom|fg],
[zeA] = [[[(fo)(@)]-w]|<e]



NOTES 1 149

Let € > 0 be given. We wish to show: JA € N*(a) s.t., Vz € dom|[fg],

[zeA] = [l(f9)@)]-uw]|<e]

€
Let A := mi 1, —mm .
) m{ ’rb|+rvr+1}
Since f — wu near a, choose B € N*(a) s.t., Vo € dom][f],

l[zeB] = [If@]-ul<A]
Since g — u near a, choose I' € N*(a) s.t., Vo € dom|[g],

[zel'] = [llg@)]-v[<A]
Let A := BnT. We wish to show: Yz € dom|[fg],

[zeA] = [[I(fo)@)]-uw]|<e]

Let = € dom[fg] be given. We wish to show:

[zeA] = [l(f9)@)]-uw]|<e]

Assume x € A. We wish to show: |[(fg)(z)] —wv]| < e.

Since = € dom[fg] < dom[f] and since x € A < B, by choice of B,
we get |[f(x)] — u]| < A. Since x € dom|[fg] < dom[g] and since
x e A c T, by choice of I', we get |[g(x)] —v]| < A

Let u; := f(z) and vy := g(z). Then |u; —u| < X and |v; —v| < .
Then |u; —u|- |v| < A-|v| and |u| - [v; —v| < |u| - A. By definition of A,
we have A < 1, s0 A2 < \. Then |u; — ul - [v; — v| < A2 < \. Because

A

=l - o] < A+ Jo],
lul - vy — o] < |ul- A and

luy — | - Jvg —v] < A,
we conclude:

[y =l - o + Jul - Jor = v + Juy —u - o — 2|

< A-|vu| 4+ Jul- A+ A
By the product change formula,

wvy —uv = (up —uw)v + u(vy —v) + (ug —u)(vy — ).
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By definition of A\, we have A < ;, so (Jul +]v[+1)- A < e.
lu| + |v] +1
We have (f9)(x) = [/(@)][g(x)] = wror. Then

[[(fo)(@)] —uv| = [uvr —uv]
| (ug —u)v + u(vy —v) + (ug —u)(vy —v) |

N

=l - Jof + Jul - oy = v + Juy = ul - o = 2|

A

Aol 4+ Jul- A+ A
(Ju| +|v|+1)- X < ¢

as desired. 0

20. Crass 20 oN 16 NOVEMBER 2017, TH oF WEEK 11
FACT 20.1. For all a,b e R*, we have
(1) a—b=a+ (—b) and
(2) a/b=a-(1/b).

Proof. Unassigned HW. O
FACT 20.2. For all a,b,c,d € R*, we have
a . ad + be
b d bd
Proof. Unassigned HW. O
Note that
3 o0
—+ = = 0+ o = o
o0 2
and that
32+oo.oo_6+oo_oo_®
0 -2 B 0 o ’
SO
3 N 0 y 3:2 4+ 0-®
o0 2 0 -2 '

We recalled Theorem 19.22; but replaced u by b and v by c.
We recalled Theorem 19.23, but replaced v by c.

HW#56 (due Tuesday 28 November): Let f,g : R* --» R* and let
a € R. Assume: ( f — o near a ) and ( ¢ — o near a ). Show:
fg — o0 near a.

We have two variants of HW#56, as follows.
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Unassigned HW: Let f, g : R* --» R*. Assume: ( f — o0 near « )
and ( g — o0 near o0 ). Show: fg — o0 near 0.

Unassigned HW: Let f, g : R* --» R*. Assume: ( f — o0 near —o0
) and ( g — o0 near —oo0 ). Show: fg — o0 near —oo.

If you “think like an analyst”, then HW#56 and the two variants all
require different proofs. However, if you can “think like a topologist
on the input side”, then there’s a common generalization of all three
results:

THEOREM 20.3. Let Y be a topological space, let f,g :Y --+ R*
and let a € Y. Assume: ( f — oo near a ) and ( g — o0 near a ).
Then: fg — o0 near a.

Theorem 20.3 is UNPROVED, but is almost proved, in the sense
that, to prove it, you can take your solution to HW#56, and “upgrade”
from ( B, v and 6 = min{f,7} )to ( B,T and A=BnT).

Here’s a variant of Theorem 20.3:

Unassigned HW: Let Y be a topological space, let f,g : Y --» R*
and let a € Y. Assume: ( f — o0 near a ) and ( ¢ — —3 near a ).
Show: fg — —oo near a.

We now seek a common generalization of this last unassigned HW
and Theorem 20.3. The following is that common generalization:

THEOREM 20.4. Llet Y be a topological space, let f,g:Y --+ R*
and let a € Y. Then, for all b,c, we have:

[(f—>"bneara) & (g—"cneara)]

= [ fg =% be near a |.

Partial proof: Let b, c be given. We wish to show
[(f—>"bneara) & (g—"cmneara) |
= [ fg =" bc near a |.

Assume that f —* b near a and that g —* ¢ near a. We wish to show
that fg —* be near a. That is, we wish to show: either [ be = ® | or

[ both (bc e R* ) and ( fg — bc near a ) |.

Since f —* b near a, it follows either that b € R* or that b = ®. Then
one of the following must be true:
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= 00 or

Since g —* ¢ near a, it follows either that ¢ € R* or that ¢ = @. Then
one of the following must be true:

Cc = OO or

We now have 36 cases to consider, from 1A to 6F.

Case HE is a consequence of Theorem 20.3, which is “almost proved”.

In Cases 2B, 2C, 2D, 3B, 3C, 3D, 4B, 4C and 4D, we have b € R and
c € R, so, by Theorem 19.24 (with u replaced by b and v by ¢), we get
what we want.

The following cases are all “easy” because, in each of them, bc = @:

1C, 5C, 3A, 3E, 1F, 2F, 3F, 4F, 5F, 6A, 6B, 6C, 6D, 6E, 6F
This almost finishes 5E, and completely finishes 24 of the 36 cases.
The other 11 cases are

1A, 1B, 1D, 1E, 2A, 2E, 4A, 4E, 5A, 5B, 5D
and they are all unproved. End of partial proof.

Assigned HW#57 (due Tuesday 28 November).

LEMMA 20.5. Let'Y be a topological space, let g : Y --+ R* and let
a €Y. Then, for all ¢, we have:

(g »* cneara) = (1/g —* 1/c neara).
Partial proof: Let ¢ be given. We wish to show:

(g »* cneara) = (1/g —* 1/cneara).
Assume that ¢ —* ¢ near a. We wish to show: 1/g —* 1/c near a.

That is, we wish to show: either [ 1/c = @ | or
[(1/ceR*)and (1/g — 1/cneara) |.

*
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One of the following must be true:
(1) c=0 or
(2) c# ©®.
Proof in Case 1: It suffices to show that 1/c = ®
Since ¢ = @, it follows that 1/c = ®. End of proof in Case 1.

* ¢ near a, and ¢ # @, we conclude that

Proof in Case 2: Since g —
[(ceR*)and (g — cmneara) |.
Since ¢ € R*, one of the following must be true:
(A) ¢
(B) ¢
(C) ¢
(D) ce R\{O}.
Case A is UNPROVED.
Case B is “easy” because, in that case, 1/c = ®.

Case C follows from HW#57.
Proof in Case D: 1t suffices to show that

[(1/ceR*)and (1/g — 1/cneara) |.
As ¢ € R\{0}, we get 1/c € R*. It remains to prove: 1/g — 1/c near a.
We wish to show: Ve > 0, 3A € N'*(a) s.t., Yz € dom[1/g],

or

[ [/1 1 1
A - _ =
[zeA] = _ (g) (3:)_ . <5_
Let € > 0 be given. We wish to show: JA € N'*(a) s.t., Vo € dom[1/¢],
T/ 1 ]
A - - - :
[zeA] = (g) (q:) o <€

Let b := |¢|. Since ¢ € R\{0}, we see that b > 0 and * > 0.
Let A := min{b/2, c?¢/2}. Then A > 0 and A < b/2 and 2\ < %
Recalling that 1/g — 1/c near a, choose A € N*(a) s.t., Vo € dom[g],

[zeA] = [[lg(x)] —c| <A]
We wish to show: Yz € dom[1/g],
< ]

ceat = [[[0)e]
<g],

Let z € dom[1/g] be given. We wish to show:

cest = [[[Ge]-
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1 1

Assume x € A. We wish to show: ‘ l(—) (x)} - —| <e
g

¢
We have z € dom[1/g] < dom[g] and = € A, so, by the choice of A,

we conclude that |[g(z)] — ¢|] < A. Let ¢; := g(x). Then |c; — ¢| < A,

C1 C
Since | e | is distance-semidecreasing, we get ||c1| — |¢|| < |ep — ¢].
Recall that b = |¢|. Then b* = |c|* = ¢®. Let by := |¢;]. Then

and we wish to show: < .

[0 = 0] = |laf = ld| < Ja —cf <A
so |by —b] < A, sob— X < b <b+ A Since A < b/2, we conclude
that b — A > b — (b/2) = b/2. Then by > b— X\ = b/2. Also, we have

lc—c1] = |eg —¢] < A. Since by > b/2 and b > 0 and 0 < |c — ¢1] < A,
lc — ¢

we get b < 0/2) b Recall: 2\ < ¢ and b? = ¢ > 0. Then
1 1 c—oc lc — ¢ lc — 1]
¢ ¢ - cic :]cl|-\c] - by - b
A 2\ e

'=—2<—2:€,
®/2) b b c

as desired. End of proof in Case D. End of proof in Case 2. FEnd of
partial proof.

THEOREM 20.6. Let Y be a topological space. Let f,g:Y --+ R*.
Then, for all b, c, we have:

[(f—>*bneara) & (g —*cneara) |
= [ f/g —* b/c near a ].

Proof. Let b and ¢ be given. We wish to prove:
[(f—>*bneara) & (g —»* cnear a) |
= [ f/g —* b/c near a |.
Assume: (f —»* bnear a) & (g —* ¢ near a). We wish to prove:

f/g —* b/c near a.

Since g —* ¢ near a, by Lemma 20.5, we see that 1/g —* 1/c near a.

So, since f —* b near a, by Theorem 20.4, we get f-(1/g) =* b-(1/c).
So, as f/g = f-(1/g) and b/c = b-(1/c), we get f/g —* b/c near a. O
DEFINITION 20.7. Let P be a set and let f and g be functions.

Then f = g on P means: Yx € P, f(x) = g(x). Also, f =* g on P
means: Yx € P, f(x) =* g(z).
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NOTE TO SELF: Let’s change to “f =** g on P” next year.

THEOREM 20.8. LetY and Z be topological spaces, leta€Y,be Z
andlet f,g:Y --» Z. Assume: 3P € N*(a) s.t. f =* g on P. Assume
that f — b near a. Then g — b near a.

Proof. We wish to show: YV e N (b), 3U € N*(a) s.t. g.(U) < V. Let
V e N(b) be given. We wish to show: 3U € N*(a) s.t. g.(U) € V.

Choose P € N*(a) s.t. f =* g on P. Since f — b near a, choose
Qe N*(a) st. fo(Q) V. Let U := Pn Q. Then U € N*(a), and
we wish to show: ¢,(U) < V. We wish to show: Yz € dom][g],

[zeU] = [glx)eV].
Let 2 € dom[g] be given. We wish to show:
[zeU] = [glx)eV].

Assume: z € U. We wish to show: g(x) e V.

Since x € dom|g], we have g(z) # ®. Sincex e U = Pn @ < P,
and since f =* g on P, we get f(z) =* g(z). So, since g(x) # @, we
get f(xz) = g(x). Since f(z) = g(z) # @, we get x € dom[f]. Since
redom|[fl]and z e U = Pn@Q < Q, we get f(z) € f(Q). Then
g(z) = f(z) € fx(Q) <V, as desired. O

21. CraAss 21 oN 21 NoOVEMBER 2017, Tu oF WEEK 12

DEFINITION 21.1. LetY be a set. Let f,g:Y --»R*. Let PZ Y.
Then f < g on P means: Vx e P, ® # f(x) < g(x) # ®.

The following is the Squeeze Theorem.

THEOREM 21.2. Let Y be a topological space, f,g,h :Y --» R*.
Let a €Y and let b e R*. Assume: 3P € Ny (a) s.t. f < g <h on P.
Assume: ( f — b near a ) and (h — b near a ). Then: g — b near a.

Partial proof: One of the following must be true:
(1) b= or
(2) b= - or
(3) beR.
Case 1 follows from HW#58.
Case 2 is UNPROVED.
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Proof in Case 3: Want: Ve > 0, 3U € N*(a) s.t. Ya € dom[g],
[zeU] = [llg=)]-0b]<e]
Let € > 0 be given. Want: 3U € N'*(a) s.t. Yz € dom|g],
[zeU] = [llg=)]-0b]<e]
Choose P € N*(a) s.t.
f <y on P.
Since f — b near a, choose @ € N (a) s.t. Vo € dom|[f],
[ze@Q] = [[lf(®)] -b[<e]
Since h — b near a, choose R € N*(a) s.t. Vo € dom[h],
[ze R] = [|[h(x)] -0l <ce]
Let U := Pn@QnR. Then U € N*(a). We wish to show: Vz € dom[g],
[zeU] = [llg=)]-0b]<e]

(
|
(
|

Let = € dom[g] be given. We wish to show:
[zeU] = [llg=)]-0b]<e]

Assume z € U. We wish to show: |[g(z)] — b] < e.
By the choice of P, we have

P < dom[f] and and P <dom[g] and P < domlh].

Also, since x € U < P, by choice of P, we have: f(z) < g(x) < h(z).

Since x € U € P < dom|[f] and since x € U < @, by choice of Q, we
see that |[ f(z)] — b| < e. Thenb — e < f(x) < b + e.

Since x € U < P < dom[h] and since x € U < R, by choice of R, we
see that |[h(z)] — b|] < e. Thenb — e < h(z) < b + «.

Since b — ¢ < f(z) < g(z), we see that b — ¢ < g(z).

Since g(z) < h(z) < b + €, we see that g(z) < b + «.

Then b — ¢ < g(x) < b + €. Then |[g(z)] — b| < €, as desired.
End of proof in Case 3. End of partial proof.

DEFINITION 21.3. LetY and Z be topological spaces, f:Y --» Z.
Then, for all a, by f is (Y, Z)-continuous at a we mean:

(aedom[f]) and (f— f(a)in Z neara inY ).
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We sometimes simplify and say “continuous” instead of “(Y, Z)-
continuous”, provided Y and Z are clear. This is very common.

Let (Y,7T) and (Z,U) be topological spaces. In cases where it’s
important to track topologies, we can use “((Y,T), (Z,U))-continuous”
or “(T,U)-continuous” instead of “(Y, Z)-continuous”. This is rare.

The next result is Absoluteness of continuity:

THEOREM 21.4. LetY and Z be topological spaces, let Yo €Y and
let Zoy < Z. Let f Yy --+ Zy and let a € dom|f]. Then:

[ f is (Yo, Zo)-continuous at a] < [ f is (Y, Z)-continuous at a].

Proof. By Theorem 18.8 (with b replaced by f(a)), we have

[f— f(a) in Zy near a in Yy ]
< [f— f(a)in Z near a in Z].

Then
[ fis (Yo, Zp)-continuous at a |
< [f— f(a)in Zy near a in Yj |
< [f— f(a)in Z near a in 7|
< [ fis (Y, Z)-continuous at a |,
as desired. 0

REMARK 21.5. Let Y and Z be topological spaces, let f Y --» Z
and let a € dom[f]. Then:

[ f is continuous at a |

< [ VW eN(f(a)), U eN(a) st f(U)<V 1.
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Proof. We have

[ f is continuous at a |
[ VWWeN(f(a),IU e N*(a) st. fu(U)=V |
YV e N(f(a)), 3U € N*(a) s.t., Yo € dom|[f],
(eU) = (f@)eV) ]
YV e N(f(a)), 3U € N(a) s.t., Vo € dom|[f],
(wety) = (f@)eV) ]
< [ YW eN(f(a)),IU e N(a) s.t., Vx € dom[f],
(zelU) = (flz)eV) ]
< [ WeN(f(a),WeN(a)st. fu(U)cV ],

as desired. O

¢ ¢

0

The main content of Remark 21.5 is that, to check continuity, one
may choose to use UNPUNCTURED neighborhoods on the input side.
The only somewhat hard step in the proof is

[ YW eN(f(a)), U € N(a) s.t., Y € dom[f],

(zely) = (flx)eV) ]
< [ YWeN(f(a)), U e N(a) s.t., Yz € dom[f],

(zelU) = (flx)eV) |

We explained this in terms of playing two games. In both games, one
player chooses V', the other chooses U and then the first one chooses x.
In the first game, to win, the x-chooser must pick z € U;*. In the second
game, to win, the z-chooser must pick € U. Note that U\U) = {a}.
So, in the second game, the z-chooser has the possibility of choosing
x = a, but in the first, that leads to an immediate loss. It may seem
that, in switching from the first game to the second, the z-chooser
gets a small benefit, but that is illusory because V € N(f(a)), and so
f(a) € V, and so, even in the second game, to win, the z-chooser must
not pick x = a. This informal discussion can be converted into a proof.

To check continuity, given neighborhood bases (on input and output
sides), one may choose to use only basic open neighborhoods:

FACT 21.6. Let Y and Z be topological spaces, let f Y --+» Z and
let a € dom|f]. Let A be a neighborhood base at a in'Y. Let B be a
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neighborhood base at f(a) in Z. Then:

[ [ is continuous at a |
< [ VBeB,dJAeAst f.(A) =B |.

Proof. Proof of <: Unassigned HW. End of proof of <.

Proof of =: Assume: VB € B, 3A € As.t. f.(A) € B. We wish
to show: f is continuous at a. We wish to show: VYV € N(f(a)),
U € N(a) s.t. fo(U) € V. Let Ve N(f(a)) be given. We wish
to show: 3U € N(a) s.t. fo(U) S V.

Since B is a neighborhood base at f(a) in Z and since V € N(f(a)),
choose B € B s.t. f(a) € B < V. Then, by assumption, choose A € A
s.t. f«(A) € B. As A is a neighborhood base of a in Y, it follows
that 4 < N(a). So, as A€ A, we get A€ N(a). Let U := A. Then
U e N(a), and we wish to show: f,(U) < V.

We have f.(U) = f.(A) € B< V. End of proof of =. O

For any metric space M, if the metric is anonymous, but, at some
point, we need it, we will denote it by d,,, or, if M is clear, by d.

Since, for any point p in a metric space B(p) is a neighborhood base
at p, it follows, from Fact 21.6, that we can get a geometric quantified
equivalence for continuity in metric spaces:

REMARK 21.7. Let Y and Z be metric spaces, let f 1Y --+ Z and
let a € dom[f]. Then

[ f is continuous at a |
[ Ve>0,30>0s.t fi(B(a,0)) < B(f(a),e) .
[ Ve>0,30>0 s.t., Vo e dom|f],
(dy(z,a) <0) = (dz(f(), fla)) <) |

Proof. Omitted. O

S d
S d

For any normed vector space V', if the norm is anonymous, but, at
some point, we need to use it, we will denote it by | e |y, or, if V is
clear, by | e |.

Remark 21.7 yields an analytic quantified equivalence for continuity
in normed vector spaces:
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REMARK 21.8. Let Y, Z be normed vector spaces, let f:Y --» Z
and let a € dom|f]. Then
[ f is continuous at a |
< | Ve>0,30 >0 s.t., Yoe dom[f],
(lz—aly <0)=(|[f(@)] - [fla)]lz <e) ]
Remark 21.5 and Remark 21.7 and Remark 21.8 give quantified
equivalencies for continuity of maps

from  topological spaces to topological spaces,
from  metric spaces to metric spaces and
from normed vector spaces to normed vector spaces,

respectively. There are also “mixed” situations, like maps
from  normed vector spaces to topological spaces.

We won’t quantify all of them, but we give one such quantification
in Remark 21.9 below. Students are expected to be able to figure out
the others, as needed.

REMARK 21.9. Let Y be a normed vector space and let Z be a
topological space. Let f:Y --+ Z and let a € dom[f]. Then

[ f is continuous at a |
< | YWeN(f(a)), 30 >0 s.t., Yz € dom|f],
([z—af<d0)=(flx)eV) ]

Recall that, for any set S, for any a, C¢ : S — {a} is the constant
fuction on S with value a, defined by Cé(x) = a.

FACT 21.10. Let Y and Z be topological spaces and let f Y --+ Z.
LetaeY andbe Z. Then C% — b near a.

Proof. Unassigned HW. O
Assigned HW#59 and HW#60.

THEOREM 21.11. Let Y be a topological space, let f,g:Y --+ R*
and let a € Y. Assume that both f and g are continuous at a. Let
b:= f(a) and let ¢ := g(a). Then

(1) (b+c #®) = (f+g is continuous at a),

(2) (be # ®) = (fg is continuous at a),
3) (b—c #®) = (f— g is continuous at a) and
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(4) (b/c # @) = (f/g is continuous at a).

Proof. Proof of (2),(3),(4): Unassigned HW. End of proof of (2),(3),(4).
Proof of (1): Assume: b+ ¢ # ®. Want: f + ¢ is continuous at a.
By definition of continuity, and by definition of b and ¢, we have

both f — b near a and g — ¢ near a. Then, by Theorem 19.19, we get

f+g—"b+cnear a. So, since b+c # @, we get f+g — b+ c near a.

So, as (f + g)(a) = [f(a)] + [g9(a)] = b+ ¢, we see, from the definition

of continuity, that f + ¢ is continuous at a. End of proof of (1). 0

THEOREM 21.12. LetY be a topological space, let a € Y, let b e R*
and let g 1 Y --+ R*. Assume that g is continuous at a. Assume that
(bg)(a) # ®. Then by is continuous at a.

Proof. Omitted. 0

THEOREM 21.13. Let Y be a topological space, let Z be a normed
vector space, let f,g:Y --» Z and leta €Y. Assume f and g are both
continuous at a. Then f + g is continuous at a.

Proof. Omitted. O

THEOREM 21.14. Let Y be a topological space, let Z be a normed
vector space, let a €Y, let g: Y --+» R* and let b e R. Assume that g
15 continuous at a. Then bg s continuous at a.

Proof. Omitted. O

DEFINITION 21.15. Let f be a function. Then, for all non-® a,b,
the function adil f : (dom[f]) U {a} — (im[f]) U {b} is defined by

flz), ifx+#a

b B
(ad’, f)() = {b’ e

The function adjz f is the same as f, except that the value at a is
adjusted from f(a) to b.

For example, define f,g: R --+ R by
1, ifz#0
2, ifz=0.
Note that f and g are both discontinuous (i.e., NOT continuous) at 0,
and that g = adjg f. In general, given a function with a discontinuity

f@) = = and g<x>={

at 0, like f, we would like, if possible, to adjust the function in such a
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way as to remove the discontinuity. The function g is an adjustment
of f, but that particular adjustment doesn’t do anyting to remove the
discontinuity. We can however, adjust both f and ¢ in such a way that
the discontinuity goes away. Specifically, adj(l) f= adj(l) g = Cj, and the
constant function Cg is continuous at 0.

The next result say that if a function has a limit near a, then the
limit is unaffected by an adjustment at a.

REMARK 21.16. let Y and Z be topological spaces, let f:Y --» Z,
letaeY andletb,ce Z. Let g := adef. Then

[f—cneara] < [g— cnearal.

Proof. Let T := {open setsin Y}. Then T is a topology on Y, so
U7 =Y. Then Y € (T), = T. That is, Y is open in Y. By
Remark 16.4 any open set is a neighborhood of each of its points, so
Y € N(a). Let P := Y. Then P € N*(a). By definition of g, we
have: f = g on P. Then, as f — b near a, by Theorem 20.8, we get
[f — cnear a] < [g — cnear a], as desired. O

The next result say that if a function has a limit near a, then, even
if it’s discontinuous at a, the discontinuity is “removable”. We will call
this the Discontinuity Removal Theorem.

REMARK 21.17. let Y and Z be topological spaces, let f:Y --» Z,
letaeY andletbe Z. Then:

[ f—>bneara] < [adj’f is continuous at a ].
Proof. Let g := adj’ f. Then g(a) = b.
By Remark 21.16, [ f — b near a] < [g — bnear a]. Then
[ f — bnear a |
g — b near a |

g — g(a) near a |
g is continuous at a |

¢ ¢ ¢ 9

[
[
[
[ adj® f is continuous at a ],

as desired. 0

DEFINITION 21.18. let Y and Z be topological spaces, f 1Y --+ Z.
Then, for any set S, by f is continuous on S, we mean:

(S < dom[f]) and (VYae€eS, fis continuous at a ).
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By ( f is continuous ) or ( f is everywhere continuous ), we
mean: f is continuous on dom[f].

We have a quantified equivalence for everywhere continuity:
THEOREM 21.19. LetY, Z be topological spaces, f:Y — Z. Then
[ fis continuous | < [ YopenV in Z, f*(V) is open in'Y |.

Note that, in Theorem 21.19, we have f:Y — Z, not f:Y --» Z.
Theorem 21.19 asserts: f is everywhere continuous iff “the preimage
of any open set is open”.

Proof. Proof of <: Assume that f is continuous. We wish to show:
VYopen V in Z, f*(V) is open in Y. Let an open V in Z be given. We
wish to show: f*(V')is open in Y. By HW#42 (with X replaced by Y,
W by f*(V)), we want: Va € f*(V),3U € N(a) s.t. U < f*(V). Let
a€ f*(V) be given. We wish to show: 3U € N (a) s.t. U < f*(V).

Since a € f*(V), we get f(a) € V. Also V isopen in Z. Then, by Re-
mark 16.4, V € N(f(a)). So, as f is continuous at a, by Remark 21.5,
choose U € N(a) s.t. f.(U) < V. We wish to show: U < f*(V).

As f(U) €V, f*(f(U)) € F*(V). Then U < f*(£.(U)) < f*(V),
as desired. End of proof of <.

Proof of =: Assume: Yopen V in Z, f*(V) is open in Y. We wish
to show: f is continuous. Since f :Y — Z, we have Y = dom/[f]. We
therefore wish to show: Va € Y, f is continuous at a. Let a € Y be
given. We want: f is continuous at a. Then, by Remark 21.5 (with
V replaced by W), want: YW € N(f(a)), 3U € N(a) s.t. f.(U) =< W.
Let W e N(f(a)) be given. We want: U € N (a) s.t. f.(U) € W.

By definition of N(f(a)), as W € N(f(a)), choose an open set V
in Z such that f(a) € V€ W. Then, by our assumption, f*(V') is open
in Y. Since f(a) € V, we get a € f*(V). Then, by Remark 16.4, we
have f*(V) e N(a). Let U := f*(V). We wish to show: f,(U) < W.

We have f.(U) = f.(f*(V)) € V, as desired. End of proof of =. O

22. CLASS 22 ON 28 NOVEMBER 2017, Tu oF WEEK 13

THEOREM 22.1. Let X and Y and Z be topological spaces. Let
f:X--2Yandg:Y --» Z. Let ae X. Assume that f is continuous
at a and that g is continuous at f(a). Then go f is continuous at a.
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Proof. Since f is continuous at a, we see that f — f(a) near a. We
wish to show: go f — (g o f)(a) near a.

Let b:= f(a). Then f — b near a. Also, g(b) = g(f(a)) = (go f)(a).
We therefore wish to show: go f — ¢(b) near a.

Since f — b near a and since g is continuous at b, we conclude, from

HW#60, that g o f — g(b) near a, as desired. O

THEOREM 22.2. Let X and Y and Z all be topological spaces. Let
f:X--2Y and g:Y --» Z. Assume that f and g are both continu-
ous. Then go f is continuous.

Proof. Unassigned HW. O

THEOREM 22.3. Let X and Y be topological spaces, f : X --+ Y.
Let S < dom[f] and let a € S. Assume that f is continuous at a.
Then f|S is continuous at a.

Proof. We wish to show: f|S — (f]|9)(a) in Y near a in X. Note that
S = dom[f|S]. We wish to show: YV € Ny (f(a)), 3U € Nx(a) s.t.,
Vo e s,
[zeU] = [flx)eV].
Let V € Ny (f(a)) be given. We wish to show: 3U € Nx(a) s.t., Vx € S,
[zeU] = [flx)eV].

Since f is continuous at a, we know that f — f(a) in Y near a in
X. So, since V € Ny(f(a)), choose U € Nx(a) s.t., Vo € dom|f],

[zeU] = [[fl@)eV]
We wish to show: Vz € S,

[zeU] = [flx)eV].
Let z € S be given. We wish to show:

[zeU] = [flx)eV].

Assume z € U. We wish to show: f(x)e V.
Asz e S € dom[f] and x € U, by choice of U, we have f(z) e V. O

COROLLARY 22.4. Let X andY be topological spaces, f : X --+ Y.
Let S < dom|f]. Assume that f is continuous. Then f|S is continuous.

Proof. Unassigned HW. U
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DEFINITION 22.5. Let s be a sequence and let K € N. Then the
K-tail of s is the sequence (Sk,SK+1,SK+2,---)-

That is, the K-tail of s is the sequence i — sx1;—1 : N — im[s].

Sometimes we are sloppy and refer to the set {sk, Sx+1, Sk 12, ..} as
the K-tail of s. That is, in conversation, we might sometimes confuse
the K-tail with its image. In these notes, however, we will try to be
accurate in our terminology.

Assigned HW#61.
DEFINITION 22.6. Let Y, Z be metric spaces, f :Y --» Z. Then

(1) f is uniformly continuous or (Y, Z)-uniformly continuous
means: Ye >0, 30 > 0 s.t., Yw,x € dom|[f],

[dy(w,z)<d] = [dz(f(w) f(z)) <e]
(2) VK > 0, f is K-Lipschitz or (Y, Z, K)-Lipschitz means:
Yw, x € dom| f],

[ dz(f(w), f(x)) < K - [dy(w,2)]].

(3) f is Lipschitz or (Y, Z)-Lipschitz means:
JK >0 st f s K-Lipschitz.

For all three concepts in Definition 22.6, we have absoluteness:

FACT 22.7. LetY,Z be MSs, Yo <Y, Zy <= Z, f: Yy --+ Zy. Then
(1) ( f is (Yo, Zo)-continuous ) =
( [ is (Y, Z)-continuous ),
(2) ( f is (Yo, Zo)-uniformly continuous ) =
( [ is (Y, Z)-uniformly continuous ),
(3) VK >0, / ( [ is (Yo, Zo, K)-Lipschitz ) <
( fis(Y,Z, K)-Lipschitz ) / and
(4) ( f is (Yo, Zo)-Lipschitz ) < ( [ is (Y, Z)-Lipschitz ).

Proof. Omitted. O

A function between metric spaces is 0-Lipschitz iff it is constant. A
function between metric spaces is called distance-semiincreasing or
distance-nondecreasing if it is 1-Lipschitz.

Let Y, Z be metric spaces, f : Y --» Z, K > 0. We observed that
the function f is K-Lipschitz iff: Ve > 0, 36 > 0 s.t., Yw, z € dom|f],

[w#z] = [dz(f(w), f(x)) < K - [dy(w,z)]].
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Or: f is K-Lipschitz iff: Ve > 0, 36 > 0 s.t., Yw, 2 € dom[f],
[0 o],

dy (w, x)

[w# 2 |

Let f: R --» R, K > 0. Then the function f is K-Lipschitz iff:
Ve >0, 30 > 0 s.t., Yw, z € dom|[ f],

[ ‘[f(w)] — /()]

[wo] w—2x

< K].
Or: f is K-Lipschitz iff: Ve > 0, 30 > 0 s.t., Yw, z € dom[f],
(wetz] = [—K L MWl =1f@)] _ K].

w—x

Recall that a secant line of f is a line that passes through at least
two points of the graph of f. A secant slope of f is a real number
that is the slope of some secant line of f. Then: f is K-Lipschitz iff:

—K < {secant slopes of f} < K.
Let m,b e R. Let f: R — R be defined by f(x) = mz + b. (This

kind of function is called “linear” in high school courses and in freshman
calculus courses, but is more properly called an “affine” function.) The
graph of f is a line, and all of its secant lines are that same line. The
set of all secant slopes of f is {m}. Thus f is |m|-Lipschitz.

Let f : R — R be defined by f(z) = 1/(1 + 2?). The graph of f
is a “fat-tailed bell-curve”. We observed that the set of secant slopes
of f is both bounded above and bounded below. Then f is Lipschitz.
When we want to refer to this function anonymously, we may use: “the
function 1/(1 + (¢)?) : R —> R”.

Let f : R — R be defined by f(x) = x2. We observed that the
set of secant slopes of f is neither bounded above nor bounded below.
Then f is NOT Lipschitz. When we want to refer to this function
anonymously, we may use: “the function (e)*: R — R”.

Let f:[0,00) — [0,00) be defined by f(x) = 4/z. We observed that
the set of secant slopes of f is neither bounded above nor bounded be-
low. Then f is NOT Lipschitz. When we want to refer to this function
anonymously, we may use: “the function /e : [0,00) — [0, 0)”.

FACT 22.8. Let Y, Z be metric spaces, f Y --+» Z. Then:

(1) ( f is Lipschitz ) = ( f is uniformly continuous ), and
(2) ( f is unformly continuous ) = ( f is continuous ).
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Proof. Omitted. O

Here is a summary of our class discussion about Fact 22.8:

To prove (1), the d-strategy is: choose a Lipschitz constant K > 0
for f and let 0 := ¢/K.

The function f is uniformly continuous iff: Ve > 0, 30 > 0 s.t.,
Yw € dom|[f], Vo € dom[f],

[dy(w,2) <0] = [dz(f(w), f(z)) <e]

The function f is continuous iff: Vw € dom[f], Ve > 0, 3§ > 0 s.t.,
V€ dom|[f],

[dy(w,z) <6 ] = [dz(f(w) f(z)) <e]

We can commute the universally quantified clauses “Yw € dom[f]” and
“Ye > 07. This shows that f is continuous iff: Ve > 0, Vw € dom][f],
36 > 0 s.t., Yo € dom[ f],

[dy(w,z) <d] = [dz(f(w), f(x)) <e].

To prove (2), say we have a d-strategy for uniform continuity. In
this strategy, 0 depends only on €. Say we then change the game to
continuity, so that ¢ is allowed to depend both on ¢ and on w. This
only makes life easier on the d-picker, who can continue with the same
strategy as before. That is: any J-strategy that works for uniform
continuity will work for continuity.

This concludes the summary of our class discussion about Fact 22.8.

We leave it as an unassigned exercise to show: (e)?: R — R is con-
tinuous. In HW#63, you’ll show that this function is NOT uniformly
continuous. Thus the converse to (2) of Fact 22.8 does NOT hold.

In Corollary 22.10 below, we will show that /e : [0,0) — [0,00) is
uniformly continuous. We observed above that this function is NOT
Lipschitz. Thus the converse of (1) of Fact 22.8 does NOT hold.

LEMMA 22.9. Let w,x = 0 and let § > 0. Assume that |w — x| < 9.
Then |\/w — /x| < V3.

Proof. Let a := min{w, xz}, and let b := max{w,z}. Then we have
a <band |w—2| =b—a. Thenb—a < §. Also, we have \/a < b

and and |y/w — v/z| = Vb — y/a. We wish to show: Vb — \/a < /6.
Assume that v/b — Va = V6. We aim for a contradiction.
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We have Vb + /a = V6 + 2y/a = /6. Since Vb — /a = /6 = 0 and
Vb + ya =6 =0, we get [vVb— a][Vb + va] = [v5][v/5]. Then
b—a = [Vb—+/a][Vb++/a] = [V§][Vé] =6,s0b—a > 6,508 <b—a.
Recall: b—a <. Then 6 < b—a < 9, so § <. Contradiction. O

COROLLARY 22.10. The function +/e : [0,00) — [0,00) is uni-
formly continuous.

Proof. We wish to show: Ve > 0, 36 > 0 s.t., Yw, z € [0, 0),
[lw—z|<dé] = [Ww-val<e]

Let € > 0 be given. We wish to show: 36 > 0 s.t., Yw, z € [0, o),
[lw=z[<d] = [Ww—-+va|<e]

Let § := 2. We wish to show: Yw, z € [0, 0),

[lw=z[<d] = [Ww—-va|<e]

Let w, z € [0,00) be given. We wish to show:
[lw—z|<dé] = [Ww-val<e]

Assume |w — x| < . We wish to show: |y/w — /2| < e.

Asw,z > 0,6 > 0and [w—z| < §, by Lemma 22.9, |\/w—+/z| < V.
Also,\f—\ﬁ—g. Then |v/w — v/z| < V6 = ¢, as desired. O

Assigned HW#62, HW#63 and HW#64.
DEFINITION 22.11. For any function f, for any set S of sets,
fex(S) = {fu(A)[A e S} and
f7(8) = A (A)[AeS).

We have a “functoriality property”: For any functions f and g,
for any set A, (go f)«(A) = g.(f«(A)) and (g o f)*(A) = f*(9*(A)).

Consequently, for any functions f and g, for any set S of sets, we have:

(90 f)ex(S) = Gus(fe(8S)) and (g o f)**(S) = f**(9**(5))-

REMARK 22.12. Let f be a one-to-one function, g := f~1. Then
(1) Vset A, [ ( fu(A) = g*(A) ) and ( f*(A) = ( )) ] and
(2) Vset S of sets, [ ( f(S) = g™ (S ))Cmd(f*( ) = 9::(S) ) ]

Proof. Omitted. O

FACT 22.13. Let (Y, T) and (Z,U) be topological spaces, f:Y — Z.
Then: [ fis continuous | < [ f*WU)<=T ]
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Proof. This follows from Theorem 21.19. 0

In Fact 22.13, we need “f : Y — Z”7 and NOT “f:Y --» Z”.
In Fact 22.13, if Y or Z or 7 or U is unclear, we might replace
“continuous” by any of
e (Y, Z)-continuous,
e (Y, 7T),(Z,U))-continuous or
e (T ,U)-continuous.

DEFINITION 22.14. Let Y, Z be topological spaces, f :'Y --+ Z.
Then f is open or (Y, Z)-open means:
Yopen U in'Y, f.(U) is open in Z.

FACT 22.15. Let (Y, T) and (Z,U) be topological spaces, f :Y --» Z.
Then: [ fisopen] < [ fu(T)SU].

Proof. This follows from Definition 22.14. O

Fact 22.15, holds even for PARTIAL functions f : Y --» Z.
In Fact 22.15, if Y or Z or T or U is unclear, we might replace
“open” by any of
e (Y, Z)-open,
e (Y,T),(Z,U))-open or
e (T,U)-open.

REMARK 22.16. LetY, Z be topological spaces, f:Y —> Z. Then:

(1) ([fisopen] iff [ f~'is continuous | ) and
(2) ([ f is continuous | iff [ f7! is open ] ).

Proof. This follows from Fact 22.15 and Remark 22.12. U
DEFINITION 22.17. Let Y and Z be topological spaces. Then

(1) Yf, by f is a homeomorphism from Y onto Z, we mean:
f:Y 5> 7 and f is continuous and f is open;  and
(2) by Y and Z are homeomorphic, we mean:
f s.t. f is a homeomorphism from'Y onto Z.

When Y and Z are clear, we might simply say that f is a homeo-
morphism, and leave it to the reader to know the domain and image
of f.

Instead of “Y and Z are homeomorphic”, we might say “Y is home-
omorphic to Z”7 or, equivalently, “Z is homeomorphic to Y.
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REMARK 22.18. Let (Y, T) and (Z,U) be topological spaces and let
f:Y > 7. Then we have:

[ f is a homeomorphism from'Y onto Z | < [ fu:(T) =U |

< [[ffU)=T]
Proof. Let g := f~'. By functoriality, [fu(T) = U] < [T = g«:(U)],
so, by Remark 22.12, we conclude that [f.(T) = U] < [T = f**(U)].

It remains to show:
[ fis a homeomorphism from Y onto Z | < [ fu(T)=U].

By functoriality, [ fss(T) € U] < [T S gux(U)], s0, by Remark 22.12,
we conclude that [f**(U) € T] < [U S fu(T)]. Then, by Fact 22.13,
[f is continuous] < [U S f.(T)].

By Fact 22.15, [f is open| < [fu(T) € U]. Then

is a homeomorphism from Y onto Z |

(U< [a(T)) & (fuulT) U |
(T)=Ul.

as desired. 0

[
[ f
[ (fis continuous) & ( f is open) |
[
[ f

S
S
S

In Remark 22.18, we need “f : Y <> Z”7. In Remark 22.18, we
might replace “homeomorphism from Y onto Z” by any of
e (Y, Z)-homeomorphism,
e ((Y,T),(Z,U))-homeomorphism or
e (7 ,U)-homeomorphism.

A homeomorphism between topological spaces can be thought of as a
dictionary that allows us to translate any topological information about
one of the spaces into topological information about the other. So, for
example, if two topological spaces are homeomorphic and one of them
is metrizable, then the other one must be as well. To a topologist,
when two topological spaces are homeomorphic they are “essentially
the same”.

Assigned HW#65.

The basic idea in HW#65 is that, when we [1,2) and [2, 3) together,
we are performing a continuous operation. However, when we tear [5,7)
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apart, we are doing something discontinuous. Gluing is continuous;
tearing apart is discontinuous.

Reviewing Definition 22.17, one might wonder: Is any continuous
bijection is automatically open? We can answer this “No” as follows.
Let f be the function in HW#65. By (a) of HW#65, f is a bijection.
By (b) of HW#65, f is continuous. By (c) of HW#65 and by (1)
of Remark 22.16, f is not open.

We now look at some important homeomorphisms.

REMARK 22.19. Let C* := {(u,v) € R?| (u? + v* = 1)&(v # 1)}.
Then C* is homeomorphic to R.

Proof. Define 0 : C* - Rand 7: R — C* by
2 21
o(u,v) = 1u and T(z) = ( vz >

—0 x2+1" 2241

It suffices to show that ¢ is a homeomorphism.
We leave it as unassigned homework to show:

(A) o is continuous,

(B) 7 is continuous,

(C) oot =idg and

(D) 700 =idgx.
From (C) and (D), we see that o : C* <> R and that 7 = ¢~!. Then,
from (B) and from (1) of Remark 22.16, we see that ¢ is open. Then,
by (A), o is a homeomorphism. O

The mapping o in the proof of Remark 22.19 is called stereographic
projection.

REMARK 22.20. Let I be the interval (—1,1). Then I is homeo-
morphic to R.

Proof. Define f: I - R and g: R — I by

f) = S and o) -

It suffices to show that f is a homeomorphism.

X

V1+ a2

We leave it as unassigned homework to show:

(A) f is continuous,
(B) g is continuous,

(C) fog=idg and
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(D) go f =1id;.
From (C) and (D), we see that f : [ <> R and that g = f~!. Then,
from (B) and from (1) of Remark 22.16, we see that f is open. Then,
by (A), f is a homeomorphism. O

REMARK 22.21. Let I* be the interval [—1,1]. Then I* is homeo-
morphic to R*.

Proof. Let I be the interval (—1,1).
Define f: I > R and g: R — I by

t T
t) = d = —.
10 = = 4 90 = e
Define f*: I* — R* by
—oo, ift = -1
fr0) = 3, el
0, ift =1,
and define g* : R* — I* by
-1, ifr=-w
g*(x) = qg(x), ifzreR
1 if v = o0.

It suffices to show that f* is a homeomorphism.

We leave it as unassigned homework to show:

(A) f* is continuous,

(B) ¢* is continuous,

(C) f*og* =idg and

(D) g* o f* =1id;.
From (C) and (D), we see that f* : [ <> R and that ¢g* = (f*)~L.
Then, from (B) and from (1) of Remark 22.16, we see that f* is open.
Then, by (A), f* is a homeomorphism. O

Let I* := [—1,1], as in Remark 22.21. Recall that the standard
metric on I* is dr+ = (dg)+ = dg|(I* x I*). Recall that the standard
topology on I* is T+ = Tg«|I*. Recall that Ty, = Tr+. Then I* is
metrizable. So, by Remark 22.21, R* is metrizable.

One might ask the question: What is the distance from —o0 to o0?
The functions f* and ¢* (in the proof of Remark 22.21) yield a dictio-
nary between R* and I*. In this dictionary,
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e —veR* corresponds to —1el* and

e weR* corresponds to lel*.
So, using this dictionary to translate d« to a metric d on R*, we would
find that the d-distance from —oo to oo is equal to the dj«-distance
from —1 to 1, which is 2.

Uing arctan, we can construct a homemorphism between R* and

[—7/2,7/2], in which

e —0 e R* corresponds to —m/2 and

e weR* corresponds to /2.

This yields a metric on R* s.t. the distance from —oo to oo is 7.
While R* is a metrizable topological space, we don’t consider it to be

a metric space, because there isn’t any STANDARD metric on R*.

There are many metrics, and none of them is considered canonical.

23. Crass 23 oN 30 NOVEMBER 2017, TH oF WEEK 13

DEFINITION 23.1. Let X be a metric space and S a set. By S is
bounded in X, we mean: 3B € By, s.t. S < B.

When X is clear, we may simply say “bounded”, instead of “bounded
in X”.
DEFINITION 23.2. Let S < R*.
By S has a maximum, we mean: max S # ®.

By S has a minimum, we mean: min S # ©®.

REMARK 23.3. Let S € R. Assume that S has a mazimum and a
mainimum. Then S is bounded.

Proof. Let @ := minS and b := maxS. Then a,b € S < R and
a <S<b Letc:=(a+0b)/2andlet r = (b—a+1)/2. Then
Scla,b] € (¢c—r,c+7r)= B(e,r) € Bg. Then S is bounded in R. [

The converse of Remark 23.3 is not true: Let S be the interval
(—1,1). Then S is bounded in R, but S has neither maximum nor
minimum.

DEFINITION 23.4. Let X be a metric space and let f be a function.
By f is X-bounded, we mean im|f] is bounded in X.

If X is clear, we simply say “bounded”, instead of “X-bounded”.
DEFINITION 23.5. Let f be a function. Assume that im[f] < R*.
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By f has a maximum, we mean: im|f]| has a mazimum.
By f has a minimum, we mean: im[f]| has a minimum.

REMARK 23.6. Let f be a function. Assume that im[f] < R. As-
sume that f has a mazimum and a minimum. Then f is bounded.

Proof. Let S := im[f]. Then S has a maximum and a minimum, so,

by Remark 23.3, S is bounded. Then f is bounded. 0

The converse of Remark 23.6 is not true: Let S := (—1,1), f := ids.
Then f is bounded, but f has neither maximum nor minimum.

Let C* := {(u,v) € R*| (u*® + v* = 1)&(v # 1)}. Let 0 : C* — R be
stereographic projection. Then ¢ has neither maximum nor minimum.
So not all max-min problems have a solution. (Max-min problems are
typically called “optimization problems”.) Let X := {(2,0)|z € R}
be the horizontal axis in R2. Since ¢ : C* — R is a homeomorphism,
and since x — (z,0) : R — X is a homeomoprhism, it follows that
C* is homeomorphic to X. Since C* is bounded in R?, while X is
not, boundedness does not appear to be a topological concept; it is
geometric by nature. However, there is something similar to bound-
edness that topologists study. To understand it, look at the full circle
C = {(u,v) € R*|u® + v*> = 1}, instead of the punctured circle C*. Tt
is difficult to prove, but it turns out that, if a subset S of R? is homeo-
morphic to C, then S is bounded. So, in some sense, C' is SO bounded
that it even appears bounded to a topologist. This kind of “super-
boundedness” has come to be called “compactness”. In these notes
we will focus on a related concept called “sequential compactness”, to
be defined later. Whatever the technical definitions of compact and
sequentially compact, keep in mind that, sequential compactness is
easier to define and to study, Also, in this course, we only care about
metrizable topological spaces, and, in a metrizable topological space,
sequential compactness is the same as compactness. To get at all the
relevant ideas, we first need to upgrade our understanding of sequences.

DEFINITION 23.7. Let s € (R*)N. Then
e 5 1s semiincreasing means: Vj € N, s; < s55,;1.
e 5 1s semidecreasing means: Vj € N, s; = sj.;.
e 5 1s strictly increasing means: Vj € N, s; < s;,1.
e s 1s strictly decreasing means: Vj € N, s; > s;.1.

FACT 23.8. Let s € (R*)N. Then all of the following are true:
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(1) s is semiincreasing iff: Vi, j € N, [(i
(2) s is semidecreasing iff: Vi,j € N, [(¢
(3) s is strictly increasing iff: Vi,j e N, [(i <

(4) s is strictly decreasing iff: Vi,j e N, [(i < j

Proof. Omitted. 0

Let s be a sequence and £ € NY. Then ¢ : N — N and s : N — im[s],
so sof : N — im[s]. In particular, (s o ¢), is a sequence. Also, for
all j € N, we have: (sof); = (sol)(j) = s(l(j)) = s

We computed (2,4,6,8,...)0(3,4,3,4,3,4,...) = (6,8,6,8,6,8,...).
Precomposition of (2,4,6,8,...) with (3,4,3,4,3,4,...) creates a new
sequence out of (2,4,6,8,...) by writing down the 3rd term, then 4th,
then 3rd, then 4th, then 3rd, then 4th, etc. That is, we write down 6,
then 8, then 6, then 8, then 6, then 8, etc., yielding (6, 8,6,8,6,8,...).

DEFINITION 23.9. Let s and t be sequences. By t, is a subse-
quence of s,, we mean: Istrictly increasing £ € NN s.t. t, = (so{),.

In our preceding example, (6,8,6,8,6,8,...) is NOT a subsequence
of (2,4,6,8,...) because (3,4,3,4,3,4,...) is not strictly increasing. By
contrast, (8,12, 16,20, 24,28,32,...) IS a subsequence of (2,4,6,8,...)
because it is obtained by precomposing (2,4, 6,8, ...) with the strictly
increasing sequence (4,6, 8,10,12,14,16,...).

Intuitively, you can think of a subsequence of (si, s2, 53, . ..) as being
obtained by circling infinitely many of the terms of (s, sq, s3,...) and
then discarding all the others, leaving only the circled terms, in their
original order. Then erase all the circles.

For any sequence s, for any K € N, (the K-tail of s,) is equal to

(Sk, SK41,SK4+2,--+) = Se 0 (K, K+1,K+2,...),
so (the K-tail of s,) is a subsequence of s,.
REMARK 23.10. Let {,m € NY. Then (£ om), € NY and
(Lo, mq are strictly increasing) = ((£ om), is strictly increasing).

Proof. Since m : N — N and ¢ : N — N, it follows that fom : N — N|
i.e., that (£ o m)e € NV, It remains to show:

(¢s, m, are strictly increasing) = ((£ o m), is strictly increasing).
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Assume {,,m, are strictly increasing. We wish to show: (¢ om), is
strictly increasing. By (3) of Fact 23.8, we wish to show:

Vi, jeN, [(i<yj) = ((Lom); < (Lom);)].

Let i, j € N be given. We wish to show: (i < j) = (((om); < (fom);).
Assume 7 < j. We wish to show: (£om); < (£ om);.

As m is strictly increasing and ¢ < j, by (3) of Fact 23.8, we have
m; < m;. So, as { is stricly increasing, by (3) of Fact 23.8, we have
lm; < lm;. That is, ((om); < ({om);, as desired. O

Similar arguments show:

(A) V¢, m € NN if £ and m are both strictly decreasing, then £ om
is strictly increasing.

(B) V¢,m € NV if £ and m are both semidecreasing, then £ o m is
semiincreasing.

(C) V¢, m € NN if £ and m are both semiincreasing, then £ o m is
semiincreasing.

(D) V¢, m e NV if £ is semiincreasing and m is semidecreasing, then
¢ om is semidecreasing.

For example, to prove (A), we note that, because ¢ and m both reverse
strict inequalities, it follows that £ o m will preserve strict inequalities.
(If you turn an inequality around twice, it’s the same as not turning it
around at all.)

COROLLARY 23.11. Let s be a sequence, let t be a subsequence
of se and let u be a subsequence of t,. Then u, is a subsequence of s,.

Proof. Since t, is a subsequence of s,, choose a strictly increasing £ € NV
such that t, = (sof),. Since u, is a subsequence of t,, choose a strictly
increasing m € NY such that u, = (tom),. Let n := £fom. By
Remark 23.10, n, € NY and n, is strictly increasing. We have

u = tom = (sol)om = so(lom) = son.
That is, ue = (s on),. Then u, is a subsequence of s,. O

In class, we gave an informal proof of the following result. Below,
we give a formal proof, using the Principle of Mathematical Induction.

REMARK 23.12. Let £ € NY and assume that {, is strictly increas-
ing. Then, VjeN, {; € [j..c0).
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Proof. For all j € N, let P; := [{; € [j..0c0)]. Want: Vj € N, P;. We have
¢y € N = [1..c0). Then P; holds. By the Principle of Mathematical
Induction, we wish to show: Vj e N, (P; = Pj41). Let j € N be given.
We wish to show: P; = P;;y. Assume P;. Want: Pjy. Let k := j + 1.
We wish to show: P;. Know: ¢; € [j..c0). Want: ¢} € [k..c0).

Since ¢; € [j..00), it follows that ¢; > j. Since ¢, is strictly increasing,
it follows that ¢;; > ¢;. Then {;, = {;;; > {; = j. Then {;, > j. So,
since £, 7 € N, we get 0, > j+ 1. Then ¢, > j+1 =k, so ly = k. So,
since £y € N, we get {y € [k..0), as desired. O

The next result says, for example, that the 500th term of a subse-
quence must be, for some k € [500..c0), the kth term of the original
sequence. More generally, each term of the subsequence is a “later”
term of the sequence. More precisely:

COROLLARY 23.13. Let s be a sequence and let t be a subsequence
of se. Let j € N. Then 3k € [j..0) s.t. t; = sy.

Proof. Choose a strictly increasing ¢ € N such that t, = (s o {),.
By Remark 23.12, ¢; € [j..c0). Let k := ¢;. We wish to show: t; = sy.

We have t; = (so/); = sy, = sy, as desired. O

It’s a consequnce of Corollary 23.13 that the image of a subsequence
is a subset of the image of the sequence. Consequently, for any bounded
sequence in a metric space, all of its subsequences are bounded as well.

Another consequence of Corollary 23.13 is:

THEOREM 23.14. Let X be a topological space, s € XN, ze X. Let
t be a subsequence of s,. Assume: s, — z in X. Thent, — z in X.

Proof. We wish to show: VU € Nx(z), 3l e Ns.t., Vj e N,
[j=1] = [teU].
Let U € Nx(z) be given. We wish to show: 37/ € N s.t., Vj € N,
[j=1] = [tjeU].
Since s, — z in X and U € Nx(z), choose I € N such that, Vk € N,
[k=1] = [s.eU].
We wish to show: Vj € N,
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Let j € N be given. We wish to show:
[j=21] = [teU]

Assume that j > I. We wish to show: ¢; € U.

By Corollary 23.13, choose k € [j..®0) s.t. t; = sz Since k € N
and k > j > I, by the choice of U, we conclude that s, € U. Then
t; = s, € U, as desired. O

DEFINITION 23.15. Let X be a topological space and let s € XV,
By s, is convergent, we mean: 3z € X s.t. s, > z in X.

COROLLARY 23.16. Let X be a topological space, let s € X~ and
let t be a subsequence of s,. Assume that s, is convergent in X. Then
te is convergent in X.

Proof. Since s, is convergent in X, choose z € X s.t. s, — z in X. By
Theorem 23.14, we have t, — z in X. Then ¢, is convergent in X. [J

The converse of Corollary 23.16 is false: Let s, = (—1,1,—1,1,...)
and let t, = (1,1,1,1,...). Then t, is convergent in R, but s, is not.

DEFINITION 23.17. Let X be a topological space, s € XN. Then
by s. is subconvergent in X, we mean: there exists a subsequence t
of se such that t, is convergent in X.

Note that any sequence a subsequence of itself, so convergent implies
subconvergent. The converse fails: (—1,1,—1,1,...) is subconvergent
in R, but is not convergent in R.

The sequence (1,2,3,4,...) is not subconvergent in R, and is there-
fore not convergent in R. However, (1,2,3,4,...) is convergent in R*,
and is therefore subconvergent in R*.

DEFINITION 23.18. Let X be a topological space. By X is sequen-
tially compact, we mean: Vs € XV, s, is subconvergent in X.

That is, a topological space is sequentially compact if every sequence
has a convergent subsequence.

Because (1,2, 3,4,...) is not subconvergent in R, we see that R is not
sequentially compact. Let C' := {(u,v) € R? |u® + v? = 1}. We eventu-
ally wish to show that C' IS sequentially compact, but that requires a
few preliminary results.

DEFINITION 23.19. Let X be a metric space. By X is proper, we
mean: Ybounded s € XV, s, is subconvergent.
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Here is a brief description of the upcoming program in this course:

We will eventually show that R is proper. So, as we saw earlier,
in R, there are sequences with no convergent subsequences, but you
can’t find a BOUNDED sequence with no convergent subsequence.

We will eventually show that R? is proper. We will eventually show
that every closed bounded subset of a proper metric space is sequen-
tially compact. This will show that C', being a closed bounded subset
of R?, is sequentially compact. Let D be some other subset of R? that
is homeomorphic to C. Then D is sequentially compact. We will even-
tually show that every sequentially compact subset of a metric space is
closed and bounded in the metric space. Then D is necessarily closed
and bounded in R%. The upshot of this discussion: We will see that
C “looks bounded” even to a topologist, because there is no homeo-
morphic image of it (in ANY metric space) that is unbounded.

This concludes our description of the upcoming program.

It will be helpful, going forward to have some dynamical ideas, and
the basis of dynamics is iterated maps. That is, given a function f,
we can compose it with itself repeatedly, and we develop the following
notation to handle the basic bookkeeping of that.

DEFINITION 23.20. Let f be a function. We define f° := iddom[f]'
We define f!:= f. For all j € [2..00), we define fI := fo---o f, the
composition of j copies of f. For all j € Ny, the function f7 is called
the jth composition power of f.

The logic purist would not like the informality of “f/ = fo---o f”.
To be more formal, we could rewrite Definition 23.20, as follows: Let
f be a function. For all x € dom[f], Vj € N, let

ORBS}(z) := {ye ((dom[f]) v (im[f]))!*|
(o =2) & (Vie[l.j], yi=f(4i-1)) },
ENDORBS?(w) .= {y,; €im[f] | y € ORBS/, () }.

For all z € dom|[f], Vj € N, an element of ORBS;(x) is called a j-length
orbit of z under f, and, informally, is a tuple (yo, . ..,y;) s.t
w=z  yn=1Fw), = ), - Y= fy)

It is not hard to show, Vx € dom|[f], Vj € N, that ORBS?}(J,‘) has
at most one element; consequently ENDORBS}(:B) also has at most
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one element. For all j € Ny, we define f7 : dom|[f] --+ im[f] by

£ () x, if7=0
x = .
° ELT(ENDORBS)(z)), if j €N,

For an example, define f : [0,100] — R by f(z) =  + 1. Then
 f2(0) =0,

We leave it as an unassigned exercise to show: For any set P, for
any f: P — P, for any j € N, we have f/ : P — P.

We also leave as an unassigned exercise: For any function f, for
any z, for any j € Ny, we have f(f!(z)) = fI*!(z).

In class, we gave an informal proof of the following result. Below,
we give a formal proof, using composition powers.

FACT 23.21. Let P € N. Assume #P = 0. Then 3¢ € PN s.t. {, is
strictly increasing.

Proof. As #P = o, we get P # . So, by the Well-Ordering of N,
P has a minimum. Let m := min P. Then me P < N.

For all k € N, because #P = o and #|[1..k] = k < oo, it follows
that #(P\[1..k]) = oo, and so P\[1..k] # &. So, by the Well-Ordering
of N, we see: Vk € N, P\[1..k] has a minimum. Define f : P - P
by f(k) = min(P\[1..k]). Then, for all k € P, we have f(k) e P\[1..k].

As f: P — P, we see, for all j € Ny, that f7 : P — P. Define £ € P
by ¢; = fi(m). Want: ¢, is strictly increasing. We wish to show:
VieN, {; </lj;1. Let j € N be given. We wish to show: ¢; < {;1.

Let k := ¢;. Then f(k) = f({;) = f(fZ(m)) = fi*(m) = {;41.
Also, as f(k) € P\[1..k] € N\[1..k] = (k..0), we get f(k) > k. Then
l; =k < f(k) =441, as desired. O

LEMMA 23.22. Let s € RY. Assume that s, is semiincreasing and
R-bounded. Then s, is convergent in R.
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Proof. Let A := {s1,52,53,...} and let y := sup A. Then A = im[s].
As s, is R-bounded, it follows that A is bounded in R. Choose M € R
such that A < M. Then sup A < M. We have

—0 < s € A < supAd =y,

so —0 <y. Alsoy =supA < M < o, soy <. Then —0 < y < o0,
so y € R. It suffices to show: s, — y in R.
We wish to show: Ve > 0, 4K € N s.t., Vj e N,

[j=K] = [lsj—yl<e]
Let € > 0 be given. We wish to show: 3K € N s.t., Vj e N,
[j=2K] = [lsi—yl<el

We have y—e <y =sup 4, soy—e < sup A. Then NOT(A < y—e¢).
Choose z € As.t. z > y—e. Since z € A = {s1, $2, 53, ...}, choose K € N
s.t. z = sg. We wish to show: Vj e N,

[j=2K] = [ls—yl<el]
Let j € N be given. We wish to show:
[j=2K] = [ls—yl<e]
Assume: j > K. Want: |s; —y| <e. Want: y —e <s; <y +e.
Since K < j, by (1) of Fact 23.8, we see that sx < s;. We have

y—€e<z=5Kg < S5j,5 Yy —¢c <s;. It remains to show: s; <y + €.
We have s;e A<supA =y <y+e,s08; <y+e,asdesired. [

For any s € RY, we define —s € RN by (—s); = —s;. We leave it as
an unassigned exercise to show: for any s € RY, if s, is semidecreasing,
then (—s), is semiincreasing. We leave it as an unassigned exercise
to show: for any s € RY, if s, is R-bounded, then (—s), is R-bounded.
We leave it as an unassigned exercise to show: for any s € RY, if (—s),
is convergent in R, then s, is convergent in R.

DEFINITION 23.23. Let s € (R*)N. Then
* s, is semimonotone means:
( Se is semiincreasing ) or ( s, is semidecreasing ).
e s, is strictly monotone means:
( Se is strictly increasing ) or (s, is strictly decreasing ).

LEMMA 23.24. Let s € RN, Assume that s, is semimonotone and
R-bounded. Then s, is convergent in R.
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Proof. As s, is semimonotone, we conclude:

(1) s. is semiincreasing or
(2) s, is semidecreasing.

Proof in Case 1: By Lemma 23.22, s, is convergent in R, as desired.
End of proof in Case 1.

Proof in Case 2: Since (—s), is semiincreasing and R-bounded,
by Lemma 23.22, (—s), is convergent in R. Then s, is convergent
in R, as desired. End of proof in Case 2. U

We told a story that indicated how to prove the following result, but
delayed the formal proof until the next class.

THEOREM 23.25. Let s € RY. Then there erists a subsequence t
of se such that t, is semimonotone.

Proof. Next class. See Theorem 24.12. U

24. CLASS 24 ON 5 DECEMBER 2017, Tu oF WEEK 14
Assigned HW#66.

DEFINITION 24.1. Let Y be a topological space. Let A <Y . Then

ClyA := ﬂ { C closedinY | C 2 A},
Inty A = U{Wopean|W§A},
oyA = [ClyA]\ [IntyA],
IsolyA = {zeY |V eNy(2) st. VnA={z}}, and
LPy A [Cly A] \ [Isoly A].

The sets Cly A, Inty A, 0y A, Isoly A and LPy A are called the clo-
sure, interior, boundary, isolated set and limit point set of A,
respectively. When Y is clear, it can be omitted and we have: Cl A,
Int A, 0A, Isol A and LP A.

We drew a neither-open-nor-closed subset A of R? that had three
isolated points. We went through and described Clg2(A), Intg2(A),
Or2(A), Tsolgz2(A) and LPgz(A).
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We did another example: Let A :=[1,2) u {3}. Then A < R and
ClrA = [1,2] U {3},
IntgA = (1,2)
orA = {1,2,3}
IsolgA = {3} and
LPrA = [1,2].
For any topological space Y, the operator Cly : 2¥ — 2¥ has the su-

perset property, the monotonicity property and the idempotence prop-
erty. That is, for any topological space Y, we have:

(VAcY, [ClA2A]),
(VA,B<Y, [(AcB)= (ClAcCIB)]) and
(VACY, [CI(CIA)2CIA]).

Also, for any topological space Y, for any A € Y, we have:
( Aisclosed in Y ) iff (ClA=A).

FACT 24.2. Let Y be a topological space, let A <Y and let C be a
closed subset of Y. Assume that A < C'. Then ClA < C.

Proof. By monotonicity, Cl1A < CIC. Since C is closed in Y, we have
ClC =C. Then Cl1A c CIC = C, as desired. O

Let Y be a topological space, A < Y. An element of Cly A is called

a closure point of A in Y. An element of Inty A is called an interior
point of A in Y. An element of dy A is called an boundary point
of AinY. An element of Isoly A is called an isolated point of Ain Y.
Note: Vz e Y, we have:

( z is an isolated point of A in Y ) iff

([ze A]and [ {z} isopenin A |) iff

([ze A] and | z is isolated in A | ).
An element of LPy A is called a limit point of A in Y.

Assigned HW#67.

We have the following quantified equivalences, one for closure points,
the other for limit points:

FACT 24.3. Let Y be a topological space, A<Y and z€Y. Then
(1) (€ ClA) & (VWeN(2),VnA+g) and
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(2) (e LlPA) & (W eN*(2),VnA#g).

Proof. Proof of (1): Proof of =: Homework#67. End of proof of =.
Proof of <: Assume: VV € N(z), V. n A # . We wish to show:
z € Cl A. That is, we wish to show:

z € ﬂ{CclosedinY|C’2A}.

Let § := {C closed in Y |C' 2 A}. We wish to show: VC € S, z € C.
Let C' € S be given. We wish to show z € C'. Assume that z ¢ C'. We
aim for a contradiction.

Since C' € S, it follows both that C is closed in Y and that C' = S.
Let V := Y\C. Since C'is closed in Y, it follows that V' is open in Y.
So, since z € V, it follows, from Remark 16.4, that V € N(z). Then,
by assumption, V n A # .

We have A C,soVnAcVnC. Since V =Y\, it follows that
VnC=g. Then VnA<CVnnC=,soVnA= . Contradiction.
End of proof of <. End of proof of (1).

Proof of (2): Unassigned homework. End of proof of (2). O

There are sequential versions of closure, interior, boundary, isolated
set and limit point set. We will only need sequential closure:

DEFINITION 24.4. Let Y be a topological space and let A < Y.
Then sCly A := {2z €Y |3Ise AN s.t. s, > z inY}.

Let Y be a topological space and let A < Y. Then sCly A is called
the sequential closure of A in Y. An element of sCly A is called a
sequential closure point of A in Y. When Y is clear, we may omit
the subscript and use sCl A.

For any topological space Y, the operator sCly : 2 — 2¥ has the
superset property and the monotonicity property. That is, for any
topological space Y, we have:

(VAcY, [ClA2A]) and
(VA,B<CY, [(A<B)= (ClA<CIB)]).
WARNING: There are strange topological spaces Y in which a subset
A C Y exists satistying Cly (Cly A) # Cly A. That is, for certain Y, the
operator Cly : 2¥ — 2 is NOT idempotent. However, we will eventu-
ally see, for any METRIZABLFE topological space Y, that sCly = Cly-.

So, for any metrizable topological space Y, the idempotence of Cly
implies that of sCly.
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We drew a neither-open-nor-closed subset A of R? that had three
isolated points. We verified that sClg2(A) = Clg2(A).

Assigned HW#68.

DEFINITION 24.5. LetY be a set, de M(Y), se YN, 2e€Y. Then
d(se, 2) € [0,0)N is defined by (d(s.,z)); = d(s;,2).

Assigned HW#69 and HW#70.
The next definition saves us a bit of writing:

DEFINITION 24.6. Let Y be a topological space and let f be a func-
tion. Assume that dom[f] €Y. Then LPDy f := LPy(dom|f]).

As usual, we may omit the subscript, and write LPD f instead
of LPDy f, provided Y is clear.

We graphed a function f : R --» R s.t. dom[f] = [1,2) U {3}. We
observed that 3 ¢ LPDg f, and argued

both that f — 8 near 3
and that f — 267 near 3.

In general, we have:

PROPOSITION 24.7. Let Y, Z be topological spaces, f:Y --+ Z.
Let a € Y\(LPDy[f]). Then: Ybe Z, f — b in Z near a in'Y.

Proof. Unassigned HW. U

According to Proposition 24.7, we have extreme NON-uniqueness
of limits whenever, on the input side, we try to approach a non-limit
point. On the other hand, what possible reason could anyone have in
being interested in a limit at a non-limit point? By contrast:

THEOREM 24.8. Let Y be a topological space, Z a Hausdorff topo-
logical space. Let f:Y --+» Z. Let a € LPDy f, b,ce Z. Assume:

(1) f—>bin Z near a in'Y and

(2) f—>cinZ neara inY.

Then b = c.
Proof. Assume that b # c. We aim for a contradiction.

Since Z is Hausdorff, b,c € Z and b # ¢, choose V € N'(b), W € N (c)
such that V.n W = . Since f — b near a and V € N (b), choose
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P e N*(a) s.t. fo(P)< V. Since f — ¢ near a and W € N(c), choose
QeN*(a)st. fu(Q)SW. As P,Q e N*(a), we get P n Qe N*(a).

Let D := dom[f]. Then a € LPD f = LP D. So, as P n Q € N*(a),
we conclude, from = of (2) of Fact 24.3 (with A replaced by D and V/
by PN Q), that Pn@Q n D # . Choose z€ Pn @ n D.

Since x € D = dom[f] and = € P, it follows that f(x) € f.(P).
Since z € D = dom[f] and = € @, it follows that f(z) € f.(Q). Since
f(z) e fu(P) < Vand f(z) € f.(Q) € W, it follows that f(x) e VAW.
Then V n W # . Contradiction. O

Theorem 24.8, has an input hypothesis: a € LPDy f. This is a
tame hypothesis. After all, what possible reason could anyone have in
being interested in a limit at a non-limit point? It also has an output
hypothesis: Z is Hausdorff. This is also tame. After all, what possible
interest could anyone have in a non-Hausdorff topological space?

COROLLARY 24.9. Let Z be a Hausdorff topological space. Let
se ZN and let b,ce Z. Assume:

(1) s$e > bin Z and
(2) s¢ > cin Z.

Then b = c.

Proof. Let Y := N* and let a := c0. We have s:Y --» Z and

(I') s > bin Z near a in Y’ and
(2’) s > c¢in Z near a in Y.

Since s € ZN, we have dom[s] = N. We have
LPDy[s] = LPy(dom[s]) = LPn«(N) = {oo}.

Then a = o € {0} = LPDy[s].
Then, by Theorem 24.8 (with f replaced by s), b = ¢, as desired. O

LEMMA 24.10. Let Y be a metric space, let s € YN and let t be a
subsequence of s,. Assume that s, is Y -bounded. Then t, is Y -bounded.

Proof. As s. is Y-bounded, we see that im|[s,] is a bounded subset of Y.
As t, is a subsequence of s,, we see that im[t,] < im[s,]. It follows
that im[¢.] is a bounded subset of Y. Then t, is Y-bounded. O
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LEMMA 24.11. Let s € (R)N. Define p,q : R? —» R by p(z,y) = x
and q(x,y) =y. Then

[ 5o is R*-bounded |
< [ ((pos). is R-bounded) & ((q o s)s is R-bounded) ].

Proof. Unassigned homework. O
We now pick up where we left off at the end of the last class:

THEOREM 24.12. Let s € RY. Then there exists a subsequence t
of se such that t, is semimonotone.

Proof. Let P :={j e N|s; = {s;j+1,Sj+2,Sj+3,...}}. Then

(A) Vje P, Vke (j.0), s; = sy and

(B) Vj e N\P, 3k € (j..o0) s.t. 5; < S.

One of the following must be true:
(1) #P = © or
(2) #P < .

Proof in Case 1: By Fact 23.21, choose ¢ € PN s.t. ¢, is strictly
increasing. Since P < N, we get PN < NV, Then ¢, € PN < NV, Let
t := (sof),. Then t, is a subsequence of s,. We wish to show that
to is semimonotone. We will show that ¢, is semidecreasing. We wish
to show: Vie N, t; > t;.1. Let i € N be given. Want: t; > t;,1.

Since /¢, is strictly increasing, it follows that ¢; < ¢;,1. Let 5 := ¢;
and k := ¢;;,. Then j < k. Since ¢, € PY, we get j,k € P. Since j < k
and since j, k € P < N, we conclude that k € (j..c0). Then, by (A), we
see that s; = s;. Then t; = 55, = s5; = 5, = 3¢
End of proof in Case 1.

Proof in Case 2: Since P € N € R and #P < o0, we see that P has a
maximum. Let m := max P. Then P < [1..m]. Then N\P 2 N\[1..m].
For all j € (m..0), let Q; := {k € (j..0) | s; < s;}. For all j € (m..0),
we have j € N\[1..m] < N\P, so, by (B), we see that Q; # . Then,
for all j € (m..c0), we have & # Q; < N, so, by Well-Ordering of N,
(); has a minimum. Define f : (m..c0) — (m..0) by f(j) = min@Q);,.
As f i (m.w) — (m..o0), we see: Vi € N, fi=1 ¢ (m..0) — (m..o0).
Define ¢ € (m..c0)N by ¢; = fi=1(m + 1). Since (m..c0) = N, we get
(m..0)N¥ < NN, Then 4, € (m..00)N < NY. For all i € N, we have

lisn = film+1) = f(fIN(m)) = f(G).

w1 = tiv1, as desired.
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Claim: {, is strictly increasing. Proof of Claim: We wish to show:
VieN, l; < l;;1. Let i € N be given. We wish to show: ¢; < ¢;,1. Let
j:=¥{; and let k := ¢;,1. We wish to show: j < k.

By definition of ();, we have Q); < (j..c0). Then

ko= lisn = f(t;) = f(j) = minQ; € Q; < (j..o0).

Then k € (j..0), so j < k, as desired. End of proof of Claim.

As ¢, e NV it follows, from the Claim, that (s o), is a subsequence
of s,. Let t := (so{),. We wish to show: ¢, is semimonotone. We will
show: ¢, is strictly increasing. We wish to show: Vi e N, ¢; <t;.1. Let
1 € N be given. We wish to show: ¢; < t;,1.

Let j :=¥; and k := ¢;,1. Then

ko=l = flG) = f()).

Then k = f(j) = minQ; € Q;. So, by definition of ();, we have s; < sy.

Then t; = s, = 5 < s, = 5¢,,, = tix1. £nd of proof in Case 2. O

COROLLARY 24.13. The topological space R is proper.

Proof. We wish to show, for any R-bounded s € RY, that s, is subcon-
vergent in R. Let an R-bounded s € RY be given. We wish to show
that s, is subconvergent in R.

By Theorem 24.12, choose a subsequence t of s, such that t, is
semimontone. Since t, is a subsequence of s, and s, is R-bounded, by
Lemma 24.10, t, is R-bounded. As ¢, is semimonotone and R-bounded,
by Lemma 23.24 (with s replaced by t), t, is convergent in R. So, since
t. is a subsequence of s,, we see that s, is subconvergent in R. [l

COROLLARY 24.14. The topological space R? is proper.

Proof. We wish to show, for any R?-bounded s € (R*)N, that s, is
subconvergent in R?. Let an R*-bounded s € (R?)N be given. We wish
to show that s, is subconvergent in R

Define p,q : R* —» R by p(z,y) = x and ¢(z,y) = y. Because s, is
R2-bounded, it follows, from = of Lemma 24.11, that (pos), and (gos).
are both R-bounded. By Corollary 24.13, choose a strictly increasing
¢ € N¥ such that (posof), is convergent in R. As (gos), is R-bounded
and (qoso/), is a subsequence of (g o s),, by Lemma 24.10, we see
that (¢ o s o /), is R-bounded. By Corollary 24.13, choose a strictly
increasing m € NY such that (g o sofom), is convergent in R.
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As (solom), is a subsequence of (sof), and (so/f), is a subsequence
of s., we see, by Corollary 23.11, that (sofom), is a subsequence of s,.
It therefore suffices to show that (so ¢ om), is convergent in R2.

Since (posof), is convergent in R and (posolom), is a subsequence
of (posol)., by Corollary 23.16, we see that (posolom), is convergent
in R. Since (posoflom), and (gosoflom), are both convergent in R,
it follows, from < of HW#66, that (sofom), is convergent in R%. [

25. CLASS 25 ON 7 DECEMBER 2017, TH oF WEEK 14

THEOREM 25.1. Let Y be a metric space and let A < Y. Assume
that A is sequentially compact. Then A is closed and bounded in Y .

Proof. We wish to show:

(1) Ais closed in Y and
(2) A is bounded in Y.

Proof of (1): We wish to show: A = Cly A. By the superset property,
A < Cly A. We wish to show: Cly A € A. By HW#70, Cly A = sCly A.
We wish to show: sCly A € A. We wish to show: Vz € sCly A, z € A.
Let z € sCly A be given. We wish to show: z € A.

Choose s € AN s.t. s, — zin Y. Because A is sequentially compact,
we know that s, is subconvergent in A. Choose a subsequence t of s,
s.t. te is convergent in A. Choose x € A s.t. t, — x in A. By Theo-
rem 19.9, t, — x in Y. Since ¢, is a subsequence of s, and since s, — 2
in Y, it follows, from Theorem 23.14, that t, — z in Y. By HW#41,
any metric space is Hausdorff, so Y is Hausdorff. So, since both t, — x
inY and t, —» z in Y, it follows, from Corollary 24.9, that = 2. Then
z =1z € A, as desired. End of proof of (1).

Proof of (2): Assume A is unbounded in Y. Want: Contradiction.

Since A is unbounded in Y, it follows that A # ¢f. Choose p € A.
Since A is unbounded in Y, it follows, for all £ € N, that A & B(p, k),
and so A\[B(p,k)] # &. By the Axiom of Choice, choose s € AN
s.t. Vke N, s, ¢ B(p, k).

Since A is sequentially compact, choose a subsequence t of s, s.t. t, is
convergent in A. Choose x € As.t.t, — xin A. Let d denote the metric
on Y. Choose I e Ns.t.,, VjeN,

[j=1] = [dt,z)<1]
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Let M := d(x,p), and, by the Archimedean Principle, choose j € N
s.t. j = max{l,1+ M}. Then j > [ and j = 1+ M. By Corollary 23.13,
choose k € [j..0) s.t. t; = s,. Then d(t;,p) = d(sg,p). Since j = I, by
the choice of I, we have d(t;,2) < 1. Then

dlty.p) < [dlty2)] + [dzp)] < 1+ M,

Since k € [j..00), it follows that j < k. By the choice of s,, we have
sk & B(p, k). Then d(sg,p) = k. Then

j o< k< dsg,p) = dtyp) < 1+M < j,
so j < j. Contradiction. End of proof of (2). O

COROLLARY 25.2. LetY be a metrizable topological space, A =Y .
Assume that A is sequentially compact. Then A is closed in'Y .

Proof. Choose a metric d on Y s.t. 7 is the topology on Y. Then,
by Theorem 25.1, A is closed and bounded in the metric space (Y, d).
Then A is closed in the topological space Y. l

THEOREM 25.3. Let Y be a proper metric space. Then:
[ A is sequentially compact | < [ A is closed and bounded in'Y |.

Proof. Proof of =: Follows from Theorem 25.1. End of proof of =.

Proof of =: Assume that A is closed and bounded in Y. We wish to
show that A is sequentially compact in Y. That is, we wish to show:
Vs e AN, s, is subconvergent in A. Let s € AY be given. We wish
to show: s, is subconvergent in A.

Since s, € AN, we see that im[s.] € A. So, as A is bounded in Y, we
conclude that im[s.] is bounded in Y. Then s, is bounded in Y. So,
since Y is proper, s, is subconvergent in Y. Choose a subsequence ¢
of s, s.t. t, is convergent in Y. Choose z € Y s.t. t, — zin Y. As
to is a subsequence of s, and s, € AN, we conclude that t, € AN
So, since t, — z in Y, it follows that z € sCly(A). By HW#?70,
sCly(A) = Cly(A). Since A is closed in Y, we get Cly(A) = A. Then
z€sCly(A) = Cly(A) = A. Since t, — zin Y and ¢, in AN and z € A,
it follows, from Theorem 19.9, that ¢, — z in A.

So, since t, is a subsequence of s,, we conclude that s, is subconver-
gent in A, as desired. End of proof of =. U

COROLLARY 25.4. Let C := {(u,v) € R*|u?* +v* = 1}. Then C is

sequentially compact.
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Proof. By Corollary 24.14, R? is proper. So, since C is closed and
bounded in R?, by Theorem 25.3, C' is sequentially compact. U

LEMMA 25.5. LetY and Z be topological spaces and let g : Y — Z.
Let s e YN and b e Y. Assume that s, — b in' Y. Assume that g is
continuous at x. Then (go s)e — g(b) in Z.

Proof. True by HW#60 (with X replaced by N* and a by o). d

THEOREM 25.6. Let K and Z be topological spaces. Let f : K — Z.
Assume that K is sequentially compact and that f is continuous. Then
im[ f] is sequentially compact.

Proof. Let Y := im[f]. We wish to show: Y is sequentially compact.
We wish to show: Vs € YN, s, is subconvergent in Y. Let s € YN be
given. We wish to show that s, is subconvergent in Y.

By assumption, f is (K, Z)-continuous. So, by < of (1) of Fact 22.7,
fis (K,Y)-continuous.

For all j € N, since s; € Y = im|[f], there exists r € K s.t. f(r) = s;
By the Axiom of Choice, choose r € KM s.t., for all j € N, f(r;) = s;
For all j € N, we have (f or); = f(r;) = s;. Then (for), = s..
Since K is sequentially compact and » € KN, we conclude that r, is

subconvergent in K. Choose a subsequence q of r, s.t. ¢ is convergent
in K. Choose r € K s.t. g¢ — x in K. Since ¢, — x in K and since
fis (K, Y)-continuous at z, by Lemma 25.5 (with g replaced by f and
b by z), we see that (f oq)e — f(z) in Y. d

COROLLARY 25.7. Let C := {(u,v) e R* |u?+v? = 1}. Let Z be a
metric space. Let f: C — Z be continuous. Then im[f] is closed and
bounded in Z.

Proof. By Corollary 25.4, C' is sequentially compact. Then, by Theo-
rem 25.6, im[ f] is sequentially compact. Then, by Theorem 25.3, im| f]
is closed and bounded in Z. O

DEFINITION 25.8. Let A < R. Then A is bounded above in R
means: AM € R s.t. A < M. Also, A is bounded below in R means:
IN eR s.t. N < A.

We often omit “in R” if it will cause no confusion.

Recall that, in any metric space, “bounded” means “contained in a
ball”. In R, a ball is the same as a bounded open interval, so “bounded
in R” means “contained in a bounded open interval”.
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REMARK 25.9. Let A< R. Then:

[ A is bounded in R| < [ A is bounded above and below in R |.
Proof. Unassigned HW. U

THEOREM 25.10. Let r,s,t € (R*)Y. Let be R*. Assume, Vj € N,
r; <s;<tj. Assume: (1o = b ) and (te —b ). Then: s, — b.

Proof. Let Y := N* and let a := 0. Let P := N. Then P € N (a)
and, by assumption, r, < s, < t, on P. Then, by Theorem 21.2 (with
f replaced by 7., g by s. and h by t.), we get s, — b, as desired. [

THEOREM 25.11. Let A < R be nonempty and bounded above.
Then sup A € ClgA.

Proof. Let y := sup A. Then y € R* and we wish to show: y € ClgA.
Since R is a metric space, by HW#70, we get ClgA = sClrA, so it
suffices to show: y € sClgA. Want: 3s € AN s.t. s, — y in R.

Since A is bounded above, choose M € R s.t. A < M. Then

sup A = min(UB(M)) < UB(M) and M e UB(M),

sosupA < M. Then y = supA < M < . Then y < o0. Since A is
nonempty, choose b € A. We have y = sup A = min(UB(A)) € UB(A),
so A<y. Then —o <be A<y. Then —0 < y.

Since —o0 < y < o0 and y € R*, we see that y € R. For all j € N,
y—(1/j) <y = supA = min(UB(A)), so y — (1/j) ¢ UB(A), so
NOT(A <y —(1/4)),s0 3s € Ast. s >y —(1/j). So, by the Axiom
of Choice, choose s € AVs.t., Vj € N, s; > y—(1/7). Want: s, — yinR.

Define r,t € RN by r; = y—(1/j) and t; = y+(1/5). Then r, — y and
te — ¥, so, by Theorem 25.10, it suffices to show: Vj e N, r; < 5; < ;.
Let j € N be given. We wish to show: r; < s; <1;.

By choice of s,, we have s; > y — (1/7). Then r; = y — (1/j) < s;.
Then r; < sj, so r; < s;. It remains to show: s; < ¢;.

Since s, € AN, we get s; € A. Then s; € A <y <y+ (1/j) = t;.
Then s; < 1;, so s; < t;, as desired. O

COROLLARY 25.12. Let A < R be nonempty, closed in R and
bounded above in R. Then A has a maximum.

Proof. We wish to show: max A # ®.
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Let y := sup A. By Theorem 25.11, we have y € ClgA. Then y # ®.
It therefore suffices to show: max A = y. That is, we wish to show
ye An[UB(A)].

Since A is closed in R, it follows that Clg A = A. Then y € ClgA = A.
We wish to show: y € UB(A).

We have y = sup A = min(UB(A)). Then y € UB(A), as desired. O

COROLLARY 25.13. Let B < R be nonempty and bounded below.
Then inf B € ClgB.

Sketch of proof, details left to the reader: Let A := —B. Since B
is nonempty and bounded below, it follows that A is nonempty and
bounded above. Then, by Theorem 25.11, we have sup A € ClgA.
Then inf B = —(sup A) € —(ClgA) = ClgB. End of sketch of proof.

COROLLARY 25.14. Let B < R be nonempty, closed in R and
bounded below in R. Then B has a minimum.

Sketch of proof, details left to the reader: Let A := —B. Since B is
nonempty, closed and bounded below, it follows that A is nonempty;,
closed and bounded above. Then, by Theorem 25.12, A has a max-
imum. Then —A has a minimum. Since —A = —(—B) = B, we
conclude that B has a minimum, as desired. End of sketch of proof.

THEOREM 25.15. Let S < R be nonempty, closed and bounded in
R. Then S has a maximum and a minimum.

Proof. By = of Remark 25.9, we see that S is bounded above and

below in R. Then, by Corollary 25.12 and Corollary 25.14, S has a
maximum and a minimum. U

The next result is called the Extreme Value Theorem.

THEOREM 25.16. Let K be a nonempty sequentially compact topo-
logical space and let f : K — R be continuous. Then f has a mazimum
and a minimum.

Proof. Since K is nonempty and dom|f] = K, it follows that im[f]
is nonempty. By Theorem 25.6, im[f] is sequentially compact. Let
S :=1im[f]. Then S is nonempty and sequentially compact. By Defi-
nition 23.5, we wish to show: S has a maximum and a minimum.
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Since S is sequentially compact, it follows, from = of Theorem 25.3,
that S is closed and bounded in R. So, since S is also nonempty,
by Theorem 25.15, we see that S has a maximum and a minimum. [J

DEFINITION 25.17. Let Y, Z be topological spaces, f :Y --+ Z.
LetaeY. Then

(Y,Z)-LIMS f = {beZ|f—binZ nearainy } and
(Y, Z)-lim f := ELT( (Y,Z)-LIMS f ).

When Y and Z are clear, we often omit “(Y, Z)-" and write LIMS f
and lim f. However, some confusion can arise, so care is requirecClL:
Defillne f:R\{0} — (0,00) by f(x) = 1/2% Then f : R --» R and
f R --» R*. We have
(R,R)- LH(}/[S f=9g and (R, R*)- LH(}/IS f = {oo}.

Then (R, R)- li(r)n f=® and (R, R*)- li(r)n f=o0.
We have alternate notation for lign f:
e At any point where the variable z is unbound, we can use
lim f(x)todenotelim f. Then x is temporarily bound, from the
fext “lim” to the text “f(x)”, and becomes free afterward.

r—a

e At any point where the variable ¢ is unbound, we can use
lim f(t) to denote lim f. Then ¢ is temporarily bound, from the

text “lim” to the text “f(t)”, and becomes free afterward.
o [lc. o
NOTE TO SELF: Next year, using Theorem 20.8 we will show that
if f =g on a pnbd of a, then
both ( LIMSf c LIMSg ) and ( LIMSg c LH(}/[Sf )

and so LIMS f= LIMS g, and so hmf = hmg
NOTE TO SELF: We did prove thls see Theorem 41.18

REMARK 25.18. Let Y, Z be topological spaces, f Y --+» Z. Let
acY,beZ. Then: (limf=0b) = (f—bnera).

Proof. Assume lim f = b. We wish to show: f — b near a.
Since b € Z, we know that b # ®. So, since lim f = b, we see that
LIMS f = {b}. Then b e LIMS f. Then f — b near a. O
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REMARK 25.19. LetY be a topological space. Let Z be a Hausdorff
topological space. Let f Y --» Z. Let a € LPDy f. Let be Z. Then:
(limf=b) « (f—>bneara).

Proof. Proof of =: This follows from Remark 25.18. End of proof of
=.

Proof of <: Assume f — b near a. We wish to show: lim f = b.

By Theorem 24.8, #[LIMS f] < 1. Since b € Z and f — b near a,

we see that b € LIMS f. Then {b} = LIMS f. Then
lim f = ELT(LIMS f) = ELT({b}) = b,
as desired. End of proof of <. O

DEFINITION 25.20. Let V' be a vector space, S a set, f:V --» S,
peV. Then f(p+e):V --» S is defined by (f(p+e))(h) = f(p+h).

The function f(p+e) is called the “horizontal translate of f by p”.
We explained how the graph of f(p + e) is obtained from the graph of
f by a horizontal translation.

DEFINITION 25.21. Let V, W be vector spaces. Let f:V --» W.
Let p € dom[f]. Then f| :V --» W is defined by

foh) = [fle+h] = [f(p)]

The function pr is called the “double translate of f by p”. We
explained how the graph of pr is obtained from the graph of f by two
translations, one horizontal, one vertical.

DEFINITION 25.22. Let W be a vector space. Let f : R --» W.
Let p € dom|[f]. Then SS%: R --» W is defined by

Lfp+h)] — [f(p)]
(SSP)(h) = - :
The function SS? is called the “secant slope function of f at p”.

DEFINITION 25.23. Let W be a normed vector space, f : R --» W.
Then f': R --» W is defined by f'(p) = lién SS%.

The function f’ is called the “derivative of f”.

In Definition 25.23, by lign, we mean (R, W)- 1ign. In the special case
where W = R, we mean (R,R)—li(r)n, and NOT (R*,R*)—li(r)n. Thus, for
any function f: R --» R, for any p, we have f'(p) ¢ {c0, —0}.
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REMARK 25.24. Let W be a normed vector space, f : R -—-» W.
Then dom[f'] < dom]| f].

Proof. We wish to show: Vp € dom[f’], p € dom[f]. Let p € dom[f’]
be given. We wish to show: p € dom|[f].
Since p € dom[f'], we get f'(p) # @. That is, lim SS} # ®. Then

SS% # ©. Then, by Definition 25.22, we get p € dom[f]. O

Recall: Vset S, Vb # ®, C% : S — {b} is defined by C%(z) = b.

Recall: Vset S, idg : S — S is defined by idg(z) = =.

We explained: For any normed vector space W, for any y € W, we
have (C%)' = Cp". That is, the derivative of a constant is zero.

We explained: (idg)’ = C}, i.e., the derivative of the identity is one.

26. CLASS 26 ON 12 DECEMBER 2017, Tu oF WEEK 15
Recall, for any topological space Y, for any A € Y, that

ClA = {zeY |VUeN(2), UnA#g} and
LPA = {zeY |VUEN(2), UnA#J}.

Recall that a topological space is said to be 77 if all of its singleton
sets are closed. In this course, metrizable is a “tame” hypothesis, in the
sense that every topological space we care about is metrizable. Recall
that, for topological spaces,

metrizable = Hausdorff = T7.

Then Hausdorff and 77 are even tamer than metrizable.

FACT 26.1. Let Y be a T\ topological space, let p,z € Y and let
UeN*(z). Then U} € N*(z).

Proof. One of the following is true:

(1) p¢ U or
(2) peU.
Case 1: Asp¢ U, UL = U. Then U} = U e N*(z). End of Case 1.
Case 2: Choose V € N(z) such that V* = U. Then z ¢ V* = U.
So, since p € U, we conclude that p # z. Since W € N (z), choose an
open subset W of Y such that z € W < V. Since p # z € W, we get
ze W, . Since W SV, we get W, € V. Then z € W <V *.
Since Y is Tj, we conclude that {p} is closed in Y. Then Y\{p} is
open in Y. So, since W is also open in Y, it follows that W n (Y\{p}) is
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open in Y. So, since W) = W\{p} = W n (Y'\{p}), we see that W is
open in Y. So, since z € W < V¥, it follows that V,* € N(z). Then

(V) e N*(2). Then Uy = (V;IS;’ =V\{p,z} = (V) € N*(2), as

z p
desired. End of Case 2. U

According to Remark 21.16, a one point adjustment of a function
doesn’t affect its limits. There’s an analogous result for limit points
and sets. It states that a one point adjustment of a set doesn’t affect
its limit points:

COROLLARY 26.2. Let Y be a T topological space, let p e Y and
let ACY. Then LP(AX) = LP A.

Proof. As AY < A, we get LP(A)) < LP A. Want: LP A < LP(A)).
We wish to show: Vz e LP A, z € LP(AY). Let z € LP A be given.
We wish to show: z € LP(AY). We wish to show: YU € N*(2),
UnA) # . Let U e N*(2) be given. We wish to show: UnAX # .

By Fact 26.1, U)X € N*(z). So, since z € LP A, we get U n A # .

Then U n AX = (U n A)\{p} = U n A # &, as desired. O
DEFINITION 26.3. Yvector space V, VA<V, VpeV, we define
A+p = {z+p|lxeA} and

A—p = {z—pl|lzeA}.

REMARK 26.4. Let V' be a normed vector space, let A <V and let
peV. Then LPy(A —p) = (LPyA) —p.
Proof. Unassigned HW. U
REMARK 26.5. Let V' be a vector space and let S be a set. Let
f:V--—SandletpeV. Then:

(1) VheV, (flp+e))(h)=flp+h)  and

(2) dom[f(p + )] = (dom[[]) —p.
Proof. Unassigned HW. U
REMARK 26.6. Let V and W be vector spaces. Let f :V --+» W
and let p € dom[f]. Then

(1) Yhe V. f(h) =[fp+n)]=1/P)],
(2) fg(()v) = OW and
(3) dom[f,] = (dom[f]) —p.

Proof. Unassigned HW. U
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REMARK 26.7. Let W be a vector space. Let f : R --+ W and let
p € dom|f]. Then
(1) Yh e R, SSJ’f(h) = [pr(h)]
(2) dom[SS}] = ((dom[[]) —p)
(3) LPDR[SSﬁ] = (LPDgf) — p.

/h,
o and
Proof. Unassigned HW. O

REMARK 26.8. Let W be a normed vector space, f:R--+W. Then

(2) dom[f'] < dom][f].

Proof. Unassigned HW. U
Define f : R — R by f(z) = |z|. Then
dom[f'] = R\{0} < R = dom[f]

“w_»

So, in (2) of Remark 26.8, we cannot replace “C” by

For any normed vector space W, for any g € W, (Cg) = CH%W.

We have: (idg)’ = Cj.

Define f : R — R by f(z) = (x — 1)*> + 2. We graphed f. Let
A={1+1,1+(1/2),1+ (1/3),1 + (1/4),...} and let B := A U {1}.
Let g := f|B : B - R. We graphed ¢g. The graph of g has only
countably many points and is a subset of the graph of f. We explained
why ¢'(1) = 0. We noted: Vo € R\{1}, ¢'(z) = ©.

DEFINITION 26.9. For any normed vector space W, for any f :
R --» W, for any p, by f is differentiable at p, we mean: p € dom[f'].

In this course, we make the convention that 0° = 1.
FACT 26.10. Let pe R. Then, Yk € N, dcontinuous g : R - R s.t.
VheR, (p+h)* = p" + kpF'h o+ [g(h)] A2
Proof. For all ke N, let P, := [ Jcontinuous g : R — R s.t.
VheR, p+nh)* = p* + k" 'h + [g(R)]R*].

We wish to show: Vk € N, P,. We leave it as an unassigned exercise
to show: P;. By the Principle of Mathematical Induction, we wish to
show: Vk € N, (P, = Pyy1). Let k € N be given. We wish to show:
P, = P,1. Assume P,. We wish to show: Py .
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By Py, choose a continuous g : R — R s.t.
VheR, (p+h)* = "+ k" h o+ [g(h)] R
We wish to show: Jcontinuous v : R — R s.t.
VheR, (p+n) = "+ (k+ )pfh + [y(R)] R

Define v : R — R by

v(h) = plg(W)] + k" + hg(h)].
Then v : R — R is continuous, and we wish to show:

VheR, (p+ Rt = " (k+ 1)pfh + [y(R)] R
Let h € R be given. We wish to show:
(p+h) = P+ (kPR + [y(W)] R

We have

(p+h)* = P+ kp"h o+ [g(h)] R
Multiplying this by p + h, we get

(p+ R = (p + h) (" + k" h + [g(h)]h*)
= p (0" + "R+ [g(W)]R*) +
h(p® + kp"'h + [g(W)]h*)
= P kp*h + plg(M)]n*  +
ph + kp"'h* + hlg(h)]h?
P (Rt + [y(R)] R

as desired. U
COROLLARY 26.11. Let k € N. Define f : R — R by f(z) = 2*.
let pe R. Then f'(p) = kp*—1t.
Proof. We wish to show: li(r)n SS? — kph L.

By (3) of Remark 26.7, we have LPDg(S5S}) = (LPDgrf) — p. Also,
we have LPDg f = LPg(dom[f]) = LPgR = R. Then

0 =p-peR-—p = (LPDrf) —p = LPDgr(SSY).

Then, by Remark 25.19, it suffices to show: SS7 — kp*~' near 0.
By Fact 26.10, choose a continuous g : R — R s.t.

VheR, (p+h)* = p" + kp"'h + [g(h)]h*
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For all h € R, we have f(p+ h) = (p + h)*. Also, we have f(p) = p*.
Let z := kp®~!. Then

VheR, fo+h) = [f)] + zh + [g(h)] P>

We wish to prove: SS? — z near 0.
For all h € R, we have

_ 2
SSu(h) = e+ h)] = [f)] _ 2k + lg(W)]n*

h h
Then, Yh € Ry, SS(h) = 2 + [g(h)]h. Define i := idg : R — R.
Then Vh € R, i(h) = h. Then i(0) = 0. Also, the function i : R — R

is distance-semidecreasing, hence 1-Lipschitz, hence uniformly contin-

uous, hence continuous (see Fact 22.8). For all h € Rj, we have
§85(h) =z + [gM)]h =z + [g(W)][i(h)] = (Cg + gi)(h).
That is, S} = Cf + gi on Ry
As g : R — R is continuous, we get: g — ¢(0) near 0. Asi: R — R
is continuous, we get: ¢ — i(0) near 0. Then, since C§ — z near 0, we
get: Cf + gi — z 4 [g(0)][#(0)] near 0. So, since
2+ [gO][0)] = 2+ [9(0)] -0 = 2+ 0 = 2

we get: Cf 4+ gi — z near 0. So, since SSJ’f = C§ +gion R], it follows,
from Theorem 20.8, that S S? — z near 0, as desired. O

Recall: Vfunction f, Vnon-® a,b, Vz, we have:

flz), ifz#a
b, if v = a.

(adj, f)(z) = {

We can use this “adjustment” operator to remove discontinuities, as in
= of Remark 21.17. When f is differentiable at a point p, the secant
slope function S S? has a removable discontinuity at 0, and, in the next
definition, we remove it by an adjustment that introduces the tangent

slope f'(p) at 0.

DEFINITION 26.12. For any normed vector space W, for any f :
R --» W, for any p € dom|[f'], we define
STSY = adj) "(SS1).

Keep in mind that, if f is not differentiable at p, then STS? = 0.
In Definition 26.12, the function S TSJIZ is called the secant tangent
slope function of f at p. Its values include all the secant slopes of f
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at p together with the one tangent slope of f at p. The introduction of
this one tangent slope removes the discontinuity at 0, and so we have:

REMARK 26.13. Let W be a normed vector space, let f: R --+» W
and let p € dom|[f']. Then ST'S} is continuous at 0.

Proof. Since p € dom[f'], we get: SS} — f'(p) near 0. Then, by =
of Remark 21.17 (with f replaced by SS%, a by 0 and b by f'(p)), we
see that ST Sf is continuous at 0, as desired. O

FACT 26.14. Let W be a normed vector space, let f : R --» W and
let p e dom|[f']. Then (idg) - (STS}) = f, .

Proof. Since R is a common superdomain for (idg) - (ST'S7) and f], it
suffices to show: Vh € R, ((idg) - (ST'S}))(h) = f(h). Let h € R be
given. We wish to show: ((idg) - (ST'S}))(h) = £, (h). We have

(ids) - (STSD)(R) = [ida(M)] - [(STSW)] = h-[(STSLM)]

Also, we have fl'(h) = [f(p+ h)] —[f(p)]. We therefore wish to show:
h-[(STSP)(h)] = [f(p + h)] = [f ()]

One of the following must be true:
(1) h#0 or
(2) h=0.
Case 1: Since h # 0, we get ST'S}(h) = SS}(h). Then
h-[(STS)(R)] = h-[(SS})(h)]
el

h
= [fle+RM)]-[f)],

as desired. End of case 1.
Case 2: Since h = 0, we get ST'S7(h) = f'(p). Then

h-[(STSP)(M)] = 0-[f'(p)] = 0 = [f(p)]—[f(p)]
= Se+0]-1f)] = Lflp+m] =1l
as desired. End of case 2. U

FACT 26.15. Let V be a normed vector space, let Z be a topological
space, let f:V --» Z and let pe V. Then:

[ f is continuous atp| < [ f(p+ e) is continuous at Oy |.
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Proof. Proof of <: Unassigned HW. End of proof of <.
Proof of =: Let g := f(p + ¢). We wish to show: g is continuous
at 0y. We wish to show: YE € N(g(0y)), 36 > 0 s.t., Vz € dom[g],

[lzlv <d] = [gl)eE]
Let E € N(g(0y)) be given. We wish to show: 3§ > 0 s.t., Vz € dom|g],
[lzlv <d] = [gl)eE]

We have g(0y) = (f(p+9))(0y) = f(p), so g(0y) = f(p). It follows
that £ € M(g(0y)) = N(f(p)). So, since f is continuous at p, choose
d > 0 s.t.,.Vw € dom|[ f],

[lw=ply <] = [flw)eFE]
We wish to show: Yz € dom|[g],
[lzlv <d] = [gl)eE]
Let x € dom[g] be given. We wish to show:
[lzlv <d] = [g)eE]

Assume |z|y < §. We wish to show g(z) € E.
By (2) of Remark 26.5, dom[f,] = (dom[f]) — p. Then

x € dom[g] = dom|[f(p+e)] = (dom[f]) — p,

and so x + p € dom[f]. Let w := x + p. Then w € dom[f]. We have
lw — ply = |z|y < 6. So, by choice of d, we get f(w) € E. Then
g9(x) = (f(p+*)(x) = f(p+x) = f(w) € E. End of proof of =. 0

FACT 26.16. Let V., W be a normed vector spaces. Let f :V --» W
and let pe V. Then:

[ f is continuous at p ] < [ f] is continuous at Oy |.

Proof. Proof of <: Unassigned HW. End of proof of <.

Proof of =: By (2) of Remark 26.6, f(Oy) = Ow. Let g := fI.
Then g(0y) = Ow. We wish to show: g is continuous at 0y. We wish
to show: Ve > 0, 3§ > 0 s.t., Vz € dom|[g],

[lzlv <d] = [lg(@)lw ]
Let € > 0 be given. We wish to show: 36 > 0 s.t., Vo € dom|g],

[lzlv <61 = [lg(@)lw <e].
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So, since f is continuous at p, choose § > 0 s.t.,Vw € dom| f],

[lw=plv <] = [Ilf)]=1fllw <el

We wish to show: Vz € dom[g],

[lzly <d] = [lg(@)lw <e].

Let x € dom[g] be given. We wish to show:

[lzlv <61 = [lg(@)lw <e].

Assume |z|y < . We wish to show |g(z)|w < e.
By (3) of Remark 26.6, dom[f]] = (dom[f]) — p. Then

z € dom[g] = dom[f]] = (dom[f]) — p,

and so z+p € dom|f]. Let w := x+p. Then w € dom[f]. Also, we have
lw — p|ly = |z|y < 4. So, by choice of &, we get |[f(w)] — [f(p)]|lw < e.

-
We have g(z) = f, (z) = [f(z + p)] = [f(2)] = [f(w)] = [f(p)]- Then
9(@)lw = |[f ()] = [f(P)llw < e. End of proof of = O

THEOREM 26.17. Let W be a normed vector space, f : R --» W,
and p € R. Assume f is differentiable at p. Then f is continuous at p.

Proof. By Definition 26.9, we see that p € dom[f’]. By < of Fact 26.16,
it suffices to show that fg is continuous at 0. By Fact 26.14, we have
(idg)- (ST'SY) = f. By Remark 26.13, ST'S} is continuous at 0. Then,
by Fact 19.22, it suffices to show that idg is continuous at 0.

The map idg : R — R is distance-semidecreasing, hence 1-Lipschitz,
hence uniformly continuous, hence continuous (see Fact 22.8). It fol-
lows that idg is continuous at 0, as desired. U

Let +,/: R* x R* --» R* denote addition and division, respectively.
Then: Ya,b,h, (a +b)/h = (a/h) + (b/h). From this we see:

FACT 26.18. Let W be a vector space, let f,g : R --» W and let
peR. Then SS?JFQ = [SS?] + [SSP].

Proof. We wish to show: Vh, (SS§+9)( ) =

= [(SSF)(R)] + [(SSE)(h)].
Let h be given. We wish to show: (SS§+9)( ) =

[(SSp)( )+(559)(h)]-
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We have
(SS?_i_g)(h) _ [(f"i_g)(p""h)g_ [(f+g>(p)]
_ e+m)]+1glp+ )] = [f()] - [9(p)]
h
_ e+ m]-1f)]+ g+ h)] —[9(p)]
h
_ [[f(p +h)] - [f(p)]] N l[g(p +h)] —lg(p)]
h h
= [(5SP)(W)] + [(557)(R)],
as desired. 0

The preceding result, Additivity of Secant Slope, is a precalculus
precursor of the next result.
The next result is called Additivity of Limit.

THEOREM 26.19. Let W be a normed vector space, f,g: R --» W
and p € LPDg(f + g). Then (f +g)'(p) = [f'(p)] + [9'(p)].
Proof. Let z := [f'(p)] + [¢'(p)]. We wish to show:

[2r0] = [(+a/e) - =]
Assume: z # ®@. We wish to show: (f + ¢g)'(p) = z. Then, by Defini-
tion 25.23, we wish to show: lign(5§+g) =z.
By (3) of Remark 26.7, LPDg(SS%,,) = [LPDg(f + g)] —p. By
assumption p € LPDg(f + g). Then
0 =p—pe [LPDe(f+g)] —p = LPDr(SS},,).

Then, by < of Remark 25.19, it suffices to show: S§+g — z near 0.
Since [f'(p)] + [¢'(p)] = z # O, it follows that f'(p) # ® # ¢'(p).
So, since li(I)n(SS§Z) = f'(p) and lign(SSg) = ¢'(p), by Remark 25.18,

(5SS} — f'(p) near 0) and (SS? — g'(p) near 0 ).

Then, by Theorem 19.17, [SS¥] + [SSE] — [f'(p)] + [¢'(p)] near 0.
By Fact 26.18, SS%, = [SS7] + [SSE]. So, as z = [f'(p)] + [¢'(p)], we
get: S%,, — z near 0, as desired. O

We noted that, if f = C’(lfoo’o] and g = C[QO,OO), then f+g = C?O}, and
we get (f +¢)'(0) = @, f/(0) = 0 and ¢'(0) = 0, and it follows that
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(f +9)(0) # [f(0)] +[¢'(0)]. So the assumption, in Theorem 26.19,
that p € LPDg(f + ¢) cannot be omitted.

We noted that, if f,g : R — R are defined by f(z) = |z| + 1 and
g(z) = —|z|—1, then f+g = C}, and we get (f +g¢)'(0) = 0, f'(0) =
and ¢'(0) = ®@, and it follows that (f + ¢)'(0) # [f'(0)] + [¢'(0)]. So,
in Theorem 26.19, we cannot change =* to =.

For all a,aq,b,b; € R,

arby —ab = (a1 —a)b + a(by —b) + (a1 —a) (by — b);
if we use A(ab) to abbreviate a;b; — ab, and Aa to abbreviate a; — a,
and Ab to abbreviate by — b, then we have

A(ab) = (Aa)b + a(Ab) + (Aa) (AD).
FACT 26.20. Let f,g: R --+» R, Then, for all p, h,

(1) (fg), () = Lf; (MIlg]+1f()]lg, (MI+11, (h)]lg, (h )] and
(2) 55%,(h) = [SSF(Wlg(p)]+[f(p )][SSp(h)] EEAWIEEAWIIE
)

Proof. Let p and h be given. We wish to prove (1) and (2).
One of the following must be true:

(A) ([p¢dom[f]]or [p+h¢dom[f]]or [h¢R])  or
(B) ([pedom[f]]and [p+hedom[f]]|and [heR]).

Case A: We have both
(fg)y (W) =@=[f, (Mlg@)]+1fP)llgy (W]+Lf, (M)][g, (h)]
and
S84, (h)=@=[SSE(M)][g(p)]+[f()I[SS, ()] +[SSER)I[SSE (h)][R],

as desired. End of Case A.
Case B: Proof of (1): Let

ap = f(p—’_h)’ by = g(p+h>7 a:= f(p>7 b:= ( )
By Definition 25.21, ay —a = f}(h) and by — b = g} (h). So, since
aiby —ab = (a1 —a)b + a(by —b) + (a; —a)(by —b),
we get
(f9), (h) = [f;y (Wla)] + [f®)]lgy (W] + [, (W)]lgy (W],
as desired. End of proof of (1).
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Proof of (2): Dividing (1) of Fact 26.20 by h, we get

S [me)] o) + 1) [g—,ih)]

; [fgfih)] [952’"‘)] 1),

and, by (1) of Remark 26.7, it follows that
585, (h) = [SSE(M)lg(p)] + [f(R)][SSE(R)]
+ [SSF(WLSSE(R)][R],
as desired. End of proof of (2). End of Case B. U

COROLLARY 26.21. Let f,g: R --» R, Then, for all p,
585, = [SSTHCEY] + [GEP1[SS5] + [SS7][558] [ide].

Proof. Let ¥ := [SS?][C4P)] + [CLP][SSP] + [SS?][SSP] [ide]. We
wish to show that SS?Q = W. Since R is a common superdomain
for both SS%, and W, We wish to show: Vh € R, (55%,)(h) = W(h).
Let h € R be given. We wish to show: (S5%,)(h) = ¥(h).

By (2) of Fact 26.20,

55%,(h) = [SSE (Mg (P)] + [f )[SSF(R)] + [SSF (RIS SG(R)][A]-

By definition of ¥, we have
U (h) = [SSE(M)]lg(p)] + [f (0IISSF ()] + [SSF(]LSSG (R)][R]-
Then (S5%,)(h) = W(h), as desired. O

The preceding result, the Product Rule for Secant Slopes, is a pre-
calculus precursor of the next result.
The next result is called the Product Rule.

THEOREM 26.22. Let f,g : R --» R and p € LPDg(fg). Then
(f9)'() = ') 9] + [f(0)]1g'(p)]-

Proof. Let = := [f'(0)] [g(p)] + [f()] [¢/(p)]- We wish to show:
[220] = [(f9)0) = =].

Assume: z # ©. We wish to show: (fg)'(p) = z. Then, by Defini-
tion 25.23, we wish to show: lign(Sgg) = z.
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By (3) of Remark 26.7, LPDg(SS},) = [LPDr(fg)] —p. By assump-
tion p € LPDg(fg). Then

0 = p—p € [LPDg(fg)] — p = LPDg(SS%,).
Then, by < of Remark 25.19, it suffices to show: ng — 2 near 0.
Since [f'(p)] [9(p)] + [f(p)][g'(p)] = = # @, it follows that
ff,) # @ # 4.
So, since hgn(SS?) = f'(p) and lign(SSg) = ¢'(p), by Remark 25.18,
(SS;— f'(p)near 0)  and  ( SS) — ¢'(p) near 0 ).
By Corollary 26.21, we have
SSt = [SSE][CEP] + [CLP][SSP] + [SSP][SSP] [ide].
By Theorem 19.17 and Theorem 19.23, we see that
[SSTICE™] + [CE™1[S53] + [S571[SS5] [ics]
= [F®1g] + )] (] + L' ()] (p)] [0]
near 0. Also, we have
LF' ()] lg@)] + )] ®)] + [f ()] g (p)][0]
= [F'®1g] + [fP]Y )] = 2.

Then S? , — # near 0, as desired. 0

FACT 26.23. Let f,g : R --» R, let p € dom|f], and let h € R.
Let k = pr(h). Let q := f(p). Assume that ¢ € dom|g']. Then

(SSgop)(h) = [(STSE(K))][(SSF)(h)].
Proof. Next semester. O

COROLLARY 26.24. Let f,g: R --+ R. Then, for all p,
SSh, o =* [(STSI™) o (fI)] - [SS?] on R.

gof

Proof. Next semester. O

By Definition 20.7, the conclusion means: Vp, Vh € R,
(5S.p)(h) =" ([(STS{™) o (f7)] - [SS7]) (h).

The preceding result, the Chain Rule for Secant Slopes, is a precursor
of the next result. We indicated proofs of both of them, but will give
detailed arguments next semester.

The next result is called the Chain Rule.
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THEOREM 26.25. Let f,g: R --> R. Let p e LPDg(go f). Then
(go f)(p) == [f'(g)]ld ()]

Proof. Next semester. 0

27. CLASS 1 ON 16 JANUARY 2018, TUu oF WEEK 1
Assigned HW#1-1 and HW#1-2.

THEOREM 27.1. Let K be a sequentially compact metric space, let
Y be a metric space and let f : K — 'Y be continuous. Then f : K —Y
s uniformly continuous.

Proof. For all p € K, we define p := f(p); then pe Y. For all pe KY,
we define p := f op; then pe Y.
Assume f is not uniformly continuous. We aim for a contradiction.
By HW#1-2, choose € > 0 and s,t € KN and v € K s.t.

( [se uin K] and [t, —win K] and
[VieN,  dv(5;.8)=¢e] ).
Since f is continuous, it follows that f is continuous at u. So, since
Se — u in K, by Lemma 25.5, we see that 5, — w in Y. Also, since

te — u in K, by Lemma 25.5, we see that {, - u in Y.
Since s, — u in Y, choose L € N s.t., Vj e N|

[j=L] = [dv(5;1)<e/2]
Since t, — w in Y, choose M € N s.t., Vj € N,

[j=M] = [dv(t;u) <e/2]
Let j := max{L, M}. Then j € N. Since j > L, we get dy (5;,u) < /2.
Also, since j = M, we get dy(t;,u) < €/2. Also, by choice of s and
t, we conclude that dy (5;,¢;) = €. By the triangle inequality, we have
dy (55,¢;) < [d(5;,7)] + [d(w,?;)]. Then

e < dy(5;,t) < [d(5;0)] + [d(T, ;)]

< [e/2] +[¢/2] = e,

so € < . Contradiction. O

DEFINITION 27.2. Let Z be a set and let D : Z x Z — [0, 0].
Then D is an extended metric means:

(1) Vp.qe Z, ([D(p,q)=0] < [p=q]),
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(2) Vp,qe Z, (D(p,q) = D(q,p)) and
(3) Vp,q,reZ, (D(p,r) < [ D(p,q) ] + [ D(g,7) ]).

Note: an extended metric is a metric iff its image is contained in R.
DEFINITION 27.3. For any set Z, M*(Z) := {extended metrics on Z}.
DEFINITION 27.4. Let Z be a set, De M*(Z), pe ZN and q€ Z.
Then pe — q in (Z, D) means: Ve > 0, IK € N s.t., Vj € N,

[i=2K] = [Dpjq <e]
DEFINITION 27.5. Let X be a set, let (Y,d) be a metric space and
let Z :=YX. Then D} € M*(X) is defined by
Di(p,q) = sup{d(p(z),q(x))|zeX}.

Let X be a set and let (Y,d) be a metric space. We call D% the
uniform metric of X and d. Let Z := YX. For any p € ZN, for
any q € Z, by p, converges uniformly to ¢ with respect to X and d,
we mean: p, — ¢ in (Z, D%).

We considered the special case where X = Rand Y = R and d = dg.
Let Z := R and let € > 0. We drew the graph of an example function
f e Z. We drew the graph of f + C and f — Cf, and we shaded the
region between those two graphs. Call the closed shaded region R. We
made the point that, for any p € Z, we have:

[ D¥(p,f) <e] <= [thegraphofpisin R ].

We again considered the special case where X = R and Y = R and
d=dg. Let Z := R® and let f := adj;(CQ). For all z € R, we have

0, ifz+#0

1, ifz=0.

We drew the graph of f; note that f : R — R is discontinuous at 0.
Define p e ZN by: Vj e N, Vz € R,

0, if e <—1/j

1+jz, if —1/j<x<0

1—jz, if0<x<1/j

0, if1/j <.

flz) =

pj(z) =

We drew the graphs of p; and ps and p3 and p4; note that, for all j € N,
p; - R — R is continuous. We observed: Yz € R, p;(z) — f(x). This
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observation is expressed by saying “p, converges pointwise to f”. Thus
a pointwise limit of contiuous functions is not necessarily continuous.
We drew the graphs of f + C%{/ % and f— Cﬂlk/ % and observed:

NOT[ p. — fin (Z,D%) 1.

That is, p, does NOT converge uniformly to f. The next result asserts
that a uniform limit of continuous functions is continuous.

THEOREM 27.6. Let X be a topological space and let (Y, d) be a met-
ric space. Let Z :=YX and let D := D%. Let pe Z" and let f € Z.
Assume that ps — f in (Z,D). Assume, for all j € N, thatp; : X - Y
s continuous. Then f : X —'Y is continuous.

Proof. We wish to show: Va € X, f is continuous at a. Let a € X
be given. We wish to show: f is continuous at a. We wish to show:

Ve >0, 3U € Nx(a) s.t., Yz € X,
[zeU] = [d(f(z), fla)) < €]

Let € > 0 be given. We wish to show: 3U € Nx(a) s.t., Vx € X,
[zeU] = [d(f(z), fla)) < €]

Since p, — f in (Z, D), choose K € N s.t., Vj € N,
[j=2K] = [D(p,f) <e3]

By assumption, px : R — R is continuous. Also, D(px, f) < €/3.
Let ¢ := px. Then ¢ : R — R is continuous; it follows that ¢ is
continuous at a. Also, D(q, f) < ¢/3; it follows, for all z € X, that
d(q(z), f(x)) < /3. In particular, we have d(q(a), f(a)) < /3. Since
q is continuous at a, choose U € Nx(a) s.t., Vz € X,

[zeU] = [d(q(x), q(a)) < /3]
We wish to show: Vo e X,

[zeU] = [d(f(z), fla)) < €]
Let x € X be given. We wish to show:

[zeU] = [d(f(z), fla)) < €]
Assume: x € U. We wish to show: d(f(x), f(a)) < e.
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Recall: d(f(a),q(a)) < €/3. Then we have: d(q(a), f(a)) < €/3.
Since x € X, we get d(f(z),q(x)) < €/3. Since x € U, by choice of U,
we see that d(q(x), q

(
d(f(x), f(a)) < [d(f(x),q(x))] + [d(q(z),q(a))] + [d(g(a), f(a))]-
Then d(f(z), f(a)) < [e/3] + [¢/3] + [¢/3] = ¢, as desired. O

a)) < €/3. By the triangle inequality, we have

DEFINITION 27.7. Let X be a metric space, let A < X and let
e > 0. Then A is e-crowded means: Vp,q € A, we have dx(p,q) < €.

DEFINITION 27.8. Let X be a metric space and let s € X". Then
se s Cauchy means: Ve > 0, 3K e N s.t., Vi,j e N,

[i,j = K] = [dx(sisj) <e].

Note: a sequence in a metric space is Cauchy iff, for every ¢ > 0, it
has an e-crowded tail.

Assigned HW#1-3.
Recall: For any sequence s, for any subsequence t of s,, for any j € N,

E|] € [jOO) S.t. tj = Sg.

Assigned HW#1-4, HW#1-5.

By HW#1-3, we see that convergent implies Cauchy. The converse
does not hold. For example: Let X := Q (with the standard metric
on Q, i.e., with the relative metric on Q inherited from dg on R). Let

= (3,3.1,3.14, 3.141, 3.1415, 3.14159, . . .) be the sequence of decimal
approximations to m. Since s, is convergent in R, it follows, from
HW+#1-3, that s, is Cauchy in R. So, since s, € QY, we conclude that
se is Cauchy in Q. However, s, is not convergent in Q.

By HW#1-5, we see that Cauchy implies bounded. The converse
does not hold. For example: Let X := R (with its standard metric dg).
Let s :=(—1,1,-1,1,—1,1,—1,1,...). Then s, is bounded. However,
as no tail of s, is 2-crowded, we see that s, is not Cauchy in R.

DEFINITION 27.9. Let X be a metric space. Then X is complete
means: Vs € XN, [(s. is Cauchy in X ) = (8. is convergent in X )].

By considering the decimal approximations to 7, we observed that
Cauchy does not imply convergent in Q. Therefore, QQ is not complete.
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In the next class, we will use HW#1-4 and HW#1-5 to show that
every proper metric space is complete. We will also show, by example,
that the converse is not true.

In Corollary 24.13, we showed that R is proper; it follows that R is
complete. In Corollary 24.14, we showed that R? is proper; it follows
that R? is complete. Similar arguments show, for all k € N, that R” is
proper and, therefore, complete.

28. CLASS 2 ON 18 JANUARY 2018, TH OoF WEEK 1

Recall that, for any metric space X, for any s € XV, by s, is Cauchy,
we mean: Ve > 0, 3K € N s.t., Vi,7 € N,

[i,j=K] = [d(s,s;) <el.

That is, we mean: Ve > 0, there is an e-crowded tail of s,.
By HW#1-4, Cauchy and subconvergent implies convergent.
By HW#1-5, Cauchy implies bounded.
Recall: For any metric space X,

(1) X is proper means: Ybounded s € X, s, is subconvergent;
(2) X is complete means: YCauchy s € XV, s, is convergent.

Recall that we showed that R and R? are both proper. Recall that we
showed that QQ is not complete.
We next show that proper implies complete:

THEOREM 28.1. Let X be a metric space. Assume that X is proper.
Then X is complete.

Proof. We wish to show: VCauchy s € X, s, is convergent. Let a
Cauchy s € XN be given. We wish to show: s, is convergent.

Since s, is Cauchy, by HW+#1-5, we conclude that s, is bounded. So,
as X is proper, we see that s, is subconvergent. Then s, is Cauchy and
subconvergent. So, by HW#1-4, we conclude that s, is convergent. []

By Corollary 24.13, R is proper. Then, by Theorem 28.1, R is com-
plete. By Corollary 24.14, R? is proper. Then, by Theorem 28.1, R?
is complete. We will argue, below, that: Yk € N, R* is proper and
complete.

While proper implies complete, the converse is not true. There are
many important infinite dimensional normed vector spaces that are
complete, but not proper. In this course, we focus on finite dimensional
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vector spaces, and it’s not hard to construct a metric 6 on R such that
(R, ¢) is complete, but not proper. We proceed as follows.
Recall, for all a,b € R, that dg(a,b) = |a — b|. We define 6 € M(R)
by d(a,b) = min{|a—b|,1}. Then Bs(0,2) = R. Unassigned HW: Show
(1) Vs e RN, [ ( s, is 6-Cauchy ) iff ( s, is dg-Cauchy ) ] and
(2) Vs e RN, [ ( s, is 6-convergent ) iff ( s, is dg-convergent ) |.
Since (R, dg) is complete, we know:
(3) Vs e RN, [ ( s, is dg-Cauchy ) iff ( s, is dg-convergent ) |.
By (1), (2) and (3), we conclude:
e Vse RN [ ( s, is 6-Cauchy ) iff ( s, is d-convergent ) ].
That is, (R,d) is complete. It remains to show that (R,d) is not
proper. Let s := (1,2,3,4,...) € RN, Then im[s,] € R = B;(0,2),
so s, is bounded in (R, d). However, no subsequence of s, is conver-
gent in (R, dg), so, by (2), no subsequence of s, is convergent in (R, J).
That is, s. is not subconvergent in (R, d). Since s, is bounded and not
subconvergent in (R, d), it follows that (IR, d) is not proper, as desired.
Let X and Y be sets, let 7 be a topology on X and let U be a
topology on Y. Let

B:={VxW|(VeT)and (W el)}.

Recall that the product topology of 7 and U is (B)_; it is a topology
on X x Y. There are product constructions for metric spaces and
normed vector spaces as well:

For any two topological spaces X and Y, the product topology of
Tx and Ty is the standard topology on X x Y.

DEFINITION 28.2. Let X and Y be sets, let b € M(X) and let
c e M(Y). Then the product metric of b and c is the metric d €
M(X xY) defined by

d((a,0), (z,y)) = Idx(a,2)]* + [dy(b,y)]>

For any two metric spaces X and Y, the product metric of dx and
dy is the standard metric on X x Y.

DEFINITION 28.3. Let V and W be sets, let | o | € N(V) and let
| e € N(W). Then the product norm of | e | and || e | is the norm
e [l € NV x W) defined by

Il (o, w) Il = /[0l + ]
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For any two normed vector spaces V' and W, the product norm of
| e |y and | e |y is the standard norm on V' x W.

FACT 28.4. Let X and Y be metric spaces. Let d be the product
metric of dx and dy. Then Ty is the product topology of Ta, and T, .

Proof. Omitted. O

FACT 28.5. Let V and W be normed vector spaces, and let | e | be
the product norm of | e |y and | e |w. Then dj| is the product metric
Of d‘.|v and d|.|W.

Proof. Omitted. O

THEOREM 28.6. Let X and Y be metric spaces. Then
(1) (X andY are both proper ) implies ( X xY is proper ) and
(2) ( X and Y are both complete ) implies ( X x Y is complete ).

Proof. Proof of (1): Assume: X and Y are both proper. We wish to
show: X x Y is proper. Let Z := X xY. We wish to show: Z is
proper. We wish to show: Vs e ZN,

(se bounded in Z) = (s, is subconvergent in 7 ).
Let s € ZY be given. We wish to show:
(se bounded in Z) = (s, is subconvergent in 7 ).

Assume: s, is bounded in Z. Want: s, is subconvergent in Z.

Let p: Z — X and ¢ : Z — Y be the coordinate projections, defined
by p(x,y) = = and ¢g(x,y) = y. Since s, is bounded in Z, it follows
that (p o s). is bounded in X. So, since X is complete, (p o s), is
subconvergent in X. Choose a strictly increasing £ € N s.t. (poso/),
is convergent in X. Since s, is bounded in Z, it follows that (g o s). is
bounded in Y, so (go sof), is bounded in Y. So, since Y is complete,
(gosol), is subconvergent in Y. Choose a strictly increasing m € NN
s.t. (qo sofom), is convergent in Y.

Since (posof), is convergent in X, it follows that (posofom),
is convergent in X. So, since (¢ o sofom), is convergent in Y, we
conclude that (sofom), is convergent in Z. Then s, is subconvergent
in Z, as desired. End of proof of (1).

Proof of (2): Unassigned homework. End of proof of (2). O

COROLLARY 28.7. For all k € N, R* is proper and complete.
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Proof. Following Theorem 28.6, this is a simple proof by induction,
which we omit. 0

Let f be a function. Recall: V set A,

fo(A) = {f(z)[ze An (dom[f])}  and
fr(A) = {zedom[f]]|f(z) e A}.
Recall: V set S of sets,

fex(S) = {fu(A)|Ae S} and
7S = M (A)[Ae S

FACT 28.8. Let f be a function and let S be a set of sets. Then

(1) <Us) = Ulr=(s)],
(2) f<(NS) = NS,
3) £(US) = Ulfus(S)],

Proof. Omitted. O

We gave heuristic explanations of (1), (2) and (3) of Fact 28.8. We
also gave a heuristic explanation of why there exist a function f and
sets A and B s.t. fo(An B) # [f«(A)] n [f«(B)].

FACT 28.9. Let f be a function and let A and B be sets. Then
[H(A\B) = [f*(ANLf*(B)].
Proof. Omitted. O

We gave a heuristic explanations of Fact 28.9. We also gave a heuris-
tic explanation of why there exist a function f and sets A and B
s.t. fo(A\B) # [f(A)\[f:(B)].

The previous two facts can be summarized by saying: “Preimage
behaves well with respect to all three set theoretic operations (union,
intersection and difference). Forward image only behaves well with
respect to union.”

Recall, by Theorem 21.19, that a map between topological spaces is
continuous iff the preimage of any open set is open:

THEOREM 28.10. Let (X,T) and (Y,U) be topological spaces, and
let f: X —>Y. Then: [ f is continuous| < [ f*U)<T ]

Proof. This follows from Theorem 21.19. U
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From this we can show that a map between topological spaces is
continuous iff the preimage of any closed set is closed:

THEOREM 28.11. Let X, Y be topological spaces. Let f : X — Y.
Let C denote the set of all closed sets in X. Let D denote the set of all
closed sets in'Y. Then: | f is continuous | < [ f**(D)<C].

Proof. Proof of <: Unassigned HW. End of proof of <.

Proof of =: Assume: f is continuous. We wish to show: f**(D) < C.

We wish to show: VA e f**(D), AeC.

Let A € f**(D) be given. We wish to show: A e C.

Since A € f**(D), choose B € Ds.t. A= f*(B). Since B € D, we see
that Bis closed in Y. Then Y\ B isopeninY. Then, by Theorem 28.10,
f*(Y\B) is open in X. Then X\[f*(Y\B)] is closed in X. That is,
X\[f*(Y\B)] € C. Since f*(Y) = X, by Fact 28.9, we conclude that
[*(0Y\B) = X\[f*(B)]. Then X\[f*(Y\B)] = *(B).

Then A = f*(B) = X\[f*(Y\B)] € C. End of proof of =. O

We have “transitivity of closedness”:

FACT 28.12. Let X be a topological space, B < X, A< B. Assume:
(A is closed in B) and (B is closed in X ). Then A is closed in X.

Proof. Since A is closed in B, by the restriction result for closed sets
(i.e., by (1) of Corollary 16.17), choose a closed subset C' of X such
that A = B n (. Since B and C are closed in X, it follows that B n C
is closed in X. So, since A = B n C, we see that A is closed in X. [

A similar argument can be used to prove “transitivity of openness”.
Recall, by Theorem 25.15, that any nonempty, closed, bounded sub-
set of R has a max and a min:

THEOREM 28.13. Let A < R. Assume that A is nonempty, closed
in R, and bounded in R. Then Jw,z € A s.t. w < A< x.

Proof. This follows from Theorem 25.15. U

We call the next result “absoluteness of global continuity”. It follows
from Theorem 21.4, but we will prove it “from scratch”, as an exercise
in dealing with restriction and extension results for relative topologies.

REMARK 28.14. Let X and Y be topological spaces, let Xo < X
and let Yo € Y. Let f: Xg--+Yy. Then:

[ fis (Xo,Yy)-continuous | < [ f is (X,Y)-continuous |.
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Proof. Proof of <: Unassigned HW. End of proof of <.

Proof of =: Assume: f is (Xp,Yp)-continuous. We wish to show:
fis (X, Y)-continuous. That is, we wish to show that, Vp € dom[f],
fis (X,Y)-continuous at p. Let p € dom[f] be given. We wish to show
that f is (X,Y)-continuous at p. We wish to show: YV € Ny (f(p)),
AU € Nx(p) s.t. f(U) € V. Let Ve Ny(f(p)) be given. We wish
to show: 3U € Nx(p) s.t. fo(U) € V.

Let Vo := VnY;. By (1) of Corollary 16.19, Vi € Ny, (f(p)). Because
f is (Xo, Yp)-continuous, we know that f is (X, Yp)-continuous at p.
So, since Vi € Ny, (f(p)), choose Uy € Nx,(p) s.t. fo(Uy) < Vp. By
(2) of Corollary 16.19, choose U € Nx(p) s.t. Uy = U n X,. We wish
to show: f.(U) < V. We wish to show: Vg € dom|[f],

[¢eU] = [flgeV ]

Let ¢ € dom[f] be given. We wish to show:

[¢eU] = [flgeV ]

Assume: g € U. We wish to show: f(q) e V.

Since f : X --» Yp, it follows that dom|[f] € Xy and im[f] < Yb.
We have ¢ € dom[f] < Xy. So, since ¢ € U, we get ¢ € U n Xp.
So, since Uy = U n X, we get ¢ € Uy. So, since ¢ € dom[f], we get
f(q) € f«(Up). Then f(q) € fu(Up) € Vo =V nYy € V, as desired.
End of proof of =. U

FACT 28.15. Let x € R, U € Ng(x), b > z. Then U n (z,b) # &.

Proof. By Theorem 17.15, Bg(z) is a neighborhood base at  in R. So,
since U € Ng(x), choose A € Bg(z) st. A < U. Since A € Br(z),
choose r > 0 s.t. A = Br(z,r). Let s := b—x. Let § := min{r, s}. Let
t:=x+ (6/2). We wish to show: t € U n (z,b).

We have dg(t,x) = 0/2 < §, so t € Bg(x,d). Since § < r, we get
Bgr(z,0) € Br(z,7). Then t € Bg(z,0) € Br(z,7) = A < U. We wish
to show: t € (z,b). We wish to show z <t < b.

Since § > 0, §/2 > 0, so  + (§/2) > x. Then z < = + (6/2) = t,
sox <t Wehave §/2 <0 <s=0b—ux50z+(6/2) <b. Then
t=x+4(0/2) <b,sot <b. Then x <t < b, as desired. O

We started the proof of the next result, and indicated, using a pic-
ture, how to finish it. We’ll go through the entire proof next time.
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THEOREM 28.16. Let a,b,y € R. Assume a <b. Let f : [a,b] — R
be continuous. Assume f(a) <y < f(b). Then 3z € [a,b] s.t. f(x) = y.

Proof. Next class. 0

29. CLASS 3 ON 23 JANUARY 2018, Tu oF WEEK 2
Assigned HW#2-1.

FACT 29.1. Let Y and Z be topological spaces. Let be Y and c e Z.
Let W € Ny« z((b,¢)). Then 3U € Ny (b), IV e Nz(c) s.t. UxV < W,

Proof. Since W € Ny, z((b,c)), choose an open set Wy in Y x Z
s.t. (bye) e Wy < W. Let S := {UxV | (U open in Y)&(V open in Z)}.
Then, as Wy is open in Y x Z, we get Wy € (S),. Then: Vz € W,
dJA e S st. z € A < Wy So, since (b,c) € Wy, choose A € S
s.t. (b,c) € A< Wy. Since A € S, choose U open in Y and V open in Z
st. A=UxV. As (by,c) e A=UxV, weget: be U and ce V. Since
b e U and since U is open in Y, we get U € Ny (b). Since ¢ € V and
since V' is open in Z, we get V' € Nz(c). We wish to show: U xV < W.

We have U x V =A< Wy < W, as desired. O

DEFINITION 29.2. Let f and g be functions. Then (f,g) is the
function defined by: (f,9)(x) = (f(x), 9(z).

Assigned HW#2-2.

Recall that we proved last time:
FACT 29.3. Let x € R, U € Ng(x), b > x. Then U n (z,b) # &.
Proof. This is Fact 28.15. U

THEOREM 29.4. Let a,b,y € R. Assume a <b. Let f : [a,b] > R
be continuous. Assume f(a) <y < f(b). Then 3z € [a,b] s.t. f(z) = y.

Proof. Let S := f*((—o0,y]).

Since f(a) <y, we get f(a) € (—w0,y|. Then a € f*((—o0,y]) = S.
Then S is nonempty. Since (—o0,y] is closed in R and f : [a,b] — R is
continuous, it follows that S is closed in [a, b]. So, since [a, b] is closed
in R, we see, from Fact 28.12, that S is closed in R.

We have S = f*((—o0,y]) < dom[f] = [a,b]. So, since [a,b] is
bounded in R, we see that S is bounded in R. So, since S is nonempty
and closed in R, by Theorem 28.13, choose x € S s.t. S < x. Then
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x €S < [a,b]. We wish to show: f(z) =y. Sincexz € S = f*((—0,y]),
we get f(z) € (—o0,y], so f(z) < y. We wish to show: f(z) > y.
Assume: f(z) <y. We aim for a contradiction.

Since f(z) < y < f(b), we get f(z) < f(b), so f(x) # f(b), so
x # b. So, since x € [a,b], we get x € [a,b). Then = < b. Let
e:=y—|[f(x)]. Since f(z) <y, we get ¢ > 0. Also [f(z)] +¢ =y. Let
V := Bg(f(z),e). Then Visopenin R and f(x) € V,soV € Nr(f(z)).
Also, V= ([f(z)] =&, [f ()] + €) = ([f(x)] = &,y). Then V <y.

By assumption, f is ([a, b], R)-continuous. So, by Remark 28.14, we
see that f is (R, R)-continuous. So, since z € S € [a,b] = dom[f], we
see that f is (R, R)-continuous at z. So, since V € Nr(f(z)), choose
U e Ng(x) s.t. fo(U) € V. By Fact 29.3, U n (z,b) # &, so choose
teUn(z,b). Thente U and t € (x,b). Since x € [a,b), we get a < z.
Then (z,b) < (a,b). Then t € (z,b) < (a,b) < [a,b] = dom[f]. So,
since t € U, we see that f(t) € fu(U). Then f(t) € f.(U) € V < y.
Then f(t) € (—0,y) < (—0,y]. Then t € f*((—o0,y]) =S < x, and it
follows that ¢t < x. Then t ¢ (x,b). Contradiction. O

Assigned HW#2-3.

THEOREM 29.5. Let a,b,y € R. Assume a <b. Let f :[a,b] - R
be continuous. Assume f(a) =y > f(b). Then 3z € [a,b] s.t. f(x) = y.

Proof. Unassigned homework. O

Assigned HW#2-4.

Let Xy := [1,2] and let f := x%, : R — R be the characteristic
function of Xy in R. Since f is neither continuous at 1 nor at 2. we
see that f is not continuous on X,. However, f|X, is constant, so
f|Xo : Xo — R is continuous.

DEFINITION 29.6. Yo, 5 € R, [«|f] := [min{«, 5}, max{c, B}].
For example, [2]1] = [1,2].

The following is called the Intermediate Value Theorem:

THEOREM 29.7. Let o, 5 € R and let f : R --» R. Assume that
f is continuous on [a|B]. Then [f(a)|f(B)] < f«([a|B]).

Proof. Let a := min{a, 8} and let b := max{c, 5}. Then a < b and

[a|B] = [a,b] and [f(a)|f(B)] = [f(a)|f(D)]. We know: f is continuous
on [a,b]. We wish to show: [f(a)|f(b)] < f«([a,b]).
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Since f is continuous on [a,b], it follows that [a,b] < dom][f].
Let g := fl|la,b]. Then we have: g(a) = f(a) and g(b) = f(b)
and f.([a,b]) = g«([a,b]). By HW#2-4, g : [a,b] — R is continu-
ous. We wish to show: [g(a)|g(b)] € g«([a,b]). We wish to show:
Vy € [g(a)lg()], y € g«([a,b]). Let y € [g(a)lg(b)] be given. We
wish to show: y € g¢.([a,b]). Since dom[g] = [a,b], it follows that
g«([a,b]) = im[g]. We wish to show: y € im[g]. We wish to show:
dz € [a,b] s.t. g(x) =y.

At least one of the following must be true:

(1) g(a) <g(b)  or
(2) 9(a) = g(b).

Case 1: We have y € [g(a)|g(b)] = [g(a),g(b)], so g(a) <y < g(b).

€

Then, by Theorem 29.4 (with f replaced by g¢), we see that 3x € [a, b]
s.t. g(x) = y, as desired. End of Case 1.

Case 2: We have y € [g(a)|g(b)] = [9(D), g(a)], so g(a) =y = g(b).
Then, by Theorem 29.5 (with f replaced by g), we see that 395 € [a,b]

s.t. g(x) = y, as desired. End of Case 2. O
Recall the following:
DEFINITION 29.8. Let f: R --» R.

(1) f is semiincreasing means:

va,be dom[f], [(a<b) = (fla) < f(b))].

(2) f is semidecreasing means:

Va,be dom[f], [(a<b) = (f(a)> f(B)].

(3) f is strictly increasing means:

Va,be dom[f], [(a<b) = (f(a) < f(D)].

(4) f is strictly decreasing means:

Ya,be dom[f], [(a<b) = (f(a)> f(D)].

(5) f is semimonotone means:

( [ is semiincreasing) or ( f is semidecreasing ).
(6) f is strictly monotone means:

( f is strictly increasing ) or ( f is strictly decreasing ).

Assigned HW#2-5.
FACT 29.9. Let a,b,ce R. Then both of the following are true:

(1) a € [blc] orbe [alc] or c e [alb].
(2) [ale] < [alb] © [blc].
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Proof. At least one of the following must be true:

() a<b<ec,
(B) a<c<b,
(v) b<a<c,
(0) b<c<a,
(6) e <a<b,
(n) c<b<a.

Unassigned homework: Prove both (1) and (2) in cases («), ..., (d).
Case (¢): We have a € [¢,b] = [b|c], so (1) holds. Also,

lale] = [e;a]l < [e,0] = [ble] < [alb] v [blc],

so (2) holds. End of Case (¢).
Case (n): We have b € [c,a] = [alc], so (1) holds. Also,

lale] = [e,a] = [e,0] v [ba] = [ble] v [alb] = [alb] v [bl],
so (2) holds. End of Case (n). O

DEFINITION 29.10. Let f : R --» R and let k € N. Then f s
k-monotone means: VS < dom|f],

[ #S < k] = [ f|S is strictly monotone |.

REMARK 29.11. Let ¢ : R --» R. Assume #(dom|¢]) < 1. Then
¢ 18 strictly increasing.

Proof. Since #(dom[¢]) < 1, it follows that Ya,b e dom[f], [a =10].
Then Va,b e dom[f], [(a<b) = (f(a) < f(b))]. O

We note that Remark 29.11 remains true if we replace “strictly in-
creasing” by any one of the following

e strictly decreasing,
e semiincreasing,
e semidecreasing,
e strictly monotone,
e semimonotone.

COROLLARY 29.12. Let f : R --» R. Then f is 1-monotone.
Proof. We wish to show: V.S € dom|f],

[#S < 1] = [ f|S is strictly monotone ].
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Let S < dom|f] be given. We wish to show
[#S < 1] = [ f|S is strictly monotone |.

Assume: #S < 1. We wish to show: f|S is strictly monotone.
Since #(dom|[f|S]) = #S < 1, by Remark 29.11, we see that f|S is
strictly increasing. Then f|S is strictly monotone. U

REMARK 29.13. Let f: R --» R. Then:
[ f is 2-monotone | < [ fis 1-1].

Proof. Proof of =: Assume: f is 2-monotone. We wish to show: f is 1-
1. We wish to show: Va, 8 € dom[f], [(f(a) = f(8)) = (o = B)]. Let
a, € dom[ f] be given. We wish to show: [(f(a) = f(8)) = (a = 5)].
Assume: f(«a) = f(5). We wish to show a@ = 5. Asume that a # 0.
We aim for a contradiction.

Let a := min{a, #} and b := max{c, 8}. Then a < b. Since f(a) =
f(B), we get: f(a) = f(b). Let g := fl{a,b}. Then g(a) = g(b). Since
f is 2-monotone, it follows that ¢ is strictly monotone. Then: ( g is
strictly increasing ) or ( ¢ is strictly decreasing ). So, since a < b,
we see that: ( g(a) < g(b) ) or ( g(a) > g(b) ). Then g(a) # g(b).
Contradiction. End of proof of =.

Proof of <: Assume: f is 1-1. We wish to show: f is 2-monotone.

We wish to show: V.S < dom|f],
[ #S < 2] = [ f|Sis strictly monotone ].

By Corollary 29.12; f is 1-monotone. We wish to show: V.S < dom|f],
[ #S =2] = [ f|S is strictly monotone |.

Let S < dom]|f] be given. We wish to show:
[#S =2] = [ f|S is strictly monotone |.

Assume #S = 2. We wish to show: f|S is strictly monotone.

Choose a,b € S s.t. a < b. Then S = {a,b}. Since a < b, we have
a # b. So, since f is 1-1, we have f(a) # f(b). Then one of the
following is true:

(1) fla) < f(b)  or
(2) fla) > f(b).
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Case 1: We wish to show that f|S is strictly increasing.

Since a < band f(a) < f(b), we see that f|{a, b} is strictly increasing.
So, since S = {a, b}, we see that f|S is strictly increasing, as desired.
End of Case 1.

Case 2: We wish to show that f|S is strictly decreasing.

Since a < b and f(a) > f(b), we see that f|{a,b} is strictly decreas-
ing. So, since S = {a,b}, we see that f|S is strictly decreasing, as
desired. End of Case 2. End of proof of <. U

REMARK 29.14. Let f: R --+ R be strictly monotone. Then:

(1) VE e N, f is k-monotone and
(2) f s 1-1.

Sketch of proof: Any restriction of strictly increasing function is strictly
increasing. Any restriction of strictly decreasing function is strictly
decreasing. Therefore, any restriction of strictly monotone function is
strictly monotone. Then (1) holds.

By (1), f is 2-monotone. Then, by Remark 29.13, f is 1-1. O

Let f: R --» R. Our first goal:

if f is 3-monotone, then f is strictly monotone.

Then, by (1) of Remark 29.14, it will follow, for all k£ € [3..00), that
k-monotone is equivalent to strictly monotone. Upshot: (1-monotone
is always true), (2-monotone is equivalent to 1-1) and (all the other
k-monotones are equivalent to strictly monotone). Our second goal:

if (dom][f] is an interval)
and (f is continuous)
and (f is 2-monotone),
then f is strictly monotone.

We showed the graph of a function f : R --» R such that

(1) dom[f] is NOT an interval,

@) f

(3) f is 1-1, hence 2-monotone and

(4) fis NOT 3-monotone, hence NOT strictly monotone

is continuous,

REMARK 29.15. Let f : R --» R. Assume that f is 3-monotone.
Then f is 4-monotone.
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Proof. By assumption, f is 3-monotone, so, to show that f is 4-monotone,
we need only show: VS < dom|f],

[ #S=4] = [ f|S is strictly monotone |.
Let S < dom[f] be given. We wish to show:
[#S=4] = [ f|S is strictly monotone ].

Assume: #S = 4. We wish to show: f|S is strictly monotone.

Choose a,b,c,d € S st. a <b < c¢ < d. Then S = {a,b,c,d}.
Because f is 3-monotone, it follows that f is 2-monotone, so, by =
of Remark 29.13, f is 1-1. So, since b # ¢, it follows that f(b) # f(c).
Then one of the following must be true:

(1) f(b) < fle)  or
(2) f(b) > f(c).

Case (1): We wish to show that f|S is strictly increasing.

Since b < ¢ and f(b) < f(c), it follows that f|{a,b,c} is not strictly
decreasing. However, f is 3-monotone, so f|{a, b, c} is strictly mono-
tone. Then f|{a,b, c} is strictly increasing. Then f(a) < f(b) < f(c).

Since b < ¢ and f(b) < f(c), it follows that f|{b,c,d} is not strictly
decreasing. However, f is 3-monotone, so f|{b, c,d} is strictly mono-
tone. Then f|{b, c,d} is strictly increasing. Then f(b) < f(c) < f(d).

Then f(a) < f(b) < f(¢) < f(d). Then f|{a,b,c,d} is strictly
increasing. So, since S = {a, b, c,d}, we conclude that f|S is strictly
increasing, as desired. End of Case (1).

Case (2): We wish to show that f|S is strictly decreasing.

Since b < ¢ and f(b) > f(c), it follows that f|{a,b,c} is not strictly
increasing. However f is 3-monotone, so f|{a, b, ¢} is strictly monotone.
Then f|{a,b,c} is strictly decreasing. Then f(a) > f(b) > f(c).

Since b < ¢ and f(b) > f(c), it follows that f|{b,c,d} is not strictly
increasing. However f is 3-monotone, so f|{b, ¢, d} is strictly monotone.
Then f|{b,c,d} is strictly decreasing. Then f(b) > f(c) > f(d).

Then f(a) > f(b) > f(c) > f(d). Then f|{a,b,c,d} is strictly
decreasing. So, since S = {a,b,c,d}, we conclude that f|S is strictly
decreasing, as desired. End of Case (2). O

The next result achieves our first goal.

THEOREM 29.16. Let f: R --» R. Assume that f is 3-monotone.
Then f is strictly monotone.
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Proof. By Remark 29.15, f is 4-monotone. Let X := dom[f]. Because
f is 4-monotone, we know:

[ #X <4] = | f is strictly monotone |.
It therefore suffices to show
[ #X >4] = [ f is strictly monotone |.

Assume: #X > 4. We wish to show: f is strictly monotone.

Since #X > 1, choose a,b e X s.t. a < b. Since f is 3-monotone, we
see that f is 2-monotone, so, by = of Remark 29.13, f is 1-1. So, as
a # b, we get: f(a) # f(b). Then one of the following must be true:

(1) fla) < f(b)  or
(2) fla) > f(b).

Case (1): We wish to show: f is strictly increasing. As X = dom][f],

we wish to show: Ve,d e X,

[e<d] = [flo<[fd)]
Let ¢,d € X be given. We wish to show:

[e<d] = [fle)<fd)]
Assume: ¢ < d. We wish to show: f(c) < f(d).

Since a < b and f(a) < f(b), it follows that f|{a,b,c,d} is not
strictly decreasing. However, f is 4-monotone, so f|{a, b, ¢, d} is strictly
monotone. Then f[{a,b,c,d} is strictly increasing. Then, since ¢ < d,
we get f(c) < f(d), as desired. End of Case (1).

Case (2): We wish to show: f is strictly decreasing. As X = dom][f],
we wish to show: Ve,d e X,

[c<d] = [fle)>f(d)]
Let ¢,d € X be given. We wish to show:

[c<d] = [fle)>f(d)]
Assume: ¢ < d. We wish to show: f(c) > f(d).
Since a < b and f(a) > f(b), it follows that f|{a,b,c,d} is not
strictly increasing. However, f is 4-monotone, so f|{a,b, ¢, d} is strictly

monotone. Then f{a,b,c,d} is strictly decreasing. Then, since ¢ < d,
we get f(c) > f(d), as desired. End of Case (2). O

This completes our first goal. Recall our second goal: Vf : R — R,
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if (dom][f] is an interval)
and (f is continuous)
and (f is 2-monotone),
then f is strictly monotone.

LEMMA 29.17. Let I be an interval and let f : [ — R be continuous
and 1-1. Forallx € I, letT := f(x). Let p,q,r € I. Assume: q ¢ [p|r].

Then G ¢ [p|T].

Proof. Assume: g € [p|T]. We aim for a contradiction.

Since I is an interval and p,r € I, it follows that [p|r] < I. By
assumption f : I — R is continuous. Then f is continuous on [p|r].
Then, by the Intermediate Value Theorem (Theorem 29.7), we get:
@] € fllpl]) Then g € [pir] = IO < fullplr]), so
choose = € [p|r] s.t. § = f(z). Since f(¢) = § = f(z) and since
f is 1-1, it follows that ¢ = x. Therefore, ¢ = x € [p|r]. However,
by assumption, we have: ¢ ¢ [p|r]. Contradiction. O

We indicated how to use Lemma 29.17 to finish the second goal.
In the next class, we’ll write out the details.

30. Crass 4 ON 25 JANUARY 2018, TH oF WEEK 2
Recall: Vo, 8 € R, we define

[0]8] = [minfa,B}, max{a, 8} ]

So, for example, [3]1] = [1,3] = [1]3].
Recall: Vs,t,u € R, we have both

( (s € [tlu]) or (¢ € [s|u]) or (u € [st]) )
and ([s|lu] < [slt] U [tu] ).

Recall: Let f : R --» R and let £ € N. Then f is k-monotone
means: V.S < dom[f], ([#S <k] = [ f|S is strictly monotone | ).

By Remark 29.13, 2-monotone is equivalent to injective.

By Theorem 29.16, 3-monotone is equivalent to strictly monotonic.

Goal: Show, for any f: R --» R, if

e dom[f] is an interval,
e f is continuous and
e f is 2-monotone,
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then f is strictly monotone. By Remark 29.13, this goal follows from
< of Theorem 30.1 below.

In Lemma 29.17, we proved: Let I be an interval and let f: [ - R
be continuous and 1-1. For all x € I, let T := f(x). Let p,q,r € I.

Assume: ¢ ¢ [p|r]. Then g ¢ [p|F].

THEOREM 30.1. Let I be an interval and let f : I — R be contin-
uous. Then: [ f is strictly monotone | < | f is 1-1].

Proof. Proof of =: By Remark 29.13, [f is 2-monotone| = [f is 1-1].
Then: [f is strictly monotone] = [f is 2-monotone] = [f is 1-1], as
desired. End of proof of =.

Proof of <: Assume: f is 1-1. We wish to prove: f is strictly
montone. By Theorem 29.16, it suffices to show: f is 3-monotone. By
Remark 29.13, f is 2-monotone. That is, V.S < dom|[f],

[ #S<2] = [ f|S is strictly monotone |.
It thererfore suffices to show: VS < dom|[f],

[ #S=3] = [ f|S is strictly monotone |.
Let S < dom[f] be given. We wish to show:

[ #S=3] = [ f|S is strictly monotone ].

Assume: #S = 3. We wish to show: f|S is strictly monotone.
Choose a,b,c€ Ss.t.a<b<c. Then S = {a,b,c}. Forall x € I, let

T := f(x). Since a < b < ¢, we have a ¢ [b|c]. Then, by Lemma 29.17,
@ ¢ [b|c]. Since a < b < ¢, we have ¢ ¢ [a|b]. Then, by Lemma 29.17,
¢ ¢ [alb]. Since @ ¢ [b[¢] and since ¢ ¢ [alb], by (1) of Fact 29.9, we see
htE [@c]. Thus: [(a<b<¢) or (a=bx=¢ec)].

Since a < b < ¢, we see that a # b # c¢. So, since f is 1-1, we get
675(_)756. Then: [(@a<b<7¢) or (@a>b>¢c)] So, since
S = {a,b,c}, we conclude:

( f|S is strictly increasing ) or ( f|S is strictly decreasing ).
Then f|S is strictly monotone, as desired. End of proof of <. U

Let Z be a topological space and let S < Z. We reviewed the
definition of Int;S and discussed a pictorial example when Z = R
We noted that Intg[3,7] = (3,7) and that Intg[0,00) = (0,0). We

have the following quantified equivalence for interior points:
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LEMMA 30.2. Let Z be a topological space, let S € Z and let q € Z.
Then: [¢geIntzS] < [IVeNzqg) st. VS

Proof. Proof of =: Assume that ¢ € IntzS. We wish to show that
WV eNz(q) st. VeoSs.

We have g e IntzS = (J { V openin Z | V < S }. Choose an open
subset V of Z s.t. V € S and s.t. ¢ € V. We wish to show: V € Nz(q).

Since V' is open in Z and since g € V', we conclude, by Remark 16.4,
that V € Nz(q), as desired. End of proof of =.

Proof of <: Assume: 3V € Nz(¢) s.t. V. < S. Want: ¢ € IntzS.
We wish to show: ¢ e |J{Uopenin Z |U < S }. That is, we wish
to show: U open in Z s.t. U < S and s.t. g€ U.

Choose V € Nz(q) st. V < S. Since V' € Nz(q), choose U open
in Z s.t. e U < V. It remains to show: U < S.

We have: U € V € S, as desired. End of proof of <. O

The next result is called one-dimensional Invariance of Domain:

THEOREM 30.3. Let f : R --» R be 1-1 and continuous, and let
U < dom|f]. Assume that U is open in R. Then f.(U) is open in R.

Proof. Let S := f.(U). We wish to show: S is open in R. It suffices to
show: S = IntgS. Since IntgS < S, we want: S < IntgS. That is, we
want: Vg€ S, q € IntgS. Let ¢ € S be given. Want: ¢ € IntgS. Then,
by Lemma 30.2, we wish to prove: 3V € Ng(q) s.t. V < S.

Since ¢ € S = f,(U), choose p € U s.t. ¢ = f(p). For all z € R, let
T := f(z). Then ¢ = p. By assumption, U is open in R. So, since p € U,
we see, by Remark 16.4, that U € Ng(p). By Theorem 17.15, Bg(p) is
a neighborhood base at p in R. So, since U € Nr(p), choose A € Br(p)
s.t. A < U. By definition of Bg(p), choose 6 > 0 s.t. A = Br(p,?). Let
a:=p—1(0/2),b:=p+(6/2) and I := [a,b]. Then [ is an interval and

I € (p—d,p+¢6) = B(p,0) = A < U < dom[f].

Since f is continuous, by Remark 28.14, f|I is continuous. Also, since
fis 1-1, it follows that f|I is 1-1. Then, by Theorem 30.1, f|[ is strictly
monotone. Therefore, one of the following must be true:

(1) f|I is strictly increasing or

(2) f|I is strictly decreasing.

Case 1: We have a,p,b € [ and a < p < b. So, since f|I is strictly
increasing, @ < p < b. Since a < b, we have [a|b] = [a, b]. Since @ < b,



NOTES 1 229

we have [a|b] = [@,b]. Let V := (@,b) £ R. Then V is open in R. Also,
q =pe€ V. Then, by Remark 16.4, V € Nr(q). Want: V < S.

Since f|I is continuous and I = [a,b], by the Intermediate Value
Theorem (Theorem 29.7), we get [f(a)|f(D)] < f«([alb]). Then we

have [a, b] = [a|b] = [f(a)|f(b)] < f«([alb]) = f«([a,b]). It follows that
V < [@,b] € fu([a,b]) = f(I) S f.(U) = S. End of Case 1.

Case 2: We have a,p,b € [ and a < p < b. So, since f|I is strictly
decreasing, @ > p > b. Since a < b, we have [a|b] = [a,b]. Since @ > b,
we have [a@|b] = [b,a@]. Let V := (b,@) < R. Then V is open in R. Also,
q =pe V. Then, by Remark 16.4, V € Nr(q). Want: V < S.

Since f|I is continuous and I = [a,b], by the Intermediate Value
Theorem (Theorem 29.7), we get [f(a)|f(b)] < f«([alb]). Then we

have [b,a] = [a|b] = [f(a)|f(b)] < f«([a]b]) = fi([a,b]). It follows that

V < [ba] € fi«([a,b]) = f(I) € fu(U) = S. End of Case 2. O

Define f : R — R by f(z) = 2%. Let U := R. Then f,(U) = [0, o0).
This shows that the 1-1 hypothesis in Theorem 30.3 is needed.

We gave an example of an open interval U < R and a 1-1 function
f: U — R such that f,(U) is not open. This shows that the continuity
hypothesis in Theorem 30.3 is needed.

Theorem 30.3 generalizes to all dimensions:

THEOREM 30.4. Let k € N, and let f : R¥ ——» R* be 1-1 and
continuous, and let U < dom|f]. Assume that U is open in R. Then
f«(U) is open in R.

Proof. Omitted. For k € [2..00), this is beyond the scope of our course.
It is typically proved in a first-year graduate course on topology. [

REMARK 30.5. Let Z be a topological space, let Zog < Z and let
U< Zy. Then: [U openin Zy] < [ U open in Zy |.

Proof. Unassigned HW. O

THEOREM 30.6. Let f : R --» R be 1-1 and continuous. We define
X :=dom|[f] and Y := im|[f]. Assume that X is open in R. Then

(1) Y is open in R and

(2) f is a homeomorphism from X onto Y.

Proof. Proof of (1): By Theorem 30.4 (with U replaced by X), we see
that f.(X) is open in R. So, since fi(X) = fi(dom[f]) = im[f] =Y,
we get: Y is open in R, as desired. End of proof of (1).
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Proof of (2): Since f : X <> Y is 1-1 and continuous, we need only
show f: X — Y is open, i.e., that Yopen U in X, f,(U) is open in Y.
Let an open U in X be given. We wish to show: f,(U) is open in Y.

By < of Remark 30.5 (with X replaced by R and Z, by X), we see
that U is open in R. Then, by Invariance of Domain (Theorem 30.3),
we conclude that f,(U) is open in R. Then, by = of Remark 30.5 (with
X replaced by R, Zy by Y, and U by f.(U)), it follows that f.(U) is
open in Y, as desired. End of proof of (2). O

THEOREM 30.7. Let f : R — R be 1-1 and continuous. We define
X :=dom|f] and Y := im|[f]. Then f,(IntgX) < IntgY".

Proof. Let S := {V < Y |V is open in R}. Then Intgy = [ JS. Let
U:=IntgX. Let V := f,(U). Then V = f,(IntgX). We wish to show:
V < IntgY. That is, we wish to show: V < [ JS. It suffices to show
V e S. That is, we wish to show: (V' €Y ) and ( V is open in R ).
AsV = fi(Intg X) < im[f] = Y, we need only show: V' is open in R.
Since Intg X is open in R and Intg X € X = dom|f], by Invariance
of Domain (Theorem 30.3), we conclude that f,(IntgX) is open in R.
That is, we conclude that V' is open in R, as desired. U

Recall: Let Y and Z be topological spaces, let ¢ : Y --+» Z and let
u €Y. Then

LIlq}/[qu = {veZ|¢— vnear u} and
lilrtn¢ = ELT(LIuMS b).
When clarity is needed we sometimes indicate Y and Z by writing
(Y, Z)- LIuMS o) and (Y, Z)- liqun o,

and by writing ¢ — v in Z near u in Y.
Let f: R --» R be defined by f(x) = 1/(2?). T drew the graph of

f. T asked the value of li(r)n f. Correct answer: It depends on how you

think about f. Since f : R --» R, we might compute
(R,R)- hgnf = O.
On the other hand, f : R* --» R*, and so we might compute
(R*, R*)- liénf = 0.
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The moral is that, if Y and Z are ambiguous, then we really need
to indicate them for lim ¢ to have a clear meaning. On the other hand,
if Y and Z are clear, then the notation (Y, Z)-lim ¢ is unnecessarily

cluttered and can be hard on the reader. Some judgment is required.
Recall: Let Y and Z be topological spaces, let ¢ : Y --» Z, letueY
and let v € Z. Then

(limp=v) = (velLIMS¢ ) < (¢ — vnearu ).

The = cannot be replaced by <, as we explain in the next paragraph.

In this paragraph, LIMS will always mean (R, R)- LIMS. Let Y := R,
let Z :=R and let S :=[1,2] U {3}. Let u := 3 and let v := 4. Let
¢ := C% : S — R be the constant function that is equal to 4 on S
and undefined elsewhere. Then ¢ : R --» R. By Proposition 24.7,
LIlq}/IS ¢ = LH?}/[S ¢ = R, so we have both

(veLIMS¢ ) and (¢ — vnearu ).

On the other hand, lim¢ = ELT(LIMS¢) = ELT R = ®.
Recall: Let Y be a topological space and let S < Y. Then

Inty S = U{UQY|(UisopeninY)&(U§S’)},
ClyS = (J{C<Y[(CisclosedinY)&(C28)},
IsolyS = {pe S|V e Ny(p) st.Un S = {p}},
oyS = [ClyS]\[IntyS] and
LPyS = [ClyS]\ [IsolyS].

We worked out all five of these sets in an example where S was a
subset of R2. We chose the subset S to be neither open nor closed, and
to have exactly two isolated points.

Let Y :=R and let S :=[1,2) u {3,4}. We compute
IntyS = (1,2),
ClyS = [1,2]u {3,4},
IsolyS = {3,4},
oyS = {1,2,3,4} and
LPyS = [1,2].
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Recall: Let Y and Z be topological spaces and let ¢ : Y --» Z.
Then we define LPDy ¢ := LPy(dom[¢]). Here, the notation “LPD”
stand for “limit point of the domain”.

Recall: Let Y and Z be topological spaces and let ¢ : Y --+ Z. Let
u € Y\[LPDy¢]. Then both

(1) LIMS¢ = Z and

(2) (#Z # 1) = (lim¢ = ©).
It therefore makes little sense to try to compute a limit of a function
at a point that is NOT a limit point of the domain. By contrast, in the
next paragraph, we show that the situation improves greatly when a
limit is computed at a point that IS a limit point of the domain.

Recall: Let Y and Z be topological spaces and let ¢ : Y --+ Z. Let
u € LPDy¢. Assume that Z is Hausdorff. Then both

(1) Vo,w e LIMS ¢, v=w and
(2) #(LIMS¢) < 1.

From this, we get:

COROLLARY 30.8. LetY and Z be topological spaces. Assume that
Z is Hausdorff. Let ¢ :Y --+ Z. Let uwe LPDy¢. Then

[lim¢ =v] < [¢ — vneru].

Recall: Let W be a vector space, let f : R --» W and let p € dom[ f].
Then SS§: R --» W is defined by

ssm = U <p+h>;]l—[f(p)].

We noted that

dom[SSY] = [(dom[f]) — p]\ {0},
and, therefore, that
LPDg(SS7) = (LPDgf) — p,

and, therefore, that
[0€e LPDR(SS§) | < [peLPDgf].

It therefore makes little sense to compute li(l)rn SS; unless p € LPDg f.
In fact, if p ¢ LPDgf, then lign SSE=ELT R = ®.
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Recall: Let W be a normed vector space and f : R --» W. We
define f': R --» W by f'(p) = li(r)n SS%. By li(r)n, we mean (R, W)—lién.

Let f: R --» R be defined by f(z) = v/1 — 22. We drew the graph
of f, which is a closed semicircle in the plane. (It is the upper half
of the circle of radius one about the origin.) We observed that

(R*, R*)-lim SS; = —oo.
However,
ffa)y = (R,R)-li(r]nSS} = O.

Let g := f|[-1/2,1/2]. We observed that ¢'(1/2) # ©.

Define f: R — R by f(z) = 2% Let S := {1,1/2,1/3,1/4,...} u{0}.
Let g := f|S. The graph of f is a parabola, and the graph of g is a
set of countably many points on that parabola, accumulating at the
origin. Note that dom[g’] = {0} and that ¢’'(0) = 0.

31. CLASS 5 ON 30 JANUARY 2018, Tu oFr WEEK 3
Assigned HW#3-1.
Let X be a topological space and let S < X. Then

IsolyS = {peS|3IV openin X st. VnS = {p}}
= {pe S|{p}is openin S}, and
LPxS = [ClxS]\ [IsolxS].

For example,

Isolg([1,2) U {3}) = {3} and
LPg([1,2) u{3}) = [L1,2].

Let X be a topological space. Then VB € X, VA € B,

LPxA = {pe X |VUeN{(p),Un A+ &}
c {pe X |WUeN:(p),UnB#@} = LPyB.

That is, LPx is set-theoretically monotonic.

REMARK 31.1. Let X be a topological space and let S < X. As-
sume, for all p € S, that {p} is not open in X. Then IntxS < LPxS.
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Proof. Let U := Intx.S. We wish to show: U < LPxS.

By definition of Int, we see that U is open in X and that U < S.
Recall that IsolyU = {p € U |{p} is open in U}. Since U is open in
X, it follows that every open subset of U is open in X. Consequently,
{peUl{p}isopenin U} < {p € Ul|{p}isopenin X}. AsU < S,
we see that {p € U|{p}isopenin X} < {p € S|{p} is open in X}.
By assumption, {p € S |{p} is open in X} = . Then

Isol 5'e U

{peU|{p}is open in U}

N

{pe U|{p}is open in X}

IN

{peS|{p}isopenin X} =

So IsolxU = . Therefore LPxU = [ClxU]\[IsolxU] = ClxU.
By definition of Cl, we have U < ClxU. Also, since U < S, we get
LPxU < LPxS. Then U < ClxU = LPxU < LP xS, as desired. O

In many topological spaces (e.g., R), no singleton set is open. So,
by the preceding remark, we see, e.g., that VS < R, IntgS < LPgS.
That is, in the real number system, every interior point of a set is a
limit point of that set. The same result holds for R?, R?, etc

On the other hand, there are those topological spaces that do have
an open singleton set. For example, let X := [1,2) u {3}, with the
relative topology, inherited from R. Let S := {3}. Then S is a clopen
subset of X, so ClxS =S = IntxS. Also, IsolxS = S. Then

LPXS = [Cl)(S]\USOl)(S] = S\S =

Then IntxS =5 ¢ ¢ = LPgX.
Recall: Let Y and Z be topological spaces, let ¢ : Y --+ Z and let
pe Y. Then

(1) quZ,[ (gb—»qnearp) means

(YW eN(g),UeN*(p)st. fL(U) V) ]
() Vge Z, [ (gzﬁ—>qnearp) =

(VV eN(q), 3U € N*(p) s.t., Vo € dom][f],

[zeU] = [fl@)eV] ) ].
(2) LH;/[S ¢ = {qeZ|¢— qnear p}.
(3) lim¢ = ELT (LIMS ).
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(4)quZ,[ (li;nqﬁzq) = (¢—>qnearp) ]

Recall: Let Y and Z be topological spaces. Assume that Z is Haus-
dorff. Let ¢ : Y --» Z. Let pe LPDy¢ and let ¢ € Z. Then:

( li}r)ncb:q ) = ( ¢ —>gnearp ).

Recall: Every norm | e | has an associated metric dj.,|. So every
normed vector space has a standard metric. Every metric d has an
associated topology 7Ty. So every metric space has a standard topology.

Any metrizable topological space is Hausdorff. Therefore any met-
ric space is Hausdorff, and, consequently, any normed vector space is
Hausdorff. For this reason, for us, the Hausdorff condition is consid-
ered “tame”; any topological space of interest in this course will be
Hausdorft.

Recall: Let W be a vector space, let f : R --» W and let p € dom|[ f].
Then SS;; : R --» W is defined by

Since ® is used for any undefined quantity, it follows that, for any
vector space W, for any f : R --» W, for any p, if p ¢ dom[f], then
SS% = ®, and so, for all h, (SS%)(h) = @.

Recall: Let W be a normed vector space and let f : R --» W. Then
f iR --» W is defined by f'(p) = lim SS%. By lim, we mean (R, W) —

lim. When W is unclear we might write f{;, instead of f’, but this

is almost never necessary because of “absoluteness of differentation”,
which we describe in the next paragraph.

Let W be a normed vector space, let V' be a subspace of W and let
f:R-->V. Then: f{, = fi,.

Note: Let W be a normed vector space W, and let f : R --» W. As
we pointed out above, Vp € R\(dom|[f]), we have f'(p) = ®, i.e., we
have p € R\(dom[f’]). That is, R\(dom[f]) < R\(dom[f’]). Equiva-
lently, dom[f’] < dom]|f].

DEFINITION 31.2. LetY and Z be topological spaces, f:Y --» Z.
Then det|f] :=={pe Y | f is continuous at p}.

In Definition 31.2, “dct” stands for domain of continuity.
In Definition 31.2, by “continuous” we mean “(Y, Z)-continuous”.
When Y and Z are unclear, we can write dcty [ f]. However, this is
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almost never necessary, because of “absoluteness of continuity”, which
we describe in the next paragraph.

Let Y and Z be topological spaces. Let Yy € Y and let Zy < Z. Let
f Yy -—» Zy. Then: dcety, z,[f] = dety z[ f].

Let Y and Z be topological spaces and let f : Y --» Z. By
Definition 21.3, we see ¥p € dct[f], we have p € dom[f]. That is,
det[f] < dom][f].

Let W be a normed vector space and let f : R --» W. Recall that
dom|[f’] < dom[f]. By Theorem 26.17, we see: ¥p € dom[f’], we have
p € det[f]. That is, dom[f’] < dct[f]. Then

dom[f'] < det[f] < dom[f].

That is, dct[f] is set-theoretically between dom|f’] and dom|[f].
Recall: Let W be a vector space, f: R --» W, p € dom[f]. Then

(1) dom[SSF] = [(dom[f]) — pg,
(2) LPDg[SS%] = (LPDgf) —p and
(3) [0€ LPDg(SS})] < [peLPDzaf].
REMARK 31.3. Let W be a normed vector space, let f : R --» W
and let ve W. Then:
(1) Vpe dom|[f], ([f(p)=v]= [SS} —vnear(]) and
(2) Vpe LPDgf, ([ f'(p) =v ]= [SS} — v near0 ] ).
Proof. Unassigned HW. Hint: Keep in mind that, for all p € dom[f],
[F@)=v] = [lmSsh=v]

Also, for all p € dom|f], we have: [0 € LPDg(SS})] < [pe LPDgf].
Now apply Remark 25.18 for (1), and Remark 25.19 for (2). O

Ezample: Define ¢ : R — R by ¢(x) = 2. Let
S = {1,1/2,1/3,1/4,...} U {0}
Note that LPgS = {0}. Let W := R. Let f := ¢|S : R --» W. The
graph of ¢ is a parabola passing through (0, 0), and the graph G of f is

a countable collecction of points on that parabola. Note that (0,0) € G
and LPg2G = {(0,0)}. For all z € S;, we have:

e 7 ¢ LPgS — LPDg/,

e 0¢ LPDs(55%),

o LH{}/IS(SSJ’?) =R,

o fl(x) =0 and
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° SS]%" — 73 near 0.

The use of 73 was arbitrary. In fact, as LH[}/[S(SSJT) = R, it follows, for
all y € R, that SS§ — y near 0. Note: While SS% — 73 near 0, it does
NOT follow that f'(z) = 73; in fact, we have f'(z) = ®. We leave it
as unassigned HW to show: f’(0) = 0. Then dom|f’] = {0}.

LEMMA 31.4. Let W be a normed vector space, f : R --» W and
p € dom[f']. Then SS7 — f'(p) near 0.

Proof. Let v := f'(p). By (1) of Remark 31.3, we have SS? — v near
0. That is, SS? — f'(p) near 0, as desired. O

The next result says that any point of differentiability is a point of
continuity and is NOT an isolated point in domain of the function. We
need to assume that the target vector space is nonzero, which is a tame
assumption: Who would want to study a constant function whose only
value is zero?

REMARK 31.5. Let W be a nonzero normed vector space and let
f:R--»W. Then dom|f'] < (dct] f])\(Isolg (dom[f])).

Proof. We want to show: Vp € dom[f], p € (det[f])\(Isolg(dom][f])).
Let p € dom[f’] be given. Want: p € (dct[f])\(Isolg(dom[f])).

By Theorem 26.17, p € dct[f]. Want: p ¢ Isolg(dom[f]). Assume
p € Isolg(dom|[f]). We aim for a contradiction.

As p ¢ [Clg(dom[f])]\[Isolg(dom[f])] = LPg(dom|f]) = LPDgf,
we get: 0 ¢ LPDg(SS%). Then, by Proposition 24.7, LH(YIS(SS?) =W.
Since W is nonzero, we get #W = oo, and so ELTW = ®. Then
f'(p) = li(I)n(SS]I?) = ELT(LH(;/[S(SS?)) = ELTW = ®. However, since
p € dom[f’], it follows that f’(p) # ®. Contradiction. O

Assigned HW#3-2.

DEFINITION 31.6. Let k € N. Let f1,..., fr be functions. Then
(fi,---, fx) is the function defined by

(oo o) (@) = (h), ., fil2)).
Note: Let ke N. Let fi,..., fr be functions. Then

dom[(fi,..., fu)] = (dom[fi]) n --- n (dom[fy]).
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Note: Let k € N. Let X be a set and let Y7,... Y, be sets. Let
fi: X--Y, ..., fr : X --2Y,. Then

(fl?"'?fk) : X -—= HX"'XYk.

Note: Let k € N. Let X be a topological space. Let Yi,...,Y% be
topological spaces. Let f1 : X --» Yy, ..., fi +: X --» Y. Then
det[(f1, ..., fu)] = (det[fi]) 0 -+~ (det] fx]).

Note: Let k € N. Let X be a topological space. Let Sy,...,5, < X.
Then LPx(S1 n - n Sg) € (LPxSt) n--- n (LPxSk). Equality may
not hold: LPg ((—o0,0] n [0,00)) = LPg{0} = ¢, while

(LPg(=0,0]) n (LPg[0,%0)) = ((=e0,0]) n ([0,0)) = {0}.

Note: Let k € N. Let X be a topological space. Let Yi,...,Y: be
sets. Let f1: X --» Yy, ..., fr : X -=» Y. Then

LPDx[(fi,--  f)] = (LPDx[fi]) o --- n (LPDx[fi])-

Assigned HW#3-3 and HW#3-4.

HW#3-4 illustrates why an analyst would be drawn into topology.
For any normed vector space W, if two functions R --» W agree on an
open set U in R, then their derivatives also agree on U.

If we drop the requirement that U be open in R, then this statement
becomes false: Let f,g: R — R be defined by f(z) = |z| and g(z) = z.
Let U := [0,00). Then f = g on U. Since f'(0) = @ # 1 = ¢/(0), we
conclude: NOT ( f'=¢ on U ).

DEFINITION 31.7. The functions cos,sin : R --+ R are defined by

LE2 I4 wG
cost = ot m
) R L
e T T

Following material that is typically covered in MATH 3283, the two
power series in Definition 31.7 both have infinite radii of convergence.
It follows that dom[cos] = R, that dom[sin] = R. Moreover, it follows
that the term-by-term derivatives of those two power series yield power
series that also have infinte radius of convergence. Also, it follows that
those two term-by-term derivatives are power series for cos’ z and sin’ z.
This shows: cos’ = —sin and sin’ = — cos.
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Let Z := cos*({0}). Since cos is differentiable on R, cos : R — R is
continuous. So, since {0} is closed in R, it follows that Z is closed in
R. Let S := Z n[0,90). Then S, being the intersection of two closed
subsets of R, is closed in R. We have cos0 = 1. We have cos2 < 1 —
[(22)/(2D)] +[(2%)/(4")] < 0. Then, by the Intermediate Value Theorem
(Theorem 29.7), 3z € (0,2) s.t. cosxz = 0. Then Z n (0,2) # . So,
since Z n (0,2) € Z n[0,0) =Y, we see that Y # . Finally, since
Y < [0,00) = 0, we see that Y is bounded below. By Corollary 25.14,
Y has a minimum. Note that Y = {x € [0,0) | cosz = 0}.

DEFINITION 31.8. We define 7 := 2 (min{z € [0,0) | cosz = 0}).

Then 7/2 = min{x € [0,90) | cosx = 0}. In particular, cos(7/2) = 0
and 0 ¢ cos,([0,7/2)). Since cos is continuous on R, since cos(0) = 1
and since 0 ¢ cos,([0,7/2)), it follows, from the Intermediate Value
Theorem (Theorem 29.7), that cos.([0,7/2)) > 0.

We will prove the next three lemmas after we prove the Mean Value
Theorem, but we will use them immediately. (To avoid circular rea-
soning, our proof of the Mean Value Theorem cannot use any of the
next three lemmas!)

LEMMA 31.9. We have sin® + cos? = Cg.
Proof. Deferred until after the proof of the Mean Value Theorem. [

Recall: C : R — {1} is the constant function defined by Cg(x) = 1.
Then Lemma 31.9 is equivalent to

VzeR, (sin®x) + (cos’z) = 1.
LEMMA 31.10. We have sin(m/2) = 1.
Proof. Deferred until after the proof of the Mean Value Theorem. [
LEMMA 31.11. Let o, B € R. Then both

(1) sin(a+ f) = [sina][cosB] + [cosa][sinf] and
(2) cos(a+ ) = [cosa][cosfB] — [sina][sinfS].

Proof. Deferred until after the proof of the Mean Value Theorem. [
We have

) + (7/2))

)1[cos (m/2)] — [sin(m/2)][sin (7/2)]
[1][1] = L

cosm = cos((m/2
= [cos(m/2
= [o][0] -
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Also, we have

/2) + (7/2))

= [sin(m/2)][cos (m/2)] + [cos(m/2)][sin(7/2)]
= [1][0] = [0][1] = O

LEMMA 31.12. Let x € R. Then all of the following are true:

sinm = sin( (7

(1) cos(—z) = cosuz,

(2) sin(—:c) = —(sinx),

(3) cosz = sin ( (7/2) — z),

(4) cos (7r +2x) = —(cosx) and
(5) sin(m +x) = —(sinz).

Proof. Proof of (1): This follows because, in Definition 31.7, the power

series for cos involves only even powers of z. End of proof of (1).
Proof of (2): This follows because, in Definition 31.7, the power

series for sin involves only odd powers of x. End of proof of (2).

Proof of (3): We have
sin ((7/2) — ) = [sin(7/2)][cos(—z)] + [cos(m/2)][sinz]
= [1][cosz] + [0][sinz] = cosz.

End of proof of (3).
Proof of (4): We have

cos (m + x) = [cosm][cosz] — [sinm][sinz]
= [—1][cosz] — [0][sinz] = —(cosz).
End of proof of (4).
Proof of (5): We have
sin (7 4+ x) = [sinm][cosz] + [cosm][sinz]
= [0][cosz] + [—1][sinz] = — (sinx).
End of proof of (5). O
For all x € R, we have
sin(2r + ) = sin(mn+7+2) = —[sin(7 + x)]
= —[—(sinz)] = sinx and
cos(2r + x) = cos(m+ 7+ x) = —[cos(m + x)]

= —[—(cosx)] = cosz.
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By the Principle of Mathematical Induction, we conclude:
(1) VjeN, cos(2jm) = 1
(2) VjeN, sin(2jm) = 0,
(3) VjeN, cos((2j—1)m) = —1 and
(4) VjeN, sin((25—1)m) = 0,
Assigned HW#3-5.
Define f : R -——» R by f(z) = [2?][sin(z™%)]. Let B := adj)f.
According to HW#3-5, we have /(0) = 1. In particular, 0 € dom[J'].

Since § = f on Ry, by HW#3-4, we see that §/ = f" on R;. Then, for
all x € R}, we have

Bx) = f(z) == [22][sin(@™)] + [327*] [cos(z™")].
In particular, R} < dom[f’]. So, as 0 € dom[/’], we get dom[S'] = R.
Define p € RN by p; = (2j7)~%3. For all j € N, we have 0 < p; < 1 and
pj_?’ = 247 and sin (pj_3) = 0 and cos (p]—s) =1, and so
B'(p;) = [2p][0] = [3p77][1] = —3p;* < =3
Define g € RN by ¢; = ((2j—1)7)"¥3. Forall j € N, we have 0 < ¢; < 1
and ¢;° = (2j — 1)m and sin (¢; *) = 0 and cos (¢;°) = —1, and so
B(q) = [2¢;][0] — [3¢;*][-1] = 3¢;* > 3.
Since (pe » 0inR ) and ( go — 0in R ) and

(B'(p;) < =3) and (B(q;) > 3),
we get lién B = @. Thus, the function 3’ is NOT continuous at 0, even

though (' is defined at every real number, and, in particular, at 0.

32. CrAss 6 ON 1 FEBRUARY 2018, TH oF WEEK 3

LEMMA 32.1. Let f : R --» R. Let p € dom[f']. Assume f'(p) > 0.
Then 3U € Ng(0) s.t. (SS5)«(U) >0

Proof. By Lemma 31.4, SS¥ — f'(p) near 0. Let ¢ := SS} and let
q := f'(p). Then ¢ — g near 0. Also, 0 ¢ dom[SS}] = dom[¢].

We have ¢ = f'(p) > 0. By HW#3-2 (with p replaced by 0 and
U by Uy), choose Uy € Ng(0) s.t. ¢.(Uyx) > 0. Let U := Uy, U {0}.
Then U € Ng(0). We wish to show: (S57).(U) > 0.

Since 0 ¢ dom[¢], we conclude that U n (dom[¢]) = Ux N (dom[ ]).

Then ¢.(U) = ¢«(Ux). Then (557)(U) = ¢+(U) = ¢«(Ux) > O
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Geometrically, Lemma 32.1 says that, for any f : R --» R, for any
p € dom[f'], if the tangent line to f at p runs uphill, then all the nearby
secant lines to f at p will also run uphill. In the next lemma, we will
show that it does NOT follow that, on some neighborhood of p, f is
semiincreasing. (However, we will use (3 in place of f.)

LEMMA 32.2. There is a function §: R — R such that
(1) 5'(0) =1 and
(2) YU € Ng(0), B|U is NOT semiincreasing.

Proof. Let f : Ry — R be defined by f(z) = z + [z?][sin(z™3)]. Let
B :=adjjf. Then B : R — R. Define a,v : R — R by a(z) = 2 — 22
and y(z) = z + 22 Then a < 8 <y on R and o/(0) = 1 = +/(0). So,
by HW#3-3, we see that 8/(0) = 1, which shows that (1) is true. It
remains to show that (2) is true. Let U € Ng(0) be given. We wish
to show: S|U is NOT semiincreasing. Assume: (|U is semiincreasing.
We aim for a contradiction.

As Bg(0) is a neighborhood base at 0 in R and as U € Ng(0), choose
r > 0s.t. Br(0,r) € U. We have 0 € dom[f']. Since = f on R[],
by HW#3-4, we conclude that 8' = f’ on R. Then, for all z € R[],

B(z) = flz) = 1+ [2¢][sin(2™°)] + [3277] [cos(z™7)].
In particular, Ry < dom|[f’]. So, as 0 € dom[f’], we get dom|[5’] = R.
By the Archimedean Principle, choose j € N s.t. j > r73/(27). Let
p = (2jm)""3. Then p < r. Also, 0 < p < (27)"*3 < 1. Since
p <1 weget p?>1,andso—3p 2 < —3. Also, p~3 = 2jm, and so
sin (p~3) = 0 and cos (p~®) = 1. Then

B'(p) = 1+ [2p][0] = [3p7°][1] = 1-3p™ < 1-3 <0
Then '(p) < 0. Let y := #'(p). Then y < 0. Let € := —y. Then £ > 0.
We have lign(Ssg) = A'(p) = y, and so SS§ — y near 0. Choose J > 0
s.t., Yh € dom[SSE],

[Ih=0]<d] = [I[(SSHM)] -yl <e]

We have —r < 0 < p < r. Then p € (—r,r) = Bg(0,7), so, by the
Recentering Down Lemma (Lemma 14.2), choose n > 0 s.t. Br(p,n) S
Bgr(0,7r). Let h := [1/2][min{n,d}]. Then h > 0 and |h| < 1 and
|h| < d. Since h > 0, it follows that h € Rj. Since dom[S] = R, we get
dom[SSE] = [R —plg = Ry. Then h € RY = dom[SSE] and || < 6.
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Then, by the choice of §, we get |[(SS§)(h)] —y| < e. Equivalently, we
have y —e < (SS§)(h) < y+e. Then (SSE)(h) <y+e=y+(-y) =0.
As|(p+h) —p| = |h| <n, we get p+ h € Br(p,n). Then

p,p+h € Br(p,n) < Br(0,7) < U.

So, as f|U is semiincreasing and as p < p + h, we get 5(p) < B(p + h).
Then [B(p + h)] — [B(p)] = 0. Then, as h > 0, we get (SSE)(h) = 0.
Then 0 < (S53)(h) < 0, s0 0 < 0. Contradiction. O

We next reivew the proof of the Product Rule and Chain Rule. After
that, we will give a proof of the Quotient Rule.

DEFINITION 32.3. For any object a, for any set S, by a*e S, we
mean: [ (a=® )or (aeS )]

For all a,aq,b,b, *¢ R, we have
athy —ab = (a3 —a)b + a(by—b) +
(ap —a) (by —b).
Setting A(ab) = a;by — ab, Aa := a; — a and Ab := by — b, we have:

Aab) = (Aa)b + a(Ab) +
(Aa) (AD).

Note the similarity to the product rule, but with the (perhaps) unex-
pected term (Aa) (Ab). The formulas above are versions of the pre-
calculus product rule, as are the three formulas in the next remark:

REMARK 32.4. Let f,g: R --+ R and let pe R. Then
(1) Vh e R,

(fo), () = [f, MW]lew)] + [fp)llg, (W] +

(2) Yhe R,

(55%)(h) = [(SSP(M]lg(p)] + [f(DISSHR)] +
[(SSP(MTISSE)(h)][A].

(3) SS%, = [SSHI[CEP] + [CEP[SSE] + [SSPI[S S [idz].
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Proof. Proof of (1): Let h € R be given. We wish to prove

(fo)y(h) = Ly (W]l + [F()]lg, (R)] +
Lf, (W] g, (R)].
By Definition 25.21,

(h) = [flp+M]lglp+h)] — [f)]]g(p)]
fy(h) = [fe+n)] — [f(p)]

gy (k) = lglp+n)] — lg(p)]-
Let a := f(p), b:=g(p), a1 :== f(p+ h), by := g(p + h). Then

(f9)p(h) = arby — ab
pr(h) = a; —a
gp(h) = b —b.

So, since

atby —ab = (a3 —a)b + a(by—0b) +
(a1 — a) (bl — b),
it follows that

(fo)y (k) = [fr(W)]lg@)] + [f()]lg, (h)] +
o

as desired. End of proof of (1).

Proof of (2): Unassigned HW. Hint: Take the formula in (1) and
divide by h. Note that in the third term on the right hand side, we end
up dividing by A twice and multiplying by h once. End of proof of (2).

Proof of (3): Let L := SS% and let

R = [SSHCE”] + [CRPISSy] + [SSTILS Sy [ids]-

We wish to show that L = R. Since R; is a common superdomain for
L and R, it suffices to show, for all h € R, that L(kh) = R(h). Let
h € R} be given. We wish to show: L(h) = R(h).

By (2), we have

(55%)(h) = [(SSP(M]lg(p)] + [f(DISSHR)] +
[(SSPMTT(SSE (R [A].
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Then

L(h) = (SS53,)(h) = [(SSHM]lgp)] + [F](SSF)(R)] +
[(SSE)(M(SS) ()] [h] = R(h),

as desired. End of proof of (3). O

We next reprove the Product Rule.

THEOREM 32.5. Let f,g : R --» R and let p € LPDg(fg). Then
we have: (fg)'(p) =" [f'(P)]Lg(p)] + [F )]y (p)]-

Proof. Let L := (fg)'(p) and let R := [f'(p)]lg(p)] + [f(0)]lg'(p)]-
Want: L =* R. That is, want: [R # @] = [L = R]. Assume: R # ©.

Want: L = R. That is, want: (fg)'(p) = R. As p € LPDg(fg), by <
of (2) of Remark 31.3, it suffices to show: SS% — R near 0.

Since R # @, it follows that f'(p) # ® # ¢'(p). Then p € dom[(f, ¢")].
Then, by Lemma 31.4, we see both that SS; — f'(p) near 0 and
that SS? — ¢'(p) near 0. By (3) of Remark 32.4, we conclude that

S5 = [SST[CL™] + [CLPI[SSP] + [SS7I[SS2][ids]. We have
SSY —  f'(p) near 0,
C4” — g(p) near 0,
CLP —  f(p) near 0,
SSP
idg
Then SS7, — [f'(01lg®)] + [f 1l ()] + [f'(»)]lg' ()][0] near 0.

So, since B = [f'(p)l[g(p)] + [f(P)]lg'(P)] + [f'(p)][g'(P)][O], We get
S5, — R near 0, as desired. O

l

g (p) near 0 and

0 near 0.

l

Our next focus is on the Chain Rule.

Recall: Let W be a normed vector space, let g : R --+ W and let
p € dom[g']. Then ST'S? := adjg,(p)(Ssg). That is, ST'S? is obtained
from SS? by “removing the discontinuity at 0”. In particular, ST'S? is
continuous at 0. Since ST'S! = adjg/(p)(Ssg). by definition of adj, we
see, for all h € R, that

(SSP)(), ifh+#0

STSP =
(STE;) ) {g’(p), if h =0.
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Note: For any normed vector space W, for any g : R --» W, for any
object p, if p ¢ dom[g'], then STS? = @.
In the next proof, keep in mind both of the following:
e Va*e R, Vbe R, b+a—b=a.
e Va,c*e R, Vbe R}, a/c = (a/b)(b/c).

The next lemmas is the Precalculus Chain Rule:

LEMMA 32.6. Let f,g : R --» R, p € dom|f], h € R}, ¢ := f(p),
k= fl(h). Assume k # 0. Then (SSy,)(h) = [(SSZ)(k)][(SS})(h)].

Proof. Since p € dom|[f], we have f(p) € im[f] € R. We have ¢ = f(p)
and k = f (h) = [f(p+h)] = [f(p)]. Then ¢ +k = f(p + h). We have

Then
(Ssgof)(h) _ [(gof)(p+h)}]L_[(gof>(p)]
_ lg(Flp+h)] —[9(f(p)]
h
_ lglg+ k)] - [9(a)]
h
_ [ lgla+K)] - [9(q)] [E}
k h
= [(SSHE)I[(SSF)(R)],
as desired. O

The next lemma is the Semicalculus Chain Rule:

LEMMA 32.7. Let f,g : R --» R, p € dom|f], q := f(p). Assume
that g is differentiable at q. Then SSY . = [(ST'S?) o (f1)] - [SSF].

Proof. Let L := SS? ; and let R := [(STSZ) o (f))] - [SS%]. We wish
to show: L = R. Since R[] is a common superdomain for L and R, it
suffices to show: Vh € Rj, L(h) = R(h). Let h € R} be given. We
wish to show L(h) = R(h).
Let k := pr (h). One of the following must be true:
(1) k#0 or
(2) k=0.
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Case 1: By Lemma 32.6, (SSp h) = [(SSY(K)][(SSF)(h)]. Since

k # 0, we get (STS?)(k) = (S5 )() Then
L(h) = (955,)(h) = [(5S9)(k)][(SSF)(h)]
= [(5T'S) (k)] [(55%)(h)]
= [(STSH(f, (M) [(SSF)(h)]
= [((STSZ) o (£, )N](SSF)(h)]

= ([(STSg) o (f;)]-[SS7]) (h) = R(h),

as desired. Fnd of Case 1.

Case 2: As p € dom[f], we get f(p) € im[f] =< R. As g is differen-
tiable at ¢, we get ¢ € dom[¢’]. Then f(p) = ¢ € dom[¢'] < dom][g].
Then g(f(p)) € im[g] < R. We have

[fo+h)] = [f®)] = fi(h) = &k = 0.
Then f(p+h) = f(p) € R. Then g(f(p + h)) = g(f(p)) € R. Then

lg(f(p+R)] — [9(f(p))] = 0.

We calculate

L) = (s, = o et h)}l — 9o Hp)]

_ LU rm)] =gl _ 0 _
h h '

By definition of ST'SZ, we have (ST'S?)(0) = ¢'(q). Since ¢ € dom[g'],
we get ¢'(q) € im[¢g'] < R. Then, as h € R}, we get [¢'(¢)][0/h] = 0.
Since k = 0, we have (ST'S?)(k) = (ST'SZ)(0). Then

R(h) = [(STSH)(R)[(55F)(h)]

I

= [9'(a)] [%] = 0.

Then L(h) =0 = R(h), as desired. End of Case 2. O
The next result is called the Chain Rule.

THEOREM 32.8. Let f,g:R --» R and let p e LPDg(g o f). Then
we have: (go f)(p) = [¢'(f ()] (p)]
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Proof. Let L := (go f)'(p) and R := [¢'(f(p))][f'(p)]. Want: L =* R.
That is, want: [R # @] = [L = R]. Assume: R # ®. Want: L = R.

That is, want: (g o f)(p) = R. As p € LPDg(g o f), by < of (2)
of Remark 31.3, it suffices to show: SS| . — R near 0. Let ¢ := f(p).
Then R = [¢'(q)] - [f'(p)]. Want: SSg., — [¢'(q)] - [f'(p)] near 0.

Since [¢'(¢)] - [f'(p)] = R # ®, we see that ¢'(q) # ® # f'(p). That
is, we have: both ( ¢ € dom[g'] ) and ( p € dom[f’] ). That is, we have:
both ( g is differentiable at ¢ ) and ( f is differentiable at p ). By the
Semicalculus Chain Rule (Lemma 32.7), SS?_ . = [(ST'S?)o(f,)]-[SSF]-
It therefore suffices to show both of the following

(STS2) o (f)) — ¢'(q) near 0 and
SS% — f'(p) near 0.

By Lemma 31.4, we conclude that SS}’Z — f'(p) near 0. It remains to
show: (ST'SZ) o (f)) — ¢'(q) near 0.

Since f is differentiable at p, by Theorem 26.17, f is continuous
at p. Then, by = of Fact 26.16, pr is continuous at 0. That is,
pr — fE(0) near 0. So, since pr(O) = 0, we see that fg — 0 near 0.
So, since ST'S{ is continuous at 0, by Fall Semester HW+#60, we see
that (ST'S?) o (f)) — (STS)(0) near 0. So, since (ST'S?)(0) = ¢'(q),
we get (ST'S?) o (f)) — ¢'(q) near 0, as desired. O

Our next focus is on the Quotient Rule.
We first need the derivative of reciprocation:

LEMMA 32.9. Definer : R — R by r(z) = 1/x. Then r' = —r?.
Proof. We have both
(dom[r'] € dom[r] =R} ) and (dom[—7r?] = dom[r] =R]).

Then R is a common superdomain for both 7" and —r?. It therefore
suffices to show: Vp € Ry, 7’(p) = (—r?)(p). Let p € R be given. We
wish to show: r/(p) = (—7?)(p). We have (—r?)(p) = —[r(p)]* = —p~2
We wish to show: r/(p) = —p~2.

We have LPDgr = LPg(dom[r]) = LPr(R;) = R. Then

p € RY < R = LPDgr

so, by <= of (2) of Remark 31.3, we want: SS? — —p~2 near 0.
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Let the function 7 : R — R be defined by 7(h) = p + h. Then
7(0) = ®, but 7 — p near 0. For all h € R}, we have

o AW -] 1 11
(SS)(h) = ] _ E[M‘;]
1[P—@+hq::1[ —h ]
hi (p+h)p h|(p+h)p
1 1
T A W] [CEM)]

- (7)o

So, as R} is a common superdomain for SS]’Z and — we get

T-CF’
1 1

—. — —— near 0.
T-C8 T-Ch p?

Since (7 — pnear 0 ) and ( CR — pnear 0 ) and (p e R} ), it
follows that —

S5 = —

So, as —p 2 = ——, we want: —
p

— —— near 0, as desired. U
7-Ch p?

We will prove the Quotient Rule in the next class.
33. CrAss 7 ON 6 FEBRUARY 2018, Tu oF WEEK 4
Assigned HW 4-1.
Recall: Let f be a function. Then, for any set A,
fi(A) = {f(@)[ze An (dom[f])}  and
FHA) = {zedom[f]] f(z) e A}.
Also, for any set S of sets,
fex(S) = {fu(A)[Ae S} and
f7(8) = {ff(A)[Ae S}
FACT 33.1. Let f be a function. Let S be a set of sets. Then

(1) £ (US) = Ulfax (S)],
(2) f(Us) = Ulr=(s)]  and
3) (NS) = N~ (S

Proof. Omitted. O
FACT 33.2. Let f be a function. Let A and B be sets. Then
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[ (AB) = [f*(A) N[/ (B)]
Proof. Omitted. O

Let f be a 1-1 function. Then f, is the same as (f~!)* and fy, is
the same as (f~1)**. Consequently, for any set S of sets we have:

Also, for any sets A and B, we have

fo (AAB) = [ (A) N[ (B)]

If, in the last paragraph, we drop the assumption that f is 1-1, then
neither formula is correct, and we gave examples to show why.

THEOREM 33.3. Let X, Y be topological spaces, let f : X —>Y
be a homeomorphism and let S < X. Then

(1) fu (IntxS) = Inty (f.(S)),
(2) f*(ClXS) = ClY(f*(*g));
(3) f«(IsolxS) = Isoly ( f«(S)) and
(4) f*(LPXS) = LPY(f*(S))'

Proof. Proof of (1): Let

A = {Uc S|Uisopenin X} and
B = {V < f(S)|V is open in Y}.

Then | JA = IntxS and [ J B = Inty (f«(5).

We have: YU € A, f.(U) € B. Then f,.(A) <€ B. We have: YV € B,
f*(V) e A. Then f**(B) < A. Then fuu(f**(B)) S fix(A). So, since
Fesx(f**(B)) = B, we get B € fu(A). So, since fu(A) S B, we get
fun(A) = B. Then ULfeu(A)] = UB. So, since Ulfun(A)] = £u(U-A),
we get f.(LJ.A) = JB. So, since | JA = IntxS and | J B = Inty (f.(S5),
we get fi(IntxS) = Inty (f«(5)), as desired. End of proof of (1).

Proof of (2): Unassigned HW. End of proof of (1).

Proof of (3): Unassigned HW. End of proof of (3).

Proof of (4): Unassigned HW. End of proof of (4). O

DEFINITION 33.4. For all SeR, —S :={—z|x € S}.

Assigned HW#4-2.

Define r : R --» R by r(x) = 1/z. Recall (Lemma 32.9): v’ = —r?
We explained:
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1
(1) Ya,b*e R,botha-<g> :%:Z—Zanda—i-( b) =a—0b,
a—

b b 1
and (2) Ya,b,c*e R, both ¢ 22 anda-[—=)-c=-%
c c c b b

THEOREM 33.5. Let f,g: R --+ R. Let pe LPDg(f/g). Then
([)'(p) _« LW — [0l (P)]

g [g(p)]?
Proof. Define r : R --» R by r(z) = 1/z. By Lemma 32.9, ' = —r2.

Let v:=rog. Then f/g = (f)-(1/9) = (f)- (rog) = fv.
Since p € LPDg(f/g) = LPDR(f'y) by the Product Rule (Theo-

rem 32.5), we have (f7)'(p) =" [f'(p)][v(p)] + [f (0)][V'(P)]-
We have 7(p) = r(9(p))

Since dom[fv] < dom[y], w e see that LPDg(fv) < LPDg7y. Since
p € LPDgr(fvy) < LPDgy < LPDR(T o g), by the Chain Rule (Theo-
rem 32.8), we have (r o g)'(p) =* [r'(g9(p))]lg'(p)]- Then

7(p) = (Tog)’() gDy ()]

—_

as desired. O

This completes our basic results about differentiation, including

e linearity of differentiation,
e the Product Rule

e the Chain Rule

e the Quotient Rule.

We now turn our attention to a new topic: Optimization.
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DEFINITION 33.6. For any f, by f is a functional, we mean:
( f is a function ) and (im[f] < R).
DEFINITION 33.7. Let f be a functional and let p € R. By f has

a maximum at p, we mean:

(pedom[f])  and  ( f(p)=im[f]).

By f has a minimum at p, we mean:

(pedom[f]) and  ( f(p) <im[f]).

By f has an extremum at p, we mean:

( f has a mazimum at p ) or ( f has a minimum at p ).

DEFINITION 33.8. Let X be a top. space, f : X --+ R, p e X.
By f has a local maximum at p in X, we mean: 3V € Nx(p) s.t.

(Vedom[f]) and  (f(p)=f(V)).

By f has a local minimum at p in X, we mean: 3V € Nx(p) s.t.

(Vedom[f])  and  (f(p) < fu(V)).

By f has an local extremum at p in X, we mean:

(f has a local mazimum at p) or ( f has a local minimum at p).

We sometimes omit “in X" if the choice of X is clear.

Recall: Let X be a toplogical space and let p € X. By (2) of Re-
mark 16.3, any superset of a neighborhood of p is again a neighborhood
of p.

REMARK 33.9. Let X be a topological space, f: X --+ R, pe X.
Assume that f has a local extremum at p in X. Then

(1) dom[f] € Nx(p),
(2) p e Intx(dom|f]) and
(3) (Vze X, {z} is not open in X ) = (pe LPDxf ).

Proof. Proof of (1): Since f has a local extremum at p in X, it follows
that: 3V € Nx(p) such that V' < dom|[f]. Then, by (2) of Remark 16.3,
we conclude that dom[f] € Nx(p), as desired. End of proof of (1).
Proof of (2): Let S := dom|[f]. We wish to show: p € IntxS.
By (1) of Remark 33.9, S € Nx(p). Then by < of HW#3-1, p €
Intx S, as desired. End of proof of (2).
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Proof of (3): Assume: Vz € X, {z} is not open in X. We wish
to show: p € LPDxf. Let S := dom[f]. Then LPDxf = LPxS.
We wish to show: pe LPxS.

By (2) of Remark 33.9, we have p € Intx.S. By Remark 31.1, we have
IntxS < LPxS. Then p e IntxS < LPxS. End of proof of (3). O

We drew a graph of a function R --+ R and identified and classified
several extrema and local extrema. We observed that a local extremum
need not be an extremum. We drew a closed line segment in the plane
that was neither horizontal nor vertical. This line segment is the graph
of a function f whose domain is a closed interval /. We observed that
f has extrema at each endpoint I, but that f has no local extrema
in R. Note: the endpoints of I are local extrema of f in dom[f].

REMARK 33.10. Let X be a topological space, let f: X --+ R and
let p € Intx(dom|f]). Assume: f has a mazimum at p. Then: f has a
local maximum at p.

Proof. Let V := dom[f]. Then p € Inty(dom|f]) = IntxV. So, by =
of HW#3-1, we have V € Nx(p). By Definition 33.7, f(p) = im[f].
Then f(p) = im[f] = f«(dom[f]) = f«(V). Then, by Definition 33.8,
f has a local maximum at p. O

REMARK 33.11. Let X be a topological space, let f: X --+» R and
let p € Intx(dom|f]). Assume: f has a minimum at p. Then: f has a
local minimum at p.

Proof. Let V := dom[f]. Then p € Inty(dom[f]) = IntxV. So, by =
of HW#3-1, we have V € Nx(p). By Definition 33.7, f(p) < im[f].
Then f(p) < im[f] = f«(dom[f]) = f«(V). Then, by Definition 33.8,

f has a local minimum at p. 0

REMARK 33.12. Let X be a topological space, let f: X --+ R and
let p € Intx(dom|[f]). Assume: f has an extremum at p. Then: f has
a local extremum at p.

Proof. Unassigned HW. O

THEOREM 33.13. Let a,b e R. Assume a < b. Let f : [a,b] > R
be continuous. Assume that f(a) = f(b). Then there exists ¢ € (a,b)
such that f has an extremum at c.
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Proof. By the Extreme Value Theorem (Theorem 25.16), we know that
f has a maximum and a minimum, so choose p € [a, b] such that f has
a minimum at p and choose ¢ € [a, b] such that f has a maximum at .
Then at least one of the following must hold:

(1) p¢{a, b} or
(2) ¢ ¢{a,b}  or
(3) {p.q} = {a,b}.
Case (1): We have p € [a,b]\{a,b} = (a,b). Let ¢ := p. We wish to
show f has an extremum at c.
Since f has a minimum at p and ¢ = p, it follows that f has a
minimum at ¢. Then f has an extremum at c¢. End of Case (1).
Case (2): We have q € [a,b]\{a,b} = (a,b). Let ¢ := gq. We wish to
show f has an extremum at c.
Since f has a maximum at ¢ and ¢ = p, it follows that f has a
maximum at c¢. Then f has an extremum at c¢. End of Case (2).
Case (8): Let ¢ :== (a + b)/2. Then ¢ € (a,b). We wish to show: f
has an extremum at c.
Since {p,q} < {a,b}, we get f.({p,q}) € f«({a,b}). Let z := f(a).
By assumption, f(a) = f(b). Then z = f(b). Then

fefa,b}) = {fa), fO)} = {z}.

Then f.({p,q}) < f«({a,b}) = {z}. Then f(p) = z = f(q). By choice
of p and ¢, we have f(p) < im[f] < f(¢). Then z < im[f] < =.

Then im[f] = {z}. Since f(c) € im[f] = {2z}, we get f(c) = z. Then
im[f] < z = f(¢). Then f has a maximum at ¢. Then f has an
extremum at ¢, as desired. End of Case (3). O

REMARK 33.14. Let S € Na(0). Then 3h >0 s.t. he S.

Proof. Since Bg(0) is a neighborhood base at 0 in R, choose A € Bg(0)
such that A < S. Choose ¢ > 0 such that A = Bg(0,0). Let h := §/2.
Then h > 0, and we wish to show: h e S.

We have h = 0/2 € (0,0) < (—9,6) = Br(0,6) = A< S. O

LEMMA 33.15. Let f : R --» R and let p € dom|f’']. Assume that f
has a local maximum at p. Then f'(p) < 0.

Proof. Assume f'(p) > 0. We aim for a contradiction.
By Lemma 32.1, choose U € Ng(0) s.t. (S5%).(U) > 0.
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By assumption, f has a local maximum at p. Choose V € Ng(p) s.t.

(Vedom[f]) —and  (f(p) = fu(V) ).

Since V € Ngr(p), we get V — p € Nr(0). Then, as U € Ng(0), we
get Un (V —p) € Ng(0). Let S := U n (V —p). Then S € Ng(0),
so, by Remark 33.14, choose h > 0 such that h € S. We then have
he S=Un(V—-p) <V —p. Thenp+h eV < dom|f]. Then
f+h)e f(V) < f(p). Let ¢ := SS}. We have

] —
(SST(h) = Lf(p + )}]l L/ ()]
So, since p + h € dom| f], since p € dom|f’] < dom|f] and since h # 0,
we get h € dom[¢]. Also, since f(p+h) < f(p ) and since h > 0, we get

oy — MERI-UG)
As hedom[¢p] and as he S =U n (V —p) € U, we get ¢(h) € ¢.(U).

(
Then 0 = ¢(h) € ¢.(U) = (55%)(U) > 0,500 > 0. Contradiction. [
LEMMA 33.16. Let f : R --»> R and let p € dom|[f']. Assume that f

has a local mazimum at p. Then f'(p) = 0.

Proof. By Lemma 33.15, f'(p) < 0. We wish to show: f'(p) =0

Define A : R — R by A(z) = —z. By HW#4-1, X' = Ci'. Let
fo := foXand let py := A(p). By HW#4-3, we see that f; has a
local maximum at py. Since dom[fy] = —(dom[f]), by HW#4-2, we
get LPg(dom|fy]) = —(LPgr(dom[f])). That is LPDg fo = —(LPDgf).
By (3) of Remark 33.9, p € LPDg f. Then

p = —p € ~(LPDzf) = LPDgfy = LPDg(f o).

By the Chain Rule (Theorem 32.8), (f o A)'(po) =* [f'(A(po))][N (po)]-
So, since fo A = fy, since A(pg) = —po = p and since N (py) = —1, we
get fo(po) =* —[f'(p)]. Since p € dom[f’], we get —[f"(p)] # @. Then
fo(po) = =[f'(p)] # ®. Then py € dom[fg] and f'(p) = —[f5(po)].

Since fy has a local maximum at py and since py € dom| f{], it follows,

from Lemma 33.15, that f{(po) < 0. Then f'(p) = —[f5(po)] =0. O
Assigned HW#4-3, HW#4-4 and HW#4-5.

¢(h) =

!/

The following is called Fermat’s Theorem:

THEOREM 33.17. Let f : R --» R and let p € dom[f']. Assume
that f has a local extremum at p. Then f'(p) = 0.
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Proof. This is HW#4-5. U

34. CrLAss 8 ON 8 FEBRUARY 2018, TH oF WEEK 4

Let X and Y be topological spaces and let f: X --» Y. Let S € X.
By f is continuous on S, we mean S < dct[f], i.e., (Vp € S, f is
continuous at p ). Note that if S is continuous on S, then S < dom][ f].

Let W be a normed vector space and let f: R --» W. Let S < R.
By f is differentiable on S, we mean S < dom|[f’], i.e., ( Vp € S,
f is differentiable at p ). Note that if S is differentiable on S, then
S < dom| f].

DEFINITION 34.1. Let W be a normed vector space, f : R --» W
and S € R. Then f is c/d on S means:

( f is continuous on S') and ( f is differentiable on IntgS ).

In Definition 34.1, the condition “f is continuous on S” is equivalent
to: S < dct[f]. As det[f] € dom][f], it implies that S < dom][f].

In Definition 34.1, the condition “f is differentiable on IntgS” is
equivalent to: IntgS < dom|[f’].

DEFINITION 34.2. Let W be a normed vector space, f:R --+» W.
Then f is ¢/d means: f is ¢/d on dom]|f].

We graphed the function f : R --» R defined by f(x) = +/1 — z2.
(The graph is the upper half of the unit circle about the origin in the
plane.) We noted that f is differentiable neither at —1 nor at 1. We
explained why f is ¢/d.

Let W be a normed vector space. Then, for any ¢/d f,g: R --» W,
it is unassigned HW to show that f + g is ¢/d. For any a € R, for any
f R --» W, it is unassigned HW to show that af is ¢/d. For any c¢/d
f:R--» R, for any ¢/d g : R --» W, it is unassigned HW to show
that go f is ¢/d.

For any f,g : R --» R, it is unassigned HW to show that fg and
f/g are both c¢/d.

The following is called Rolle’s Theorem.

THEOREM 34.3. Let a,b € R. Assume a < b. Let f : [a,b] — R.
Assume f is ¢/d. Assume f(a) = f(b). Then 3c€ (a,b) s.t. f'(c) =0,

Proof. By Theorem 33.13, choose ¢ € (a,b) such that f has an ex-
tremum at ¢. We wish to show: f(c) = 0.
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We have ¢ € (a,b) = Intg([a,b]) = Intg(dom[f]). Then, by Re-
mark 33.12; f has a local extremum at c¢. Since f is ¢/d, we conclude
that Intg(dom[f]) < dom[f’]. Then ¢ € Intg(dom[f]) < dom][f’].
Then, by Fermat’s Theorem (Theorem 33.17), f'(c) = 0, as desired. [

DEFINITION 34.4. Let W be a vector space and let f : R --» W.
The function DQy : R x R --» W is defined by

[f@)] — [f(p)]
q—p '

Here, “DQ” stands for “difference quotient”.

Let W be a vector space and let f : R --» W. The function DQy
is symmetric, i.e., Vp,q € R, (DQy)(p,q) = (DQy)(q,p). Also, DQ;
is undefined on the diagonal, i.e., Vp € R, (DQy)(p,p) = ®. Also, we
have: Vp,h e R, (SS})(h) = (DQy)(p,p + h).

The next two results are precalculus results; they do not use limits

DQy(p,q) =

or differentiation. They both relate natural properties of a function
(injectivity, constancy, increasing, decreasing) to an understanding of
its secant slopes.

LEMMA 34.5. Let W be a vector space, f: R --» W, D < dom|f],
S = (DQ¢)(D x D). Then all of the following hold:

(1) (Ow ¢ S) < (f|Dis 1-1) and

(2) (S <{0w}) = (f|D is constant).
Proof. Unassigned HW. U
LEMMA 34.6. Let f : R --» R, D < dom[f], S := (DQy)«(D x D).
Then all of the following hold:

) ) < (f|D is strictly increasing),

(2) ) < (f|D is semiincreasing),

(3) (S<0) < (f|D is strictly decreasing) and
(4) )

< ( f|D is semidecreasing),
Proof. Unassigned HW. O

In the next proof, we need linearity of differentiation, i.e., we need
both of the following two results: Let W be a normed vector space.
First, for all f,g:R --» W, for all p e LPDg(f + g),

(f+9)( =" [f'] + [d®»]
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Second, for all a € R, for all f: R --» W, for all p € LPDg(af),
(af)(®) =" a-[fp]

The first result is Theorem 26.19. The second one was never quite
state explcitly, but follows from the Product Rule (Theorem 32.5, with
f replaced by Cg and g by f).

The following is called Mean Value Theorem.

THEOREM 34.7. Let a,b € R. Assume a < b. Let f : [a,b] — R.
Assume f is ¢/d. Then 3c e (a,b) s.t. f'(c) = (DQy)(a,b).

Proof. Let m := (DQy)(a,b). Define A : R — R by A(z) = mz. By
HW#4-1, X = Cg'. Since A is differentiable, A is ¢/d. We have

m _ (DQf)(a, b) _ [f(b)[]) : gf(a)] :
so, multiplying by b — a, we get (b — a)m = [f(b)] — [f(a)]. Then
mb —ma = [f(b)] — [f(a)], and so [f(a)] — ma = [f(b)] — mb. Let
¢ := f — A. Note that dom[¢]| = [a,b] " R = [a,b]. Also, as f and A
are both ¢/d, we conclude that ¢ is ¢/d. Also,

¢(a) = [fla)]=[Ma)] =[f(a)] —ma
= [f®)]=mb = [f(0)] = [A(])] = ¢(b).
Then, by Rolle’s Theorem (Theorem 34.3, with f replaced by ¢), choose

ce (a,b) s.t. ¢'(c) = 0. We wish to show: f'(c) = (DQy)(a,b).
We have c € (a,b) < [a,b] = LPg([a,b]). Then

¢ e LPg(dom[¢]) = LPDg¢ = LPDg(f—\).

Then (f — A)'(¢) =* [f'(c] — [N(¢)]. So, because f — X = ¢, we
conclude that ¢'(c) =* [f'(c] — [N(c)]. Since ¢'(¢) = 0 and since
N(c) = Cg(c) = m, we get 0 =* [f'(c] —m. As f is ¢/d, we have:
Intg (dom[f]) < dom[f’]. Then

¢ € (a,b) = Intg([a,b]) = Intg(dom[f]) = dom[f’].

Then f'(c) € im[f'] < R. Then 0 =* [f'(c] —m # ®. It follows that
0= [f'(c)] —m. Then f'(c) = m = (DQy)(a,b), as desired. O

Our buzz phrase for the Mean Value Theorem (Theorem 34.7) is:
“Any secant slope is a tangent slope somewhere in between.” In Corol-
lary 34.10 below, we’ll see how useful this is. Basically, by studying
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the derivative, we get information about tangent slopes. This calcu-
lus information then translates into information about secant slopes,
which then, by Lemma 34.6, gives basic precalculus information about
the function. For example, we can now use calculus to figure out on
which intervals a function is increasing and decreasing, and then use
that to maximize or minimize the function. Since optimization is use-
ful even to a person who may not care about calculus, another buzz
phrase for the Mean Value Theorem might be, “Calculus is useful.”

FACT 34.8. Let W be a normed vector space and let f : R --» W.
Let D < dom[f]. Then all of the following hold:

(1) (f is continuous on D) = ( f|D is continuous),
() VreltsD,  (fID)(x) = f(2),
(3) (fisc/d) = (f|D isc/d).

Proof. Proof of (1): True by Theorem 22.3. End of proof of (1).
Proof of (2): Let g := f|D, U := Intg D. We want: ¢’ = f' on U.
By definition of restriction, ¢ = f on D. So, since U < D, we get:

g = fon U. So, since U is an open subset of R, by HW#3-4, we

conclude that ¢’ = f' on U, as desired. End of proof of (2).

Proof of (3): Assume that f is ¢/d. We wish to show: f|D is ¢/d.
Since f is ¢/d, it follows that f is continuous. So, since D < dom|[f],
we see that f is continuous on D. Then, by (1) of Fact 34.8, we see that

f|D is continuous. It remains to show: f|D is differentiable on Intg D.

We wish to show: Yz € Intg D, (f|D)'(x) # ®. Let z € Intg D be given.

We wish to show: (f|D)'(z) # ®.

Since D < dom|f], Intg D < Intg(dom[f]). As f is ¢/d, we see that

f is differentiable on Intg(dom[f]). So, as x € Intg D < Intg(dom|f]),

we see that f is differentiable at x. That is, we have f'(z) # ©.

By (2) of Fact 34.8, (f|D)'(z) = f'(x). Then (f|D)(z) = f'(z) # ®,

as desired. End of proof of (3). O

The next result is the Mean Value Inclusion. It says: “Along an
interval, any secant slope is a tangent slope from the interior.”

THEOREM 34.9. Let f : R — R and let I be an interval. Assume
that f is ¢/d on I. Then (DQy).(I x I) < fi(Intg]).

Proof. Let ¢ := DQy. We wish to show: ¢, (I x I) < fi(Intgl). We
wish to show: Vv € dom[¢],

[velxI] = [o¢)e fi(Intg]) ].



260 SCOT ADAMS

Let v € dom|[¢] be given. We wish to show:
[velIxI] = [¢)e fi(lntg]) ].

Assume v € I x I. We wish to show: ¢(v) € fi(Intg[).

Since v € I x I, choose a, B € I s.t. v = (o, B). Since ¢ is symmetric,
we have ¢(a, 5) = ¢(8, ). We have (a, 5) = v € dom[¢] = dom[DQ¢],
and it follows, from the definition of DQ)¢, that o # .

Let a := min{«, 5} and let b := max{«, }. Then a < b. Also, either
(a,b) = (a, B) or (a,b) = (B,«). Then a,be I and ¢(«, ) = ¢(a,b).

Since a,b € I and since I is an interval, it follows that [a,b] < I.
Let D := [a,b]. Then D < I, so IntgD < Intgl. Since f is ¢/d on
I, we see that I < dct[f]. Then D < I < dct[f] < dom[f]. Let
g := f|D. Then, by (3) of Fact 34.8, ¢g is ¢/d. By the Mean Value
Theorem (Theorem 34.7, with f replaced by g), choose ¢ € (a, b) such
that ¢'(c) = (DQy)(a,b). By (2) of Fact 34.8, we have: Vx € (a,b),
¢(x) = ['(x). Then ¢/(c) = f'(c).

Since f(a) = g(a) and f(b) = g(b), we get (DQy)(a,b) = (DQy)(a, b).
Then ¢(a,b) = (DQf)(a,b) = (DQy)(a,b) = ¢'(c). We have

c € (a,b) = Intg([a,b]) = IntgD < Intgl.
As fis ¢/d on I, we get Intg] < dom[f’]. Then ¢ € Intgl < dom[f’].
Then f'(c) € fi(Intgl). As v = («, ), we get ¢(v) = ¢(«, 3). Then
o(v) = o(a, B) = ¢(a,b) = g'(c) = ['(c) € fi(Intg]), as desired. [
COROLLARY 34.10. Let f : R --» R and let I be an interval.

Assume that f is ¢/d on I. Let T := fi(Intgl). Then all of the
following hold:

(1) (0¢T) = (flisI-1),

(2) (T <{0}) <= (f|I is constant ),

B)(T=>0) = (f| is strictly increasing ),

4) (T=0) < ( f|I is semiincreasing ),

B) (T <0) = ([ is strictly decreasing ) and
6) (T<0) < (f|I issemidecreasing ).

Proof. Let S := (DQy)({ x I).

Proof of (1): Assume: 0 ¢ T. We wish to show: f|I is 1-1.

By the Mean Value Inclusion (Theorem 34.9), we get S < T. So,
since 0 ¢ T, we get 0 ¢ S. Then, by (1) of Lemma 34.5, f|I is 1-1, as
desired. End of proof of (1).
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Proof of (2): Proof of =: Assume: T < {0}. Want: f|[ is constant.

By the Mean Value Inclusion (Theorem 34.9), we get S < T'. Since
S < T < {0}, by (1) of Lemma 34.5, we conclude that f|I is constant,
as desired. End of proof of =.

Proof of <: Unassigned HW. End of proof of <. End of proof of (2).

Proof of (3): Assume: T > 0. Want: f|I is strictly increasing.

By the Mean Value Inclusion (Theorem 34.9), we get S < T'. Since
S < T >0, by (1) of Lemma 34.5, we conclude that f|I is strictly
increasing, as desired. End of proof of (3).

Proof of (4): Proof of=: Assume T'>0. Want: f|[ is semiincreasing,.

By the Mean Value Inclusion (Theorem 34.9), we get S < T'. Since
S < T =0, by (1) of Lemma 34.5, we conclude that f|I is semiincreas-
ing, as desired. End of proof of =.

Proof of «<: Unassigned HW. Hint: Similar to the proof of < of (6)
of Corollary 34.10; see below. End of proof of <. End of proof of (4).

Proof of (5): Assume: T' < 0. Want: f|I is strictly decreasing.

By the Mean Value Inclusion (Theorem 34.9), we get S < T'. Since
S < T <0, by (1) of Lemma 34.5, we conclude that f|I is strictly
decreasing, as desired. End of proof of (5).

Proof of (6): Proof of=: Assume T'<0. Want: f|I is semidecreasing,.

By the Mean Value Inclusion (Theorem 34.9), we get S < T'. Since
S < T <0,by (1) of Lemma 34.5, we conclude that f|I is semidecreas-
ing, as desired. End of proof of =.

Proof of <: Assume: f|I is semidecreasing. We wish to show: T < 0.
We wish to show: Yy e T, y < 0. Let y € T be given,. We wish to show:
y < 0. Assume y > 0. We aim for a contradiction.

Let Iy := Intgl. Then Iy is open in R, [y < [ and T' = f.(Iy). Since
yeT = fi(ly), choose p € Iy n (dom[f']) such that f'(p) = y. Note
that p € Iy. Since f'(p) = y > 0, by Lemma 32.1, choose U € N(0)
such that (S5%).(U) > 0. As Iy is open in R, we see that I —p is open
in R. Since p € Iy, we get 0 € Iy — p. So, since Iy — p is open in R,
by Remark 16.4, we see that Iy — p € Nk(0). So, since U € Ng(0), we
get: (Ig—p) n U € Ng(0). So, since {0} ¢ Nr(0) and since & ¢ Nr(0),
we get: (o —p) n U & {0}. Choose h € (I — p) n U such that
h # 0. Since h € Iy — p, we get p + h € Iy. So, since p € I, we have
(p,p+ h) € Iy x Iy. Since f is ¢/d on I, we get I < dom|[f]. Then
Inc I < dom[f],so hely—p< (dom|f]) —p. So, since h # 0, we see
that i € [(dom[f]) — plg. So, since dom[SS%] = [(dom[f]) — p];, we
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get h € dom[SSj’ﬁ]. So, since h € (Iy — p) n U < U, we conclude that
(SS%)(h) € (S5%)«(U). Then, by the choice of U, (S5%)(h) > 0.

Since h € dom[SS}], we conclude that (SS7)(h) # @. It follows that
(DQg)(p,p + h) = (SSF)(h) # ©, so (p,p + h) € dom[DQy]. So, since
(p,p+h)elyxIy<IxI, weget (DQs)(p,p+h)e (DQy)s(IxI). As
f|1 is semidecreasing, by (4) of Lemma 34.6, we get (DQ¢)«(I x 1) < 0.
Then 0 < (SS})(h) = (DQy)(p,p + h) € (DQy)«(I x I) < 0,500 < 0.
Contradiction. End of proof of <. End of proof of (6). O

Let f : R — R be defined by f(z) = 23 and let I := R. Then [ is an
interval and f is ¢/d on I. Also f|I = f and f is 1-1 and f is strictly
increasing. For all x € R, we have f/(z) = 322 Let T := f.(Intg[).
Then 0 = f’(0) € T. So, since f|I is 1-1, we see that the converse of (1)
of Corollary 34.10 fails. Since 0 € T, we have: NOT(T > 0). So, as
f|I is strictly increasing, the converse of (3) of Corollary 34.10 fails.

Let f: R — R be defined by f(z) = —23 and let I := R. Then [ is
an interval and fisc¢/d on I. Also f|I = f and f is strictly decreasing.
For all z € R, we have f'(x) = —3z?. Let T := f.(Intg/). Then
0 = f(0) € T, and so we have: NOT(T < 0). So, as f|I is strictly
decreasing, the converse of (5) of Corollary 34.10 fails.

The buzz phrase for the Mean Value Theorem asserts, “Any secant
slope is a tangent slope somewhere in between.” As the preceding two
paragraphs show, it is not hard for a function to “level out” for an in-
stant. This creates a horizontal tangent line, but does not necessarily
create horizontal secant lines. So remember that it is NOT true that
any tangent slope is a secant slope.

COROLLARY 34.11. Let f : R — R. Assume that f' = C3. Then
f is constant, i.e., there exists a € R such that f = C§.

Proof. Let I :=R. Let T := fi(Intg!). Then T = f;(R) = {0}. Then
by = of (2) of Corollary 34.10, we see that f is constant, as desired. [J

Recall: For all x € R, we have

S
cCosxr = E E a )
fES Is $7

simx = r——+— — 5+
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Note that cos0 = 1 and that sin0 = 0. Also, note that, for all x € R,
cos(—z) = cosz
sin(—z) = —(sinx).
FACT 34.12. We have cos’ = —sin and sin’ = cos.
Proof. Should be proved in MATH 3283. U
FACT 34.13. We have cos” = — cos and sin” = — sin.
Proof. We have

cos” = (—sin) = —(sin’) = —cos and
sin” = cos’ = —sin,
as desired. U

THEOREM 34.14. Let f : R — R. Assume f”
f(0) = f'(0) =0. Then f = C3.

Proof. Want: Vx € R, f(z) = 0. Let € R be given. Want: f(x) = 0.
Let £ := f2+ (f)?. Then
E = 2ff +2f " = 2ff + 2f)-(=f) = Cg,
so, by Corollary 34.11, choose a € R such that £ = C;. We have
a = Cg(0) = E(0) = [fO)) + [f(0)) = 0°+0° = 0.

Then E = Cg = CR. Let y := f(z) and z := f'(z). Want: y = 0.
Since y?> > 0 and 22 > 0, we have y? + 22 > y> > 0. So, because

v+ 22 =[f(@))+[f(2)]? = E(x) = C(z) = 0, we get 0 = y? > 0.

Then y? = 0. Then y = 0, as desired. O

—f. Assume

Using Theorem 34.14 and Corollary 34.11, we will prove a variety
of algebraic facts about sin and cos, e.g., Yz € R, sin(27 + x) = sinz.
That is, we can use calculus ideas to prove results in trigonometry.

35. CLASs 9 ON 13 FEBRUARY 2018, Tu oF WEEK 5

Recall: Vx € R,

S
cCosxr = E E a )
fES Is $7

simx = r——+— — 5+
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Note that cos(0) = 1 and that sin(0) = 0. Note: Vx € R,

cos(—x) = cosz,
sin(—x) = —(sinz).
Recall: sin’ = cos and cos’ = — sin.

THEOREM 35.1. We have: sin® + cos? = C}.

Proof. Let f :=sin® + cos?. We want: f = Cj.

Claim: f' = CQ. Proof of Claim: Want: Vz € R, f'(x) = C2(x). Let
r € R be given. We wish to show: f'(z) = C3(x).

We have

z € R = LPgR = LPg(dom[sin® + cos?]) = LPDg(sin® + cos?).

Then (sin? + cos?)’(z) =* [(sin?)’ ( )] + [(cos?)(z)].

Define 0 : R — R by o(y) = y*. Then: Vy € R, o’(y) = 2y. Also, we

2 — g osin and cos? = ¢ o cos. We have

7€ R = LPgR = LPg(dom[o o sin]) = LPDg(c o sin).
Then (o osin)’'(x) =* [¢'(sin(x))][sin’(z)]. We have
z € R = LPgR = LPDg(cos?) = LPDg(c o cos).
Then (o o cos)'(z) =* [0/ (cos(z))][cos’(x)]. Then
f') =

have sin

sin? 4 cos?)’(x)

(sin®)'(z)] + [(cos®)'(z)]

(0 osin)(z)] + [(o © cos)'(x)]

o' (sin(x))][sin’(x)] + [o” (cos(x))][cos’(x)]
(sin(z))][cos(z)] + [2 - (cos(x))][— sin(z)]

*

(

=
= |
o

[2-

]
= )
= 0 # 0.

Then f’(z) = 0. Then f'(z) = 0 = CR(x). End of proof of Claim.
By the Claim and Corollary 34.11, choose a € Rs.t. f = CR. Because
a=Cg0)=f(0)=02+12=1, we get f = C% = CL, as desired. O

THEOREM 35.2. Let f : R — R. Assume that f" = —f. Let
a:= f(0) and let b := f'(0). Then f =a-cos+b - sin.

Proof. Let ¢ := f —a - cos—b-sin. We wish to show ¢ = C3.
Claim 1: ¢’ = f'+ a -sin—0b-cos. Proof of Claim 1: Unassigned
HW. End of proof of Claim 1.
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Claim 2: ¢" = f" + a-cos+b-sin. Proof of Claim 2: Unassigned
HW. End of proof of Claim 2.

Since f” = —f, by Claim 2, we have ¢ = —f + a - cos+ b - sin. So,
since —¢ = —f + a-cos+b-sin, we get ¢ = —¢.
Since ¢ = f —a -cos—b-sin and since f(0) = a, we calculate

$p(0)=a—a-1-0b-0=0. By Claim 1, ¢/ :== f' 4+ a -sin—b - cos. So,
since f'(0) = b, we calculate ¢'(0) =b+a -0—b -1 =0.
Then, by Theorem 34.14 (with f replaced by ¢), we get ¢ = C3. O

THEOREM 35.3. For all w,x € R, we have
sinfw+z) = (sinw)- (cosz) + (cosw) - (sinz).
Proof. Let w € R be given. We wish to show: Vz € R,
sin(w+x) = (sinw)-(cosx) + (cosw) - (sinx).

Define f : R — R by f(z) = sin(w + ).

Claim 1: Yx € R, f'(z) = cos(w + z). Proof of Claim 1: Unassigned
HW. End of proof of Claim 1.

Claim 2: Vx € R, f"(z) = (—sin)(w + ). Proof of Claim 2: Unas-
signed HW. End of proof of Claim 2.

Claim 3: f" = —f. Proof of Claim 3: We wish to show: Vz € R,
f"(x) = (—f)(z). Let x € R be given. Want: f"(z) = (—f)(z).

By Claim 2, we have f”(z) = (—sin)(w + ). By definition of f, we
have f(z) = sin(w + z). Then

f'(x) = (=sin)(w + x) = =[sin(w + z)] = =[f(2)] = (=f)(2),

as desired. End of proof of Claim 3.

Let a := f(0) and let b := f’(0). By Claim 3 and Theorem 35.2,
f = a-cos+ b-sin. By definition of f, we have f(0) = sin(w+0). Then
a = f(0) = sin(w+0) = sinw. By Claim 1, we have f'(0) = cos(w+0).
Then b = f'(0) = cos(w + 0) = cosw. Then: Vz € R,

sinfw+2z) = f(z) = (a-cos+b-sin)(x)
= a-(cosz)+b- (sinz)

= (sinw) - (cosz) + (cosw) - (sinx),
as desired. 0

Assigned HW#5-1 and HW#5-2.
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Recall: min{z > 0| cosz = 0} # ®. Recall that, from the defintion
of ¢, we have: 7/2 = min{z > 0] cosx = 0}. Then min{zx > 0| cosz =
0} = 7/2. Note that cos(r/2) = 0. Also, we have the following:

REMARK 35.4. For allu e (0,7/2), we have cosu > 0.

Proof. Let u € (0,7/2) be given. We wish to show: cosu > 0. Assume
cosu < 0. We aim for a contradiction.

By the Intermediate Value Theorem (Theorem 29.7), we conclude
that [cos0]cosu] S cos.([0,u]). Since cosu < 0 < 1 = cos0, we
get [cosO0|cosu] = [cosu,cos0]. We have cosu < 0 < cos0, and so
0 € [cosu,cos0]. Then 0 € [cosu,cos0] = [cosO0|cosu] S cos,([0,u]).
Choose t € [0, u] such that 0 = cost.

Then t € {x = 0] cosz = 0} > /2, and so we get /2 < t. Then
/2 <te[0,u] <ue(0,7/2) <w/2,s07/2 < m/2. Contradiction. [

REMARK 35.5. We have sin(7/2) = 1.

Proof. Let ¢ := cos and let s := sin. We wish to show: s(m/2) = 1.

By Theorem 35.1, we have sin® +cos? = Cg, i.e., s> + 2 = C}.
Then [s(7/2)]? + [c(7/2)]* = C&(7/2). So, as c(n/2) = cos(7/2) = 0
and Ci(7/2) = 1, we get [s(7/2)]? + 0> = 1. Then [s(7/2)]* = 1, so
s(m/2) € {1, —1}. It suffices to show: s(7/2) > 0.

Let I :=[0,7/2]. Then Intgl = (0,7/2). By Remark 35.4, we know
that: Yu € (0,7/2), cosu > 0. Then cos((0,7/2)) > 0. That is,
c.((0,7/2)) > 0. Then s, (Intgl) = ¢,((0,7/2)) > 0. Then, by (5)
of Corollary 34.10, s|I is strictly increasing. We have 0,7/2 € I and
0 < m/2. Then (s|I)(0) < (s|I)(7/2). Then

s(m/2) = (s|I)(7/2) > (s|I)(0) = s(0) = sin0 = 0,
as desired. O
REMARK 35.6. We have sinm = 0 and cosm = —1.

Proof. By Remark 35.5, sin(n/2) = 1. Recall that cos(7/2) = 0.
We have sin7 = sin(2 - [7/2]). By HW#5-2,

sin(2-[7/2]) = 2 -[sin(w/2)] - [cos(7/2)].
Then

sin(2 - [7/2])
= 2. [sin(7w/2)] -
= 2-[1]-[0] = 0.

sin 7

[cos (m/2) ]
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It remains to show: cosm = —1.

We have cosm = cos(2 - [7/2]). By HW#5-2,
cos(2-[n/2]) = [cos®(m/2)] — [sin®(7/2)].

Then
cosm = cos(2-[m/2])
= [eos?(7/2)] — [sin? (7/2)]
= [0°] = [1*] = -1,
as desired. 0

REMARK 35.7. For all x € R, we have sin((7/2) — x) = cos x.
Proof. By Remark 35.5, sin(7/2) = 1. Recall that cos(w/2) = 0. Let

x € R be given. We wish to show: sin((7/2) — x) = cos .
Recall that cos(—z) = cosz. By Theorem 35.3, we conclude that:
sin((7/2) — x) = [sin(nw/2)] - [cos(—z)] + [cos(7/2)] - [sin(—=x)]. Then
sin((7/2) —x) = [sin(n/2)] - [cos(—z)] + [cos(m/2)] - [sin(—x)]

= [1]-[cosx] + [0]-[sin(—z)] = cosuz,
as desired. 0

REMARK 35.8. For all x € R, we have sin(m + x) = —sinz and
cos(m + x) = —cosz.

Proof. By Remark 35.6, we have sinm = 0 and cosm = —1. By Theo-
rem 35.3, we have: sin(m + x) = [sinn] - [cosz] + [cos7] - [sinz]. By
HW#5-1, we have: cos(m + ) = [cos 7] - [cos x| — [sin ] - [sinx]. Then

sin(m +x) = [sin7]-[cosz]| + [cosm]- [sinx]
= [0] [cosx] + [—1] [sinz] = —sinzx
and
cos(m+x) = [cosm]|-[cosx]| — [sinT]- [sinx]
= [—-1]-[cosz] — [0] [sinz] = —cosz,
as desired. 0

DEFINITION 35.9. The function exp : R --+ R is defined by
2 43 gd b 6

T
expr = 1+$+§+§+Z+§+a+“-.
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Following material that is typically covered in MATH 3283, the
power series in Definition 31.7 has an infinite radius of convergence.
Then dom[exp] = R. Moreover, the term-by-term derivative of this
power series yield a power series that also has an infinte radius of con-
vergence. Also, that term-by-term derivative is a power series for exp’z.
This shows: exp’ = exp.

In Theorem 35.14, we will prove Let f : R — R. Assume f' = f.
Assume f(0) = 0. Then f = C2. We'll call this our “f-result”, and
will prove it in Theorem 35.14 below.

Assigned HW#5-3 and HW#5-4 and HW#5-5.

NOTE: You are allowed to use the “f-result” above in your solutions
to both HW#5-3 and HW#5-4.

Using HW#5-5, to prove our “f-result”, it is enough to prove: Let
g: R — [0,00). Assume ¢’ = 2g. Assume g(0) = 0. Then g = C}.
We’ll call this our “g-result”, and will prove it in Lemma 35.13 below.

LEMMA 35.10. Let g : R — [0,00). Assume ¢’ = 2g. Then g is
SEMIINCreasing.

Proof. Since g : R — [0,00), we get im[g] = 0. Then im[2g] = 0.
We have ¢, (R) = im[¢’] = im[2g] = 0. Then, as R is an interval and
g|R = g, by (4) of Corollary 34.10, we see that g is semiincreasing. [J

LEMMA 35.11. Let g : R — [0,0). Assume ¢ = 2g. Assume
g(0) =0. Then g =0 on (—x,0].

Proof. We wish to show: Yz € (—0,0], g(x) = 0. Let x € (—o0,0] be

given. Want: g(x) = 0. We have g(x) € im[g] = 0. Want: g(z) < 0.
We have z € (—o0,0] < 0. By Lemma 35.10, g is semiincreasing. So,

since z < 0, we get g(z) < g(0). Then g(x) < g(0) = 0, as desired. [

LEMMA 35.12. Let g : R — [0,0) and let a € R. Assume ¢’ = 2g.
Assume g(a) = 0. Then g =0 on [a,a + (1/3)].

Proof. Let b := a + (1/3), K := [a,b]. Want: g = 0 on K. As
g: R —[0,00), we get g.(K) = 0 It suffices to show: g.(K) < 0.

By Lemma 35.10, g is semiincreasing. Then g.([a,b]) < g(b). Let
M := g(b). Then g.(K) = g«([a,b]) < g(b) = M. Want: M < 0.

By the Mean Value Theorem (Theorem 34.7), choose ¢ € (a,b) such
that ¢'(c) = (DQy)(a,b). By assumption, g(a) = 0. It follows that
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[g(b)] —[g(a)] = g(b) = M. Also, b —a = 1/3. Therefore

gd(c) = (DQ,)(a,b) = [g(b)g_gg(a)] = 1—]\/43 = 3M.

We have ¢ € (a,b) € [a,b] = K. Then g(c) € g.(K). So, because
g+(K) < M, we see that g(c¢) < M. By assumption, ¢’ = 2¢g. Then
3M = ¢'(c) = (29)(c) =2-[g(c)] <2M. Then M =3M —-2M < 0. O

We can now prove our g-result:

LEMMA 35.13. Let g : R — [0,0). Assume ¢ = 2g. Assume
g(0) = 0. Then g = C}.

Proof. We want: g = 0 on R. For all j € N, let I; := (—o0,(j — 1)/3].
Then R =1 nIynIsn---, so it suffices to show: Vj e N, g =0 on ;.
Forall jeN, let P; := [g=0on [;]. Want: Vje N, P;.

We have I} = (—o0,(1 —1)/3] = (—0,0]. So, by Lemma 35.11,
we see that ¢ = 0 on [;. That is, P, is true. So, by the Principle
of Mathematical Induction, it suffices to show: Vj e N, (P; = Pj11).
Let j € N be given. We want to show: P; = Pj;;. Assume: P;. We
want to show: Pj;. We know: g = 0 on I;. We want: g = 0 on [;;.

Let a :== (j —1)/3, b := j/3. Then I; = (—w,a], ;11 = (—x,b].
Then I; U [a,b] = I;11. Since a € (—x,a] = I; and since g = 0
on I;, we conclude that g(a) = 0. So, since a + (1/3) = b, it follows,
from Lemma 35.12, that g = 0 on [a,b]. Since g = 0 both on /; and
on [a,b], and since I; U [a,b] = I;11, we get: g =0 on [;;. O

We can now prove our f-result:

THEOREM 35.14. Let f : R — R. Assume both that f' = f and
that f(0) = 0. Then f = C}.

Proof. We wish to show: Vo € R, f(x) = C2(x). Let € R be given.
We wish to show: f(x) = C2(x). We wish to show: f(x) = 0.

Let g := f2. Then g : R — [0,00). By HW#5-5, we get: ¢ = 2g.
Also, g(0) = [f(0)]? = 0 = 0. Then, by Lemma 35.13, g = C2. Since
[f(2)]? = g(x) = (C2)(0) = 0, we get f(x) =0, as desired. O

LEMMA 35.15. For all x € R, we have: expx > 0.

Proof. Since exp : R — R is differentiable, exp : R — R is continuous.
We have dom[exp] = R = (-0, ), so dom[exp] is an interval. So,
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by the Intermediate Value Theorem (Theorem 29.7), as exp0 = 1 > 0,
it suffices to show: Vx € R, expx # 0. Given x € R. Want: expx # 0.

By HW#5-4, [expz] - [exp(—z)] = exp0. So, since exp0 = 1 # 0,
we conclude that expz # 0, as desired. U

LEMMA 35.16. The function exp : R — R 1us strictly increasing.

Proof. As exp’ = exp, by Lemma 35.15, we know: Vz € R, exp’(z) > 0,
Then, by (3) of Corollary 34.10, exp : R — R is strictly increasing. O

LEMMA 35.17. We have [1,00) < im|exp].

Proof. We wish to show: Va € [1,00), a € im[exp]. Let a € [1,00) be
given. We wish to show: a € im[exp].

As a > 0, we get 1+a+%+--- > a, i.e., that expa > a. Also,
a > 1 = exp0. Then exp0 < a < expa, i.e., a € [exp 0, exp al.
By the Intermediate Value Theorem (Theorem 29.7), we conclude that
lexp Olexp a] < exp,([0]a]).

Then a € [exp0,expa] = [expOlexpa] € exp,([0]a]) € im[exp]. O

LEMMA 35.18. We have exp : R —> (0, 0).

Proof. By Lemma 35.16, exp : R — R is strictly increasing, and is
therefore 1-1. It remains to show: im[exp] = (0, ). By Lemma 35.15,
im[exp] € (0,90). We therefore wish to show: (0,00) < im[exp].
By Lemma 35.17, we have [1,00) < im[exp|. It therefore suffices
to show (0,1) < im[exp]. We want to show: Vb € (0,1), b € im[exp].
Let b€ (0,1) be given. We wish to show: b € im[exp].

Let a := 1/b. Since b € (0,1), we get a € (1,00). Also, 1/a = b.
Since a € (1,00) < [1,0) < im[exp], choose t € R s.t. a = expt.
By HW#5-4, [expt] - [exp(—t)] = exp 0. Then

exp 0 1
—t = = - = b.
exp(—1) expt a
Then b = exp(—t) € im[exp], as desired. O

We define 0° = 1. Then, Vz € R, 2° = 1. Define
In := exp ' : (0,0) —> R.

For all p > 0, we define 0P = 0. For all x > 0, for all p € R, we define
P = exp(p - [Inz]). Finally, we define

tan := sin/cos and cot := cos/sin.
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Recall Definition 22.14:

DEFINITION 35.19. Let Y, Z be topological spaces, f 'Y --+ Z.
Then f is open or (Y, Z)-open means:
Yopen U in'Y, f.(U) is open in Z.

DEFINITION 35.20. Let Y, Z be topological spaces, f :Y --+ Z.
Then f is closed or (Y, Z)-closed means:
Vclosed C in'Y, fiu(C) is closed in Z.

LEMMA 35.21. Let Y and Z be topological spaces, f :Y —> Z.
Then: ( fis open ) < ( f is closed ).

Proof. Proof of =: Unassigned HW. End of proof of =.

Proof of <: Assume: f is closed. We wish to show: f is open. We
wish to show: ¥V open U in Y, f,(U) is open in Z. Let an open U in Y
be given. We wish to show: f,(U) is open in Z.

Since U € Y, we get Y\(Y\U) = U. Since U is open in Y, we see
that Y\U is closed in Y. Let C':= Y\U. Then C is closed in Y. Since
C' is closed in Y and since f is closed, we get: f.(C) is closed in Z.
Then Z\[f.«(C)] is open in Z. We want: f,(U) = Z\[f«(C)].

We have f,(U) = f.(Y\C). Because f is 1-1, we conclude that
FN\C) = [fe(V)\[f«(C)]. Since f : Y —> Z, it follows that
f«(Y)=Z. We have U = Y\(Y\U) = Y\C. Then

LU) = O0NC) = [LONLO)] = 27\ [f(O)],
as desired. End of proof of <. O

Recall: Let X be a topological space X and let A € X. The se-

quential closure of A in X is
sClyA := {zeX|3se AVst. s, - zin X}.

Then sClx A < ClxA. Also, if X is metrizable, then sClyA = ClxA.

Thus, in the situations we care about, closure = sequential closure.

DEFINITION 35.22. Let X be a topological space and let A < X.
Then A is sequentially closed in X means: sClxA = A.

Let X be a topological space and let A < X. Then:
(Aisclosedin X) < (ClyAc A)
= (sClxAc A)
< (A is sequentially closed in X ).
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Moreover, if X is metrizable, then

(Aisclosedin X) < (ClyAc A)
= (SCle - A)
< (A is sequentially closed in X ).

Thus, in the situations we care about, closed = sequentially closed.

LEMMA 35.23. Let K be a sequentially compact topological space
and let C < K. Assume that C is sequentially closed in K. Then C' is
sequentially compact.

Proof. We wish to show: Vs e OV, s, is subconvergent in C. Let s € CN
be given. We wish to show: s, is subconvergent in C'.

Since s, € CN < K and since K is sequentially compact, we see
that s, is subconvergent in K. Choose a subsequence t of s, such that
t, is convergent in K. Choose z € K such that t, — z in K. Since
s. € CN and since t, is a subsequence of s,, we conclude that t, € C".
So, since t, — z in K, we get z € sClxC'. Since C' is sequentially closed
in K, we have sClgC = C. Then z € sClgC = C.

By < of Theorem 19.9, since t, — z in K, we see that t, — 2z in C.
Then t, is convergent in C'. So, since t, is a subsequence of s,, we see
that s, is subconvergent in C', as desired. U

36. CLASS 10 OoN 15 FEBRUARY 2018, TH oF WEEK 5

Announced Midterm 1 on Thursday 22 February 2018, Th of Week
6. The midterm will, as usual be during the last hour of class, and we
will, as usual, review and have a break before the midterm.

Recall (Lemma 35.21): Let Y and Z be topological spaces, and let
f:Y —>>Z Then [( fisopen )< ( fis closed ) ].

Recall: Let X be a metrizable topological space and let C' < X.
Then [ ( C'is closed in X ) < ( C is sequentially closed in X ) |.

Recall (Lemma 35.23): Let K be a sequentially compact topologi-
cal space and let C be a sequentially closed subset of K. Then C is
sequentially compact.

Recall (Theorem 25.6): Let K be a sequentially compact topological
space, let Y be a topological space and let ¢ : K — Y be continuous.
Then im[¢] is sequentially compact.
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LEMMA 36.1. let X and Y be topological spaces, let K be a sequen-
tially compact subset of X and let f : X — Y be continuous. Then
f+(K) 1s sequentially compact.

Proof. Let ¢ := f|K. Then, by HW#2-4, ¢ : K — Y is continuous.
By Theorem 25.6, im[¢] is sequentially compact. So, asim[¢] = f.(K),
we conclude that f,(K) is sequentially compact, as desired. U

FACT 36.2. Let X be a Hausdorff topological space. Let K be a se-
quentially compact subset of X. Then K is sequentially closed in X .

Proof. We wish to show: sClyK = K. Since sClx K 2 K, it suffices
to show: sClyK < K. We wish to show: Vz € sClxK, z € K. Let
z € sClx K be given. We wish to show: z € K.

Since z € sClxyK, choose s € KN st. s, — z in X. Since K is
sequentially compact, s, is subconvergent in K. Choose a subsequence
t of s, s.t. t, is convergent in K. Choose y € K s.t. t, — y in K.
By Theorem 19.9, t, — y in X. Since s, — z in X and since %, is a
subsequence of s,, by Theorem 23.14, we see that t, — z in X. Since

(se > yin X ) and (s, —zin X ),

and since X is Hausdorff, by Corollary 24.9, we get y = z. Then
z =y € K, as desired. U

COROLLARY 36.3. Let X be a metrizable topological space and let
K be a sequentially compact subset of X. Then K is closed in X.

Proof. By Fact 36.2, we see that K is sequentially closed in X. So,
since X is metrizable, K is closed in X, as desired. [l

Recall (Theorem 25.1): Let X be a metric space. Let K be a se-
quentially compact subset of X. Then K is closed and bounded in X.
Using this, we have another proof of Corollary 36.3:

Proof. Choose d € M(X) such that 7 is the topology on X. By
Theorem 25.1, K is closed in (X, 7). That is, K is closed in X. [

Recall one-dimensional Invariance of Domain (Theorem 30.3): Let
f R --» R be 1-1 and continuous, and let U < dom|[f]. Assume that
U is open in R. Then f,(U) is open in R.

Recall: Let X :=[1,2) U [3,4) and let Y := [5,7). Then there exists
f X <> Y such that f is continuous, but not (X, Y )-open. This is
unfortunate, but Theorem 30.3 has the following corollary, which says
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that if a function R --» R is both injective and continuous, then it is
“open on the interior of its domain”. Often that interior is most of the
domain, and so “most” of the function is a homeomorphism.

COROLLARY 36.4. Let X € R, f: X — R. Let Xy := Intg X, let
Yo := f.(Xo) and let fo:= f|Xo. Then

(1) Yo is open in R and

(2) fo: Xo— Yo is a homeomorphism.

Proof. Proof of (1): Since Xy is open in R and X, € X = dom|f], we
see, by Theorem 30.3, that f.(Xo) is open in R. That is, Y} is open
in R, as desired. End of proof of (1).

Proof of (2): Want: Yopen subset U of Xy, f.(U) is open in Y;. Let
an open subset U of X be given. Want: f,(U) is open in Yj.

Since U is open in Xy and X is open in R, it follows that U is open
in R. So, since U € Xy € X = dom|[f], it follows, from Theorem 30.3,
that f.(U) is open in R. Then [f.(U)] n Yy is open in Y. Since
1(U) € fu(Xo) = Yo, we get [£u(U)] A Yp = fu(U). Then fo(U) is
open in Yy, as desired. End of proof of (2). U

The next result is called the Topological Inverse Function The-
orem for open subsets of R or the TIFT for open in R:

THEOREM 36.5. Let X, Y € R and let f : X <> Y be continuous.
Assume X is open in R. Then

(A) Y is open in R and
(B) f: X — Y is a homeomorphism.
Proof. Let Xy :=Intg X, Yy := f.(X0), fo := f|Xo. By Corollary 36.4,
(1) Yp is open in R and
(2) fo: Xo — Yp is a homeomorphism.
Since X is open in R, we have Intg X = X. That is Xy = X. Then
Yo = fu(Xo) = fu(X) = im[f] = Y. Then fo = f|Xo = f|X = f.
Then (A) follows from (1), and (B) follows from (2). O

The next result is called the Topological Inverse Function The-
orem for intervals or the TIFT for intervals:

THEOREM 36.6. Let X, Y < R and let f : X <—>Y be continuous.
Assume X 1s an interval. Then

(A) Y is an interval and
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(B) f: X =Y is a homeomorphism.

Proof. Omitted. Note that, by Theorem 30.1, f is stricly monotone.
So by looking at f or —f, we may reduce to the case where f is strictly
increasing. We will try to double back to this later, and add a proof.
It’s within the scope of this course, but is complicated, because there
are many different kinds of intervals (open, closed, compact, etc.). O

Finally, we have the Topological Inverse Function Theorem for
compcata or the TIFT for compacta:

THEOREM 36.7. Let X and Y be topological spaces. Assume that
X is sequentially compact, and that'Y is metrizable. Let f : X —>Y
be continuous. Then

(A) Y is sequentially compact and
(B) f: X =Y is a homeomorphism.

Proof. By Theorem 25.6, im[f] is sequentially compact. So, since
im[f] =Y, we see that Y is sequentially compact, proving (A). It re-
mains to prove (B). Since f : X <> Y is continuous, we need only
show that f : X <> Y is open. Then, by Lemma 35.21, we wish
to show that f : X — Y is closed. That is, we wish to show: For any
closed subset C' of X, f.(C) is closed in Y. Let a closed subset C' of X
be given. We wish to show: f,(C) is closed in Y.

Since C'is closed in X, it follows that C' is sequentially closed in X.
Then, since X is sequentially compact, by Lemma 35.23, we see that
C'is sequentially compact. Then, by Lemma 36.1, f,(C) is sequentially
compact as well. Then, by Corollary 36.3, f.(C) is closed in Y. O

We now turn from topological inverse function theory to differential
inverse function theory. Our next main result is Theorem 36.11, which
is a kind of “anti-IFT”. However, we first need two preliminary remarks.

REMARK 36.8. Let X and Y be topological spaces, ¢ : X --» Y,
we X, zeY. Assume: Vhe X, ¢(h) *= z. Then ¢ — z near w.

Proof. Want: YV € Ny(z), 3U € N3 (w) such that ¢.(U) < V. Let
V € Ny(z) be given. Want: 3U € N3 (w) such that ¢.(U) < V.

By Remark 16.4, we conclude that X € Nx(w). Let U := XX. Then
U e N (w), and we wish to show: ¢.(U) € V. Want: Vh € dom[¢],

[heU] = [oh)eV].
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Let h € dom[¢] be given. We wish to show:
[heU] = [o¢h)eV ]

Assume h € U. Want: ¢(h) € V.
By assumption, ¢(h) *= z. Since h € dom[¢], we have ¢(h) # ®.
Then ¢(h) = z. As V e Ny(z), we get z€ V. Then ¢(h) =z€V. O

REMARK 36.9. Let X € R and let pe R. Then (idx)'(p) *= 1.
Proof. Let i :=idx. Want: ¢'(p) *= 1. That is, we wish to show:
[‘p#@] = [ip=1]
Assume: 7'(p) # ®. We wish to show: i'(p) = 1.
For all x € R\(LPDgi), we have f'(z) = ®. So, as p € R and

i'(p) # ®, we get p € LPDgi. It suffices to show: SS¥ — 1 near 0.
For all h € R, we have

h h
Then, by Remark 36.8, we have SS? — 1 near 0, as desired. O

LEMMA 36.10. Let X, Y € R, f: X —>Y, pe dom|f']. Then
(1) pe LPrX and
@) [Fp#0] = [flp)eLlPrY ]

Proof. By Remark 31.5, we have dom[f’] < X\(IsolgX). Then we
have p € dom[f’] € X\(IsolgX) < LPgrX, proving (1). It remains
to prove that (2) holds. Assume that f’(p) # 0. We wish to show that
f(p) e LPRY. Let ¢ := f(p). We wish to show that ¢ € LPRY".

Since p € dom[f’] < dom][f], it follows that f(p) € im[f]. Since
LPRrY = [CIRY]\[IsolgY] and since ¢ = f(p) € im[f] =Y < ClgY, we
want: g ¢ IsolgY . Assume: ¢ € IsolgY. We aim for a contradiction.

Since ¢q € IsolgY’, choose W € Ng(q) such that W n'Y = {¢}. Since
p € dom[f'] < dct[f], we see that f is continuous at p. So, since
W e Nr(q) = Ne(f(p)), by definition of continuity, choose V' € Ng(p)
such that f.(V) < W.

Let m := f'(p) and let S := R\{0}. Then SS} — m near 0, and S
is an open subset of R. We have p € dom[f’] and m = f'(p) # 0, so
m € S. By Remark 16.4 any open set is a neighborhood of each of its
points, so, since S is open in R, we get S € Ng(m). So, since SS? —m
near 0, choose U € Ny (0) such that (SS}).(U) < S.
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Let U' := U + p. Since U € N (0), we get U’ € Ny (p). Let
V':=U" nV. Since U € N (p) and V € Ng(p), we get V' € Ng(p).

By (1) of Lemma 36.10, we have p € LPgX. So, since V' € Ny (p),
by (2) of Fact 24.3, we conclude that V' n X # ¢J. Choose z € V' n X.
We have z e VVn X =U' nV nX. Since z € X = dom[f], we get
f(2) € im[f]. Since z € dom[f] and z € V, we get f(z) € f«(V). Then
f(z) e fo (V)< W. Also, f(z) eim[f] =Y. Then f(z) e WnY = {q}.
Then f(z) = ¢ = f(p). Since z€ U' = U + p, we get z—p e U. Let
h :=z—p. Then h € U. Since z € U" and U’ € Ny (p), we see that
z # p. Then h = z —p # 0. We have p € dom[f’] € dom[f] and
fp+h) = f(z) =q= f(p),and so [f(p+ )] = [f(p)] = 0. Therefore,
because h # 0, we conclude (SS§)(h) = 0. Then h € dom[SS%].
Therefore, because h € U, it follows that (SS%)(h) € (S5%).(U).

Then 0 = (SS%)(h) € (555)«(U) = S = R\{0}. Contradiction. [

THEOREM 36.11. Let X,Y € R, f: X <>> Y, p e dom[f']. Let
q:= f(p), g:= f~'. Assume f'(p) = 0. Then ¢'(q) = ®.
Proof. By (1) of Lemma 36.10, we have p € LPgX. Therefore, we have

p € LPgX = LPDg(g o f). So, by the Chain Rule (Theorem 32.8),

we get (g o f)(p) = [¢'(f(p)]-[/'(P)]. So, since f(p) = ¢ and
since f'(p) = 0, we have (g0 f)'(p) =* [¢'(¢)] - [0]. By Remark 36.9,

(idx)'(p) *= 1. Then 1 =* (idx)'(p) = (g f)'(p) =" [¢'(@)] - [0], s0

1 =* [¢'(q)] - [0]. Assume ¢'(q) # ®. We aim for a contradiction.
Since ¢'(q) # ®, we get ¢'(¢) € R, and so [¢'(q)] - [0] = 0. Then

1 =*0 # ®, and so 1 = 0. Contradiction. O

THEOREM 36.12. Let X, Y € R, f: X —>Y, pe dom|f']. Let
q:= f(p) and let g := f~'. Assume that g is continuous at q. Then

g'(q) = /1S ()]
Proof. Next class. 0

We noted that, in Theorem 36.12, if we drop the hypothesis that
g is continuous at ¢, then the result becomes false, as follows: Define
X :=[1,2) U [3,4), define Y := [5,7), define f: X — Y by

fa) = {x+4, if 7 e [1,2)

x+3, ifxe[3,4),

and then let p := 3, ¢ := f(p), g := f~'. Then f'(p) = 1, ¢ = 6 and
g is NOT continuous at g. Then ¢'(q) = ® # 1/1 = 1/[f'(1)].
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37. CLASS 11 oN 20 FEBRUARY 2018, Tu oF WEEK 6
Midterm 1 on Thursday 22 February.

Recall the Topological Inverse Function Theorem for intervals (The-
orem 36.6): Let X, Y < Randlet f: X <> Y be continuous. Assume
that X is an interval. Then

(A) Y is an interval and

(B) f: X — Y is a homeomorphism.

We did not prove this result, as the proof involves a lot of bookkeep-
ing. However, our next goal is to prove enough of this theorem that
students should be able to see how to do the rest if they want to.

NOTE TO SELF": In fact, we could prove: Let f : R --» R be strictly
monotone. Assume that dom[f] is an interval. Then f~! is continuous.
(Interestingly, we don’t need to assume that f is continuous. Proof:
If f~! had a discontinuity, it would have to be a jump discontinuity,
but then im[f~!] would not be an interval, and, as dom|[f] = im[f~],
this contradicts the assumption that dom[f] is an interval. QED)

NOTE: What we are calling topological inverse function theorems
are, more commonly, called open mapping theorems, just in case
you might wish to look for some of these kinds of theorems online.

FACT 37.1. Let S < R. Then:
[ S is an interval | < [ (Ya,be S, [alb] €S ) & (S # &) ]
Proof. Omitted O
Assigned HW#6-1.

LEMMA 37.2. Let Y, Z be topological spaces. Let g,h:Y --+ Z. Let
q€Y and let Yo € Ny(q). Assume that h is continuous at q. Assume
that g = h on Yy. Then g is continuous at q.

Proof. We wish to show: YW € Nz(g(q)), 3U € Ny(q) s.t. g.(U) € W.
Let W e Nz(g(q)) be given. We want: 3U € Ny (q) s.t. g.(U) € W.

Since g € Yy and since g = h on Yy, we conclude: ¢(q) = h(q). Then
W e Nz(g(q)) = Nz(h(q)). So, since h is continuous at ¢, choose
Ve Ny(q) s.t. he(V) € W. Since V,Yy € Ny(q), it follows that
VnYyeNy(q). Let U :=V nYy. Then U € Ny(q) and we wish to
show: ¢,(U) € W. We wish to show: Vz € dom|g],

[zeU] = [glx)eW].
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Let x € dom[g] be given. We wish to show:
[zeU] = [glx)eW].

Assume: z € U. We wish to show: g(x) e W.

We have x € U =V nYy, so both € U and x € Y. Since = € Y}
and since g = h on Yp, we get g(x) = h(x). Since z € dom|[g], we get
g(x) # ®. Since h(z) = g(x) # @, we get x € dom[h]. So, since z € V,
we get h(x) € hy(V). Then g(z) = h(x) € he(V) € W, as desired. [

Assigned HW#6-2, HW#6-3 and HW#6-4.

Unassigned HW: Prove a variant of HW#6-4, in which “strictly in-
creasing” is replaced by “stricly decreasing”.

Recall (Theorem 30.1): Let f : R — R. Assume dom[f] is an
interval. Then: ([ f is strictly monotone | < [ fis1-1]).

LEMMA 37.3. Let X, Y € R, aeR. Let f: X <> Y be continuous.
Assume: X = [a,0). Then: f~' is continuous at f(a).

Proof. If f is strictly increasing, then, by HW+#6-4, f~! is continuous at
f(a). If fisstrictly decreasing, then, by the Unassigned HW above, f~!
is continuous at f(a). Then it suffices to show that f is either strictly
increasing or strictly decreasing, i.e., that f is strictly monotone.

By Theorem 30.1, f is strictly monotone. 0

THEOREM 37.4. Let X, Y € R and let f : X <—>Y be continuous.
Assume: Ja € R s.t. X = [a,0). Then: f~':Y — X is continuous.

Proof. Choose a € R s.t. X = [a, ). By Lemma 37.3, f~! is continu-
ous at f(a). We wish to show: f~!is continuous on Y\ {f(a)}.
Let X, := Intg X. By HW+#6-2, f~! is continuous on f,(Xy). We
wish to show: f.(Xo) =Y \{f(a)}.
We have Xy = Intg X = Intg[a, ) = (a,0). Also, as
a € [a,0) = X = dom[f],

we conclude that f.({a}) = {f(a)}. Since f is 1-1, it follows that
fe(X\{a}) = [f«(X)]\ [f«({a})]. We therefore calculate:
Ji(

feXo) = ful(a,20)) = fi(la,0)\{a}) = ful X \{a})
= [LFONHap)] = YA{f(a)},
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as desired. 0
Assigned HW#6-5.

LEMMA 37.5. Let X, Y € R, aeR. Let f: X —>Y be continuous.
Assume: 3b € (a,0) s.t. X = [a,b). Then: f~1 is continuous at f(a).

Proof. Unassigned HW. Hint: Similar to the proof of Lemma 37.3, but
with the following outline. First, prove a variant of HW#6-5, in which
“strictly increasing” is replaced by “stricly decreasing”. Then combine
HW#6-5 with this new variant, and use Theorem 30.1. U

THEOREM 37.6. Let X, Y < R and let f : X —>Y be continuous.
Assume: Ja,be R s.t. a < b and X = [a,b). Then f71:Y — X is
CONntinuUoOuUSs.

Proof. Choose a,be R s.t. a <band X = [a,b). By Lemma 37.5, f~!
is continuous at f(a). We want: f~! is continuous on Y\ {f(a)}.
Let X, := Intg X. By HW#6-2, f~! is continuous on f,(Xy). We
wish to show: f.(Xo) =Y \{f(a)}.
We have Xy = Intg X = Intg[a,b) = (a,b). Also, as
a € [a,b) = X = dom[f],

we conclude that f.({a}) = {f(a)}. Since f is 1-1, it follows that
fe(X\{a}) = [f«(X)]\ [f«({a})]. We therefore calculate:

fi(Xo) = ful(a,0)) = filla,b)\{a}) = ful X\ {a})
= [LONHap)] = YN {F(a)},

as desired. 0

We can now indicate, in more detail, how to prove Theorem 36.6:

THEOREM 37.7. Let X, Y € R and let f : X <—>Y be continuous.
Assume X is an interval. Then

(A) Y is an interval and
(B) f: X — Y is a homeomorphism.

Proof. Since X = dom[f], f«(X) = im[f] = Y. So, by HW#6-1,

Y is an interval. Want: f : X — Y is a homeomorphism. Since f is,

by assumption, continuous, we need only show: f~! is continuous.
Since X is an interval, at least one of the following must be true:
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(1) X is compact or

(2) X is open in R or

(3) Jae R s.t. X = [a, o) or

(4) da,be R s.t. a < band X = [a,b) or
(5) IbeR s.t. X = (—o0,0] or

(6) Ja,be R s.t. a <band X = (a,b].

Case (1): By Theorem 36.7, f~! is continuous. End of Case (1).
Case (2): By Theorem 36.5, f~! is continuous. End of Case (2).
Case (3): By Theorem 37.4, f~! is continuous. End of Case (3).
Case (4): By Theorem 37.6, f~! is continuous. End of Case (4).
Case (5): Unassigned HW. End of Case (5).

Case (6): Unassigned HW. End of Case (6). O

Recall Theorem 36.11: Let XY € R, f: X —> Y, p € dom[f].
Let ¢ := f(p), g := f~. Assume: f'(p) = 0. Then: ¢'(q) = ®.

Recall Lemma 36.10: Let XY € R, f: X <> Y p e dom[f'].
Then: (pe LPrX ) and ([ f'(p)#0] = [ f(p)eLPrY |).

We can now prove:

THEOREM 37.8. Let X, Y € R, f: X —>Y, pe dom|f']. Let
q:= f(p) and let g := f~'. Assume that g is continuous at q. Then

g'(q) = 1S (p)]-
Proof. By Theorem 36.11, if f'(p) = 0, then ¢’(¢) = ®. Let m := f'(p).
We wish to show: ¢'(¢) = 1/m. We know:

[m=0] = [g(@=0=1/0=1/m]

It therefore suffices to show:

[m#0] = [¢(@=1/m]

Assume m # 0. We wish to show: ¢'(¢) = 1/m.

Since m = f'(p), by Lemma 25.18, we get: SS7 — m near 0.
By (2) of Lemma 36.10, we conclude that f(p) € LPrY". It follows that
q = f(p) € LPrY = LPg(dom[g]) = LPDgrg. So, by Remark 25.19,
it suffices to show: SS¢ — 1/m near 0.

Let ¢ := SS? and ¢ := SSI. Then ¢ — m near 0, and we want:
1 — 1/m near 0. We wish to show: Ve > 0, 30 > 0 s.t., Yk € dom[¢],

[0<[kl<d] = [I[vME)] - [1/m]] <e]
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Let € > 0 be given. We wish to show: 30 > 0 s.t., Vk € dom[¢],

[0<[k[<d] = [Il[vMF)] - [1/m]] <e]

Since p € dom[f’] and f’ : R --» R, it follows that f’(p) € R. That
is, m € R. So, as m # 0, we get 1/m # ®. Since ¢ — m near 0,
by Lemma 20.5, we get: 1/¢ —* 1/m near 0. So, since 1/m # ®, we
get: 1/¢ — 1/m near 0. So choose v > 0 s.t., Vh € dom[1/¢],

[0<[hl<y] = [IIL/)RW)] - [1/m]] <e].

Since ¢ is continuous at ¢, choose § > 0 s.t., Vz € dom[q],

[lz=ql <o] = [llgG)] - le(@Il <~
We wish to show: Vk € dom[v],

[0<lk[<d] = T[IlwME] - [1/m]] <e]
Let k € dom[¢] be given. We wish to show:

[0<lk[<d] = T[lwME] - [1/m]] <e]
Assume 0 < |k| < 6 We wish to show: | [¢(k)] — [1/m]| <
]

By assumption, ¢ is continuous at ¢. Then ¢ € dct[g
Then ¢(q) € im[g] = X € R. We have

< domlg].

So, since k € dom[¢], (k) # @. Then g(q+k) # @, so ¢+ k € dom|[g].
Then g(¢ + k) € im[g] = X < R. Let h := [g(¢ + k)] — [9(q)]. Then
(k) = h/k. Since g(¢ + k) € R and g(q) € R, we get: h e R.

By assumption, f : X <> Y and g = f~'. Then g : ¥V <> X.
We have 0 < |k|, so k # 0, s0 ¢ + k # ¢. So, as g is 1-1, we see that
9(q+k) # g(q). Then h = [g(q+k)]—[g(q)] # 0. Then 1/(k/h) = h/k.

By assumption, ¢ = f(p). So, since g = !, we get f(q) = p.
Since g(q) € R, we get [g(¢)] — [g(¢)] = 0. Then, adding p = g(q)
to h = [g(q + k)] — [9(q)] gives p+ h = g(q + k). So, since g = f~1,
we get f(p+ h) = g+ k. Since ¢ € R, we get ¢ — ¢ = 0. Subtracting
f(p) = q from f(p+h) = q +k gives [f(p + h)] = [f(p)] = k. Then

_ . _ Lern] - [f)] _ Fk

o) = (5 - | -k
Then (1/¢)(h) = 1/(k/h) = h/k = (k). So, since (k) # @, we
get (1/¢)(h) # ®. Tt follows that h € dom[1/¢]. Let z := ¢ + k.
Then z € dom|g] and |z — ¢q| = |k| < 0, so, by choice of §, we get
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[Lg(2)] = [9(@)]| < . So, since [g(2)] —[g(q] = [9(¢+F)]—[g9(q)] = A,
we conclude that |h| < 7. So, since h # 0, we get 0 < |h| < 7. So, since

h € dom[1/¢], by choice of ~, we get |[(1/¢)(h)] — [1/m]| < e. So,
since (1/¢)(h) = ¥(k), we get | [ (k)] — [1/m]]| < e, as desired. [

Theorem 37.8 will be called the Differential Inverse Function
Theorem or DIFT. In Theorem 37.8, the hypothesis that ¢ is con-
tinuous at ¢ will be called the unfortunate DIFT hyptothesis. It
means that, to use the DIFT on f, one has to verify an analytic con-
dition on the inverse of f, something that may be very hard to do.

Fortunately, we have three Topological Inverse Function Theorems
(Theorem 36.7 and Theorem 36.5 and Theorem 36.6). In Theorem 38.8,
we will combine them with our DIFT to get a version of the DIFT that
avoids any unfortunate hypotheses.

38. CLASS 12 ON 27 FEBRUARY 2018, Tu oF WEEK 7
BEGIN remarks about the exam
REMARK 38.1. Let X be a topological space. Then

Isoly X = {we X |{w} is open in X} and
LPxX = X\[IsolxX].

Proof. Omitted. O

REMARK 38.2. Let X and Y be topological spaces. Let w e X and
zeY. Assume that w e LPxX. Then limC% = z.

Proof. Omitted. O

In Remark 38.2, the hypothesis that w € LPx X is necessary: Let
X = [1,2]u{3}, Y := R, w:= 3, z := 4. Since 3 ¢ LPxX, by
Proposition 24.7, we see that LH:}/[S C% =Y. Then

LIMSC% = LH;/[SC;‘( = Y = R
Since #R = o, we get ELT(R) = @ Then
limC% = ELT(LIMSC%) = ELT(R) = @ # 4 = 2

The topological space R has no “open points”, i.e., LPgR = R. So,
for X = R, the problem described in the last paragraph goes away:



284 SCOT ADAMS

COROLLARY 38.3. Let Y be a topological space. Let w € R and
zeY. Then limCy = z.

Proof. Let X := R. Then w € R = LPrR. So, by Remark 38.2,
lim C% = z. That is, lim Cy = z, as desired. O

Recall: Vsets X, Y and Z, Vf: X --» Y Vg : X --» Z, the function

(f,g9): X --» Y x Z is defined by (f, 9)(z) = (f(z), g(x)).
I have two warnings about the formula (f, ¢)'(z) = (f'(x), ¢'(z)):

First, define f : (—O0,0] — R and g:[0,00) —» R by

fla

Then dom|(f, g)] =

) =

{0
Then (f,9)'(0) # (f'(0
Second, define f: R

and  g(z) = 4.

1,50 (f,0)/(0) = ©. Ao (£/(0), ¢/(0)) = (3,4).
), ¢'(0)).
— R and ¢g:[0,0) - R by

flz) =
Then dom[(f, g)] = [0,0). Also, Vz € [0, 00),
(f,9)(@) = (lzl,42) = (z,42).

Then (f,9)'(0) = (1,4). Also f'(0) = ®, so (f'(0),¢'(0)) = ®. Then
(f,9)(0) # (f'(0),4'(0)).

THEOREM 38.4. Let both V' and W be normed vector spaces. Let
f:R-->V andg:R--+»W. Let pe LPDg(f,g). Then

(f.9)(p) =" (f'(),g®)
Proof. Omitted. ]

|| and  g(x) = 4x.

END remarks about the exam
BEGIN Via homework, you prove the second derivative test

DEFINITION 38.5. Let S be a set, f: S --+R, pe S. Then

(1) f has a unique maximum at p means: f.(S)) < f(p) and
(2) f has a unique minimum at p means: f.(S)) > f(p).

Assigned HW#7-1.

DEFINITION 38.6. Let X be a topological space and let f be a
function. Assume dom|f] < X. Then IntDx f := Intx(dom[f]).

Assigned HW#7-2, HW#7-3 and HW#7-4.
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FACT 38.7. There exists a continuous f : R — R such that
(1) f'(0) =0,
(2) f(0) = =2,
(3) NOT ( f has a local extremum at 0 ),
(4) 0 ¢ IntDg(f") and
(5) 0 € Intg(dct[f]).

Proof. Choose a continuous g : [0,00) — [0, 1] s.t. dom[¢'] = &. (One
says that g is “nowhere differentiable” to indicate that ¢’ is the empty
function. We will not take the time to prove that such a continuous

function ¢ exists, so this is only a sketch of a proof. See me if you want
more detail.) Define f : R — R by

—x? if z <0,
2?2+ 2?2 [g(z)], ifx=0.

flx) =

Then, for all + € (—,0), f'(x) = —2z. Then f is differentiable
on (—0,0). Also, f is continuous on (0,0). Also, for all z € (0, ),
f is NOT differentiable at x. Also,

(A) f <0on (—,0),
(B) f(0)=0 and
(C) f>0on (0,0).

Since f is differentiable on (—o0,0], it follows that f is continuous
on (—o0,0]. Recall tht f is continuous on (0,00). Then f is continuous
on (—0,0] U (0,0). So, since (—oo,0] U (0,00) = R = dom[f], we see
that f is continuous.

For all z € R, we have —2? < f(x) < 222 So, by HW#3-3, f/(0) = 0,
proving (1). Then dom[f’] = (=0, 0] and, for all € (—0, 0], we have
f'(x) = —2x. Then f”(0) = —2, proving (2).

By (A), (B) and (C), we see that (3) holds. Moreover, because
we have IntDg(f") = Intg(dom[f’]) = Intg((—o0,0]) = (—0,0), we
see that (4) holds. Since f is continuous, dct[f] = dom|[f]. Then
Intg(dct[f]) = Intg(dom[f]) = IntgR = R, so (5) holds. O

Assigned HW#7-5.

Unassigned HW: Let f : R --» R. Asume both that 0 € IntDg f and
that f(0) = 0. Define g : R — R by g(z) = z3. Assume that f/g — 1
near 0. Show: NOT( f has a local extremum at 0 ).
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By HW#T7-5, we can use asymptotics to find local extrema. Later,
we’ll show how to combine asymptotics with L’Hospital’s Rule to get
another proof of the Second Derivative Test. We'll also show that that
approach leads to a third derivative test, a fourth derivative test, etc.

END Via homework, you prove the second derivative test
We now pick where we left off at the end of Class 12.

Recall: Let X, Y € R, f: X <> Y, p e dom[f']. Let ¢ := f(p),
g := f~1. Assume that g is continuous at ¢. Then ¢'(q) = 1/[f'(p)].
(This is Theorem 37.8.)

Recall: Let f: R --» R, S € R. Then f is ¢/d on S means

(1) f is continuous on S and
(2) f is differentiable on S.

Recall: Let f: R --» R. Then f is ¢/d means: f is ¢/d on dom|[f].
(That is, f is continuous on dom|[f] and differentiable on IntDg f.)

The next result will be called DIFT redux. (Recall that DIFT
stands for “Differential Inverse Function Theorem”.)

THEOREM 38.8. Let X, Y < R. Let f: X — Y be ¢/d. Assume
that at least one of the following holds:

(1) X is compact or
(2) X is open in R or
(3) X is an interval.

Let g := [, X :=Intg X, Yy := IntgY. Let g€ Yy. Then both
(1) g(q) € Xo and
(2) g'(a) = 1/1f'(9(a))]-

Proof. We have ¢ € Yy €Y = dom|[g]. Then g(q) € g«(Yo).

Since Yy = IntgY, we conclude that Y is open in R. By our
three Topological Inverse Function Theorems (Theorem 36.7 and The-
orem 36.5 and Theorem 36.6), we see that f: X — Y is a homeomor-
phism, so g : Y — X is continuous. So, since g : ¥ — X is also 1-1,
by Theorem 30.7, ¢.(Yp) < Xo. Then ¢(q) € g.(Yy) < Xo, proving (1).
It remains to prove (2). Let p := g(q). We want: ¢'(¢) = 1/[f'(p)].

Since ¢ € dom[g] and since g is continuous, it follows that g is con-
tinuous at g. Then, by Theorem 37.8, ¢'(¢) = 1/[f'(p)], as desired. [
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DEFINITION 38.9. Let f : R --» R.
Then f is a (c/d)-diffeomorphism means:

(1) f is 1-1,
(2) fisc/d and
(3) f~is c/d.

Let X, Y < R. Let f: X <> Y be a (c¢/d)-diffecomorphism. Let
g:= 1, Xo:=Intg X, Y := IntgY. Then all of the following hold:
(1) f«(Xo) = Yo,
(2) 9:(Yo) = Xo,
(3) Vvpe Xo, 1={(gof)(p)=[g'(f)ILS D],
(4) Vge Yo, 1=(fog)(q)=1f(9(a)]lg ()],
(3) Vpe Xo,  f'(p) = 1/[g'(f(p)] and
(3) YaeYo, d'(q) = 1/[f"(9(a))]

THEOREM 38.10. Let X be an interval. Let f : X — R be ¢/d.
Assume: Yp € Intg X, f'(p) # 0. Then f is a (c¢/d)-diffeomorphism.

Proof. By (1) of Corollary 34.10, f is 1-1. Let g := f~'. We wish
to show that g is ¢/d.

Let Y :=im[f]. Then Y = dom|[g]. Let Xy := Intg X, Y := IntgY.
By Theorem 36.6, f : X — Y is a homeomorphism. Then g : ¥ — X
is continuous. It remains to show: ¢ is differentiable on Y;. We wish
to show: Vq € Yy, g is differentiable at q. Let ¢ € Y, be given. We wish
to show: g is differentiable at q.

Since g : Y — X is 1-1 and continuous, by Theorem 30.7, we get
9x(Yp) € Xo. Since ¢ € Yy € Y = dom|[g], we get g(q) € g«(Yo). Let
p = g(q). Since f is ¢/d, we get Xy < dom[f’]. Then

p = gl@ € g < Xo < dom[f].

Since g € dom[g] and g is continuous, we see that g is continuous at gq.
Then, by Theorem 37.8, ¢'(q) = 1/[f'(p)]. We have p € Xy = Intg X,
so, by assumption, we get f'(p) # 0. So, since p € dom|[f’], we conclude
that f'(p) e Ry. Then 1/[f'(p)] # ®. Since ¢'(q) = 1/[f'(p)] # ®, we
conclude that ¢ € dom[¢'], as desired. O

39. CrLAss 13 oN 1 MARCH 2018, TH oF WEEK 7

Recall: Yk € N, [1..k] denotes the set [1,k] nZ = {1,...,k} of all
integers 7 such that 1 < j < k.



288 SCOT ADAMS

Recall: Let S be a set and let k¥ € N. Then S* := SU-Kl. That
is, S* is the set of all functions [1..k] — S. For any z € S*, we have
z:[1.k] - S. For any z € S*, for any j € [1..k], we typically denote
2(j) by z; and call z; the “jth component of 2”.

Recall: Let S be a set and let k € N. For all j € [1..k], let z; € S.

Then (z1,...,zx) € S* is defined by (z1,...,2;); = z;. For example,
1—3
2—8
_ — [1..4] _ 4
(3,8,7,-5) s | e R R,
4 — —5

DEFINITION 39.1. Let S be a set. Then, for all z, by z is an arrow
in S, we mean: z € SZ.

Let S be a set and let z € S2. Then 21,2 € S. We call z the
footpoint of z, and we call z; the endpoint of z. We picture z as an
arrow that goes from z; to zs.

DEFINITION 39.2. Vovector space W, ¥z € W2, vecz:= 29 — 2.

That is, for any arrow z in a vector space, the vector of z is
( the endpoint of z ) minus ( the footpoint of z ),

and is denoted by vec z.

DEFINITION 39.3. Let W be a vector space and lety, z € W2. Then
yl||z in W means: vecy = vec z.

We indicate y|||z by saying “y is a translate of 2” or “z is a translate
of y” or “y and z are translates (of each other)”.

For example, let z := ((4,6), (8,5)) € (R?)%. Then z is an arrow
in R%. The footpoint of z is 2; = (4,6) and the endpoint of z is
zo = (8,5). We sometimes say that z is “footed” at (4,6) and that
z “ends” at (8,5). We picture z as an arrow in a coordiate plane
that runs from the point (4,6) to the point (8,5). The vector of z is
vecz = (8,5) — (4,6) = (4,—1). Let v := vecz, so v = (4,—1). In
our picture, the arrow z should be labeled “z” and not “v”. However,
the vector of an arrow is often thought of as its most important data,
and so people sometimes do label an arrow with its vector. Note that
z runs v; = 4 units. Note that z rises vy = —1 units (i.e., falls 1 unit).
Note that V1 = (22 - 21)1 = (22)1 - (2’1)1 = (8, 5)1 - (47 6)1 =8—4=4.
Note that Vg = (22—21)2 = (22)2—(21)2 = (8, 5)2—(4, 6)2 =5—-6=—1.
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We searched for an arrow y € R? footed at the origin (0,0) s.t. y|||2.
We found that there is only one solution: y = ((0,0), (4,—1)).

DEFINITION 39.4. Let W be a vector space and let f : R --» W.
Then SA; : R? --» W? and SV} : R? --» W are defined by

(SAp)(s,t) = (f(s), f(t))  and
(SVP) (s, t) = [f®)] = [f(s)]

Note that (SVy)(s,t) is the vector of the arrow (SAy)(s,t). The
notations SA and SV stand for “secant arrow” and “secant vector”.

We visualized a path of a particle f : R --» R? in a coordinate plane.
We marked one point as f(s) and another as f(¢). We drew the secant
arrow between them. We labeled it as (SAy)(s,t). We commented
that it might sometimes be labeled as (SV})(s,t), or, equivalently, as
[f(t)] — [f(s)]. We noted that (SV})(s,t) = (fI)(t — s) and that
(DQy)(s,t) = [(SVF)(s,t)]/[t—s]. Thus, we can connect secant vectors
with double translates and difference quotients.

DEFINITION 39.5. Let W be a normed vector space, f:R --+» W.
Then TA; : R --» W? and TV : R --» W are defined by

(TAN® = (FO, [FOI+[FO)  and
@V = ).

Note that (T'V})(t) is the vector of the arrow (T'Af)(¢). The notations
TA and TV stand for “tangent arrow” and “tangent vector”.

We visualized a path of a particle f : R --» R? in a coordinate plane.
We marked a point as f(¢). We drew the velocity arrow at that point.
We labeled it as (T'Ay)(t). We commented that it might sometimes
be labeled as (T'Vy)(s,t), or, equivalently, as f/(¢). We noted that
TVy = f'. The notation T'V; is redundant; generally, f’ is preferred.

We posed the Mean Value Question: Let f : [0,1] — R? be c¢/d.
Does there necessarily exist ¢ € (a,b) s.t. f'(c¢) = (DQy)(0,1)? Note
that f'(c) = (I'Vy)(c) and that

ooy = FOD 0,
So, an equivalent question is: does there necessarily exist ¢ € (a,b)
s.t. (TVe)(e) = (SVy)(0,1)? Since (T'Vy)(c) = vec((T'Af)(c)) and since
(SV§)(0,1) = vec((SAf)(0, 1), we form yet another equivalent question:
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does there necessarily exist ¢ € (a,b) s.t. (T'Af)(c)|||(SAf)(0,1)? That
is, is there a tangent arrow that is a translate of the secant arrow?

We answered this question in the negative, showing the path of a
partcle in the plane such that the only point where the two arrows
could possibly be translates didn’t work because one of the arrows ran
in the opposite direction of the other.

So, if we want to generalize the Mean Value Theorem from R --» R
to R --» R?, then we will need to discuss what it means for two arrows
to be parallel, a weaker condation than being translates. We begin
by defining parallel for vectors, and will define parallel for arrows later.

DEFINITION 39.6. Let W be a vector space and let u,v € W. Then
ullv in W means: {u,v} is linearly dependent in W.

We indicate u||v by saying “u is a parallel to v” or “v is parallel
to u” or “u and v are parallel (to each other)”.
For example, (3,4)]/(6,8) in R?. Also, (2,3)]|(0,0)]|(1,4) in R?, but
we have:  NOT ((2,3) [ (1,4) in R?).
Let W be a vector space. Then, Vu,v € R, we have
[ ulfv ] iff [(ueRv)or (velRu)l.
Unassigned homework: Yu,v,v" € W, if Rv = Rv’, then
[ullo] it [affo"].

We extend the definition of parallel to arrows in a vector space W:

DEFINITION 39.7. Let W be a vector space, and let y,z € W2,
Then y||z means: (vecy) || (vec z).

We now begin to look for simple tests that tell us whether two vectors
in a vector space are parallel. We start with the slope function on
vectors in R?.

DEFINITION 39.8. Define sl : R? -=-» R by slv = vy/v;.

Here, “sl” stands for “slope”. Note that sl(0,1) = @, and that
dom([sl] = R} x R. We extend the definition of slope to arrows in R?:

DEFINITION 39.9. Define asl : (R?)? --» R by asl z = sl(vec z).

Here, “asl” stands for “arrow slope”.
While Definition 39.7 and Definition 39.9 are natural, and are often
used in conversation (or intuition), it typically turns out that, in formal
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proofs, arrows are often not of great importance. When we convert a
conversation or an intuitive ”picture of a proof” into the formal proof,
the arrow is usually forgotten and only its vector is needed.

Recall: For all & € N, the zero vector in the vector space R¥ is
denoted by 0y = Ogr = (0,...,0) € R*.

The following is the slope test for parallel arrows in R?:

FACT 39.10. Let u,v € R%. Then
[ullv] < [(u=0y)o0r(u=0s)or(slu=slv)]
Proof. Unassigned HW. O

This test is simple to implement, if you are given u and v, but, to
use it in a proof often requires breaking the proof into three cases. A
better test comes from determinant, which we now describe:

First, note that (3,4)|[(6,8) in R?. The numbers 3,4, 6,8 can be put

into an array
3 4
6 8|’

and, if you know about determinants, then you’ll know that the deter-
minant of this array is 3-8 —6-4 = 0. The idea is that, in general, by
checking a dterminant, we can tell whether two vectors are parallel. So
we need to define matrices and to talk about the simplest kinds of de-
terminants, and then we can develop our determinant test for parallel
vectors.

DEFINITION 39.11. Let S be a set and let k,¢ € N. Then S**¢ :=
SlLkIx[1.0].

That is, S*¥*¢ is the set of all functions [1..k] x [1..{] — S. For any
M e S¥*¢ we have M : [1..k] x [1../] — S. For any M € S*, for any
i€ [l..k], for any j € [1..4], we typically denote M (4, j) by M,; or M, ;,
and call M;; the “i, j entry of 2”.

DEFINITION 39.12. Let S be a set and let k,¢ € N. For all i €
[1..k], for all j € [1..0], let x;; € S. Then
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1s defined by

Tir - Tuw
: = Ty
Lk1 Tre ],
For example,
(1,1) — 3
3 4 (1,2) — 4
_ ) R[l..Z]x[l..Q] _ R2X2.

[ 6 8 ] (2,1)—6 | ©

(2,2) — 8

We can also form a “matrix of vectors”, e.g.,

oo ] - (amn) = e

It is not hard to set up a bijection R**? <> (R?)?*! 50 the two sets
R?*2 and (R?)%2*! are very closly related. Typically, a determinant
function is set up with domain R?*?, but it turns out that, for what
we want, it’s more convenient to work in (R?)2*!, as follows:

DEFINITION 39.13. Define Det : (R2)2*! — R by

Det [ E?S% ] = ad— bc.
So, for example,
Detlgg’;l;] = 3:4-6-8 = 0.

The following is the determinant test for parallel arrows in R:

FACT 39.14. Let u,v € R%. Then

i = (m]]-0)

Proof. Unassigned HW. O

FACT 39.15. Let w e R2. Then Det l Z ] —0.

Proof. Det [ Z ] = wyw; — wiwy = 0. L]
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REMARK 39.16. Let u,v,w € R%2. Then

[T (D - (L)

Detlu_v} = (w—v)ws — (u—v)sw

w
= (Ul—Ul)‘wz - (U2—02)'w1
= (ugwy —viws) — (ugwy — vowy)
= (ugwy —ugwy) — (viwe — vowy)
- (o)) - (o]0 ]):
w w
as desired. 0

DEFINITION 39.17. Let w € R?. Then Det [ 1’0 } ‘R2 SR s

defined by (Det l ; D (v) = Det l Z; }

For exmaple, let L := Det [ (4.7) ] Then: Vz,y € R,
(z,y) et (47 x — 4y.

Note that L : R* — R is continuous and linear. The choice of (4,7) is
irrelevant to that continuity and linearity:

FACT 39.18. Let w € R%. Then the function Det [ ; ] ‘R > R s
both continuous and linear.
Proof. Unassigned HW. O

REMARK 39.19. Let V and W be normed vector spaces. Assume
V # {0y}. Let L:V — W be continuous and linear. Let f:R --» V.
Let t € dom|f']. Then (Lo f)'(t) = L(f'(t)).

The assumption that V' # {0y} is, of course, very tame. However,
if we drop it, then Remark 39.19 can fail: Say V = {0y}, W = R,
f:C?;} R-—-»V,L=C%:V —Wandt=2 Then: f(t) = Oy,

and so L(f'(t)) = 0,but Lo f = Cpyy : R --» W, and so (Lo f)'(t) = ®.
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In the case V.= W = R and, for simplicity, dom[f'] = R, we
can prove Remark 39.19 from the Chain Rule (Theorem 32.8). For
example, suppose: Vo € R, L(x) = 5z. Then L(f'(t)) = 5 [f'(t)].
Differentiating L, we see: Vo € R, L'(x) = 5. Then L'(f(t)) = 5. The
Chain Rule gives (Lo f)'(t) = [L'(f(¢))] - [f'(¢)]. Then

(Lo f)(t) = [L(f@)] - [ (D]
= 5-[f'(M] = L(f'(®),
as desired. To prove Remark 39.19 in general:

Proof. By Remark 31.5, dom|f’'] € LPDgf. As t € dom[f’'] < LPDgf,
by (2) of Remark 31.3, it suffices to show: SS7,, — L(f'(t)) near 0.
For all h € R, we have

(SSLep)(h) =

(Lo N+ ] = [(Le )]
h
[LOf(E+ AT = [LUF()]
h
L{fE+R] = [FO])

= L((SSy)(h)) = (Lo (SS))(h).
Then SS7,; = Lo (SS%).

Since t € dom[f’], by Lemma 31.4, we get: SS§ — f'(t) near 0. So,
since L is continuous at f’(t), by HW#60 from Fall 2017, we conclude
that L o (SS%) — L(f'(t)) near 0. So, since SSj,; = Lo (SS%), this
yields SS7.; — L(f'(t)) near 0, as desired. O

COROLLARY 39.20. Let V and W be normed vector spaces. As-
sume V' # {Oy}. Let S € R and let f : R --» V be ¢/d on S. Let
L:V — W be continuous and linear. Then both of the following hold:
(1) Lo f isc/don S and
(2) Vt e IntgS, (Lo f)(t) = L(f'(t)).
Proof. Let Sy := IntgS. Since f is ¢/d on S, we get: S < dct[f]
and Sy < dom[f’]. Then, for all t € Sy, we have ¢t € dom[f’], so,
by Remark 39.19, (Lo f)'(t) = L(f'(t)). This proves (2). It remains
to prove that (1) is true; that is, we wish to show:

(A) Lo f is continuous on S and



NOTES 1 295

(B) Lo f is differentiable on Sj.

Proof of (A): We wish to show: Vt € S, Lo f is continuous at ¢. Let
t € S be given. We wish to show: Lo f is continuous at ¢.

We have t € S < dct[f]. That is, f is continuous at t. Since
t € det[f] < dom[f] and since f : R --» V| we get f(t) € V. So, since
L :V — W is continuous, we conclude that L is continuous at f(t).

Since f is continuous at ¢ and L is continuous at f(t), we conclude,
by Theorem 22.1, that L o f is continuous at t. End of proof of (A).

Proof of (B): We wish to show: Vt € Sy, Lo f is differentiable at ¢.
Let t € Sy be given. We wish to show: Lo f is differentiable at .

Since t € Sy < dom[f'] and f': R --» V, we get f'(t) € V. Thus
f'(t) e V =dom[L], so L(f'(t)) # @, and so, by (2), (Lo f)'(t) # ®.
Thus, Lo f is differentiable at t. End of proof of (B). O

Next time we will prove the Cauchy Mean Value Theorem. After
that, we will prove L’Hospital’s Rule. Then we’ll use that to prove the
higher order derivative tests (second derivative test, third derivative
test, fourth derivative test, etc).

40. CrLASs 14 oN 6 MARcH 2018, Tu oF WEEK 8

Recall: Let W be a vector space and let u,v € W. Then u|v means:
[ {u, v} is linearly dependent in W |, i.e., [ (ueRv )or (veRu ) |.

Assigned HW#8-1.
Recall: For all v e R?, slv = vy /v;.

Assigned HW#8-2.
Recall: For all u,v € R?, Det { Z ] = U Uy — Vallq.
Assigned HW#38-3.

Recall: For all w € R?, Det [ ;U } : R? - R is continuous and linear.

Also, recall both of the following:

(1) Yw € R?, Det lw}zO.
w

2 vuwesen | 20 | (e 2 ]) - (0] 2])
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Finally, recall Corollary 39.20:

COROLLARY 40.1. Let V and W be normed vector spaces. Assume
V#{Oy}. Let SCRandlet f:R--»V bec/donS. Let L:V — W
be continuous and linear. Then both of the following hold:

(1) Lo fisc/d on S and
(2) Vt e IntgS, (Lo f)(t) = L(f'(t)).

The following is called the Cauchy Mean Value Theorem:

THEOREM 40.2. Let f : R --» R? and let a,b € R. Assume a < b.
Assume f is ¢/d on [a,b]. Then 3ce (a,b) s.t. f'(c)| (SVy)(a,b).

Proof. Let w := (SV¢)(a,b). We wish to show: 3c € (a,b) s.t. f'(c) | w.
Let L := Det [ ;} ] Let ¢ := L o f. By Corollary 39.20,

(1) ¢ is ¢/d on [a,b] and
(2) Vte (a,b), () = L(f'(1))-

By linearity of L, we have L([f(b)] —[f(a)]) = [L(f(b))] = [L(f(a))]-
Also, by definition of SV, we have SV¢(a,b) = [f(b)] — [f(a)]. Then
[0(0)] = [o(a)] = [(Lof)(b)] = [(Lo[f)(a)]

= [L(f

Then ¢(a) = ¢(b). So, by (1) above combined with Rolle’s Theorem
(Theorem 34.3), choose c € (a,b) s.t. ¢'(c) = 0. We want: f'(c) | w.
By (2) above, L(f'(c)) = ¢'(c). Then

pec | 7| = 1) - w0 - o

w
so, by HW#8-3, f'(c) || w, as desired. O

REMARK 40.3. Let X, Y, Z be topological spaces. Let ¢ : X --»Y
and ¢ : X --» Z. Let qe X, seY andt e Z. Assume that ¢ — s
near q and that 1 — t near q. Then (¢,1) — (s,t) near q.
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Proof. We want: YW € Ny z(s,t), JA € N3 (q) s.t. (9,¢)«(A) € W.
Given W e Ny z(s,t). Want: 3A € N5 (q) s.t. (¢,¢).(A) € W.

By Fact 29.1, choose U € Ny(s) and V € Nyz(t) st. U x V < W.
Since ¢ — s near ¢, choose B € N (q) s.t. ¢.(B) < U. Since ¢p — ¢
near ¢, choose C € Nx x (q) s.t. ¥.(C) € V. Then B n C 3 N (q).
Let A := B n C. We wish to show: (¢,v).(A) € W.

Unassigned HW: Show (¢, ¥)«(A) € [¢«(A)] x [¥x(A)]. Then we
have (¢, 1)« (A) S [9«(A)] x [x(A)] €U x V < W, as desired. O

Assigned HW#8-4.

REMARK 40.4. Let X, Y and Z be topological spaces. Assume that
Y and Z are both Hausdorff. Let ¢ : X --» Y and let ¢ : X --» Z.
Let g € LPDx(¢,). Then lim (¢,7¢) =* (lim¢, limv).

q q q

Proof. Let L := lim (¢, ) and let R := (lim ¢, lim ¢ ). We wish to show:
q q q
[R # ®] = [L = R]. Assume: R # ®. We wish to show: L = R.
Let s :=1lim¢ and ¢ := lim¢. Then R = (s,t). So, since R # @, we
q q
get: s # ® # t. We want to show that lim (¢, ) = (s, ).
q

Since Y and Z are both Hausdorff, it follows that Y x Z is Hausdorff.
So, since ¢ € LPDx(¢,), by Remark 25.19, we see that it suffices
to show that (¢,1) — (s,t) near q.

Since lign ¢ = s and lignw = t, by Remark 25.18, we have ¢ — s near

q and ¥ — t near ¢q. Then, by Remark 40.3, (¢,%) — (s,t) near ¢. O
Assigned HW#8-5.
LEMMA 40.5. Let x,y : R --» R and let S < R. Assume x and y
are both ¢/d on S. Then both of the following hold:
(1) (z,y) is ¢/d on S and
(2) VpeInteS, (z,9)'(p) = (2'(p), ¥'(p)).
Proof. Let Sy := IntgS. We wish to show:

(A) (z,y) is continuous on S,

(B) Vpe So, (z,9)(p) = (2'(p), ¥'(p))-
(C) (x,y) is differentiable on Sy.

Proof of (A): We wish to show: Vp € S, (z,y) is continuous at p. Let
p € S be given. We wish to show: (z,y) is continuous at p.
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Since x and y are both ¢/d on S, we know that x and y are both
continuous on S. Then x and y are both continuous at p, and so,
by HW#38-4, (x,y) is continuous at p. End of proof of (A).

Proof of (B): Let p € Sy be given. We want: (x,y)'(p) = (2/(p), v/ (p ))

By HW#8-5, it suffices to show: p € LPDg(z,y). By (A), w
have S < dct[(z,y)]. So, since dct[(z,y)] < dom[(x,y)], we get
S < dom|[(z,y)]. Then LPrS < LPg(dom[(z,y)]). Then

p e Sy = IntgS < LPrS < LPgr(dom[(z,y)]) = LPDg(z,vy),

as desired. End of proof of (B).
Proof of (C): We wish to show: Vp € Sy, (x,y) is differentiable at p.
Let p € S be given. We wish to show: (z,y) is differentiable at p.
Since x and y are both ¢/d on S, we know that x and y are both
differentiable on Sy. Then x and y are both differentiable at p. Then
z(p) # © # y(p). Then (z(p),y(p)) # ®. So, by (B), (z,y)'(p) # ©.
Then (x,y) is differentiable at p. End of proof of (C). O

Recall (Definition 29.6): Va, f € R, we defined:
[lf] = [minfa, B}, max{a, 5} ]
Similarly:

DEFINITION 40.6. Let a,3 € R. Assume that o # 3. Then we
define (a|B) := (min{a, B}, max{a, 5} ).

The following is analogous to Definition 34.4.

DEFINITION 40.7. Let z,y : R --» R. Then DQ,, : R xR - R
1s defined by

DQI@(]?’ Q) =

ly(@)] — [y()]
[2(0)] = [z(p)]

Let z,y : R --» R. The function D@, , is symmetric, i.e., we have:
Vp,q € R, (DQay)(p,q) = (DQsy)(q,p). Also, DQ,, is undefined
on the diagonal, i.e., Vp € R, (DQ.4)(p,p) = ®.

Let 7,y : R --» R. Let f:= (z,y) : R --» R% For all p,q € R,

(SAf)(pq) = (fp), fl@)) = ((z(p),yp)), (x(q),y(q))),

and so

SVipe) = ( [2@] = [=@)] » [vl@] = [v@)] )
and so (DQy,)(p,q) = sL((SVy)(p,q)). (Recall: sl is “slope”.)
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Let ¢ := idg : R — R. For any f: R --» R, we have DQ; = DQ); ;.
We will call the next result the Cauchy Mean Value Corollary.

THEOREM 40.8. Let z,y : R — R and let o, € R. Assume
that o # . Assume that x and y are both c¢/d on |[«|B]. Assume:
Vs e (a|B), 2/(s) # 0. Then there exists c € (a|f) s.t.

('/2)(c) = (DQzy)(a,p).

Proof. By symmetry of D@, ,, we have (DQ,,)(«, 8) = (DQ44) (5, @).
Let a := min{a, £}, b := max{«, }. Then a < b. Also,

* (a,0) € {(2,0), (B,0) },
® (DQLQ(CL, b) = (DQLy)(Oé, 5)7
e x and y are both ¢/d on |[a, b] and
e Vse (a,b), 2/(s) = 0.
We wish to show: 3¢ € (a,b) s.t. (v'/2")(c) = (DQsy)(a,b).

Let f:= (z,y) : R --» R%. By (1) of Lemma 40.5, f is ¢/d on [a, b].
By the Cauchy Mean Value Theorem (Theorem 40.2) choose ¢ € (a, b)
s.t. f'(¢) || (SV¢)(a,b). We wish to show (y'/z")(c) = (DQyy)(a,b).

As f'(c) || (SV¢)(a,b), by HW#8-2, at least one of the following holds:

(a) f'(c) =02  or
(b) (SVy)(a,b) = 0, or
(c) sL(f(c)) = sL((SVf)(a,b)).

By (2) of Lemma 40.5, f'(c) = (2/(c),y'(¢)). By assumption, we
know for all s € («|f), that 2/(s) # 0. So, since ¢ € (a,b), we get
2'(¢) # 0. Then f'(c) # 0y, so (a) is false. By (1) of Corollary 34.10,
we conclude that z|[a,b] is 1-1. So, since a # b, we get x(a) # z(b).

Then f(a) = (w(a), y(a)) # (2(5), y()) = f(b). Then
(SV)(@b) = [fO)] - [f@] # 0

)
Then (b) is false. Since (a) and (b) are both false, (¢) must be true.
That is, we have: sl( f'(c)) = sl((SVy)(a,b)a). Then

W = B8 = (@0 0) = S(f)
= S(SV@h) = S0 - )
= (L) ~ @), ) ~ [va)]))
)]~ @) )

T O] ) P
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as desired. 0

We next aim to use the Cauchy Mean Value Corollary (Theorem 40.8)
to prove L’Hospital’s Rule, and to use that to get the asymptotic results
needed to prove the higher order derivative tests.

We require some preliminaries. First, we have:

41. CrLAss 15 oN 8 MARCH 2018, TH oF WEEK 8

Spring Break is next week (12-16 March).
Midterm 2 is two weeks from today (Thursday 22 March).

DEFINITION 41.1. Let Y be a topological space, let Z be a set,
let f,g:Y -——» Z and let p € Y. Then f follows g near p means:
YV e Ny (p), U € Ny (p) s.t. fo(U) < g«(V).

LEMMA 41.2. LetY and Z be toplogical spaces. Let f,qg:Y --» Z.
LetpeY and let e Z. Assume: g — q near p. Assume: f follows g
near p. Then: f — q near p.

Proof. We wish to show: VW € Nz(q), 3U € Ny(p) s.t. fo(U) € W.
Let W e Nz(q) be given. We want: 3U € Ny (p) s.t. f.(U) € W.

As g — ¢ near p, choose V € Ny (p) s.t. g.(V) € W. As f follows g
near p, choose U € Ny (p) s.t. fo(U) € g«(V). Want: f.(U) < W.

We have f,(U) € ¢g.(V) € W, as desired. O

LEMMA 41.3. LetY, Z be toplogical spaces, and f,q:Y --+ Z, and
p € LPDy f. Assume: ( Z is Hausdorff ) and ( f follows g near p ).
Then lim f =* lim g.

p p

Proof. Let L :=1lim f and R :=lim g. Want: (R # ®) = (L = R).
p p
Assume: R # ®. Want: L = R. That is, we want to prove: lim f = R.
p

Since p € LPDy f and since Z is Hausdorff, by Remark 25.19, it suffices
to show that f — R near p.
Since lim g = R # ®, by Remark 25.18, we have ¢ — R near p. So,
p

since f follows g near p, it follows, from Lemma 41.2 (with ¢ replaced
by R), that f — R near p, as desired. O
Recall:

o Vset A, Vp, Ay := A\{p},
o Vset S of sets, Vp, S)* :={A)|Ae S},
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* Vtopological space Y, Vpe Y, Ny (p) := [Ny(p)]* and
e Vmetric space Y, Vpe Y, By(p) := [By(p)],~.

DEFINITION 41.4. For any set A, for any p, AS := A u {p}.

DEFINITION 41.5. Let S be a set of sets. Then, for any p, we
define S+ = {A) | Ae S}.

FACT 41.6. Let Y be a top. space, pe Y. Then [Ny (p)]i+ = Ny (p).
Proof. Omitted. O
FACT 41.7. LetY be a metric space, pe Y. Then [By(p)]f* =By (p).
Proof. Omitted. O

LEMMA 41.8. Let Y be a topological space, p €Y, B be a neighbor-
hood base at p in'Y. Let Z be a set, f,g : Y --+» Z. Assume that:
YV e B, U e Ny (p) s.t. f+(U) S g«(V). Then f follows g near p.

Proof. We want: YW € Ny (p), 3U € Ny (p) s.t. f«(U) € go(W). Let
W e Ny (p) be given. We want: 3U € Ny (p) s.t. f.(U) € g(W).

Since W5 € Ny (p) and since B is a neighborhood base at p in Y,
choose V e Bs.t. V < W;. Since V' € B, it follows that V* € B)*.
Then, by assumption, choose U € Ny (p) s.t. fo(U) < g«(V,)). Since
V. Wi, it follows that V> < (W7)x. So, since (W [); = W) < W,
we get VX < W, and so g.(V,*) < g«(W).

Then f,(U) < g«(V,)) € g«(W), as desired. O

REMARK 41.9. Let Y be a metric space, and let pe Y. Then
(1) YU,V € By(p), UnVe{UV},
2) YU,V e By(p), UnVel{lUV},

(2)
(3) By(p) < Ny(p) and
(4) By(p) = Ny(p).
Proof. Unassigned HW. 0

REMARK 41.10. Letpe R, Ae By (p) andt € A. Then (p|t) < A.
Proof. We have A} € Bg(p), so choose a > 0 s.t. A = Bg(p,a). Then
t e A= (4), = (Brpa)), = (p-apta)),

= -ap+a\fpt = -—ap ulppta)
Then one of the following must hold:
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(1) te(p—a,p)  or
(2) te(p,p+a).
Case (1): Since t < p, we get (p|t) = (t,p). Since p — a < t, we get
(t,p) < (p — «,p). Then

(lt) = (tp) = (p—ap) = (p—ap) v (pp+a) = 4
as desired. End of Case (1).
Case (2): Since p < t, we get (p|t) = (p,t). Since t < p + «, we get
(p,t) < (p,p + «). Then

(plt) = (p,t) < (p,p+a) € (p—a,p) U (p,p+a) = A,
as desired. End of Case (2). O

LEMMA 41.11. Let p € R and let A € Bg(p). Let Z be a set and
let f,g:R --» Z. Assume that A < dom|[f]. Assume that: Vt € A,
s € (p|t) s.t. g(s) = f(t). Then f follows g near p.

Proof. Because Bgr(p) is a neighborhood base at p in R and because
[Br(p)],, = Br(p), by Lemma 41.8 (with Y replaced by R, and B by
Bg(p)), we wish to show: YV € Bg (p), 3U € Ny (p) s.t. f«(U) < (V).
Let V € B (p) be given. We want: 3U € Np (p) s.t. f«(U) < g.(V).

Since A,V € Bg(p), by (2) of Remark 41.9, we get AnV e {A,V}.
So, since {A,V} < Bg(p), we see that AnV e B (p). By (4) of Re-
mark 41.9, By (p) € Ny (p). Then AnV e Ng'(p). Let U := An V.
We want: f.(U) < ¢.(V). We wish to show: V¢ e dom|f],

[teU] = [fH)egV)]
Let t € dom[f] be given. We wish to show:

[teU] = [[f(H)eg(V)]
Assume: t € U. We want: f(t) € g.(V).

We have t e U = AnV < A. So, by assumption, choose s € (plt)
s.t. g(s) = f(t). Ast e dom[f], f(t) # ®. Then g(s) = f(t) # O,
so s € dom[g]. We have U = AnV € Bg(p). So, since t € U,
by Remark 41.10 (with A replaced by U), we get (p|t) < U. Then
se(plt)cU=AnV < V. So, since s € dom|g], we get g(s) € g«(V).
Then f(t) = g(s) € g«(V), as desired. O

LEMMA 41.12. Letpe R, z : R --» R. Assume that x is continuous
at p and that x(p) = 0. Let y : R --» R. Let A € By (p) and assume
that A < dom[y'/x']. Then A < dom|y/z].
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Proof. Want: VYt € A, t € dom[y/z]. Given t € A. Want: t € dom[y/z].

Since A € By (p), we get p ¢ A. So, since t € A, we get t # p. Since
(41.1) te A < dom[y'/z'] = (dom[z']) n (dom[y])

(41.2) < (dom[z]) n (dom[y]),
we only need to show that z(t) # 0.

By Remark 41.10, (p|t) € A. By assumption, x is continuous at p.
Since (p|t) € A < dom[z'] < det[z], = is continuous on (p|t). Since
t € A < dom[z'] € dct[z], x is continuous at t. Then z is continuous
on [p[t]. Since (p|t) € A < dom[z’'], x is differentiable on (p|t). Then
x is ¢/d on [p|t]. Let I :=[c|t]. Then z is ¢/d on I.

As Intgl = (p|t) € A < dom[y'/2'], we know: Vs € Intgl, 2/(s) # 0.
Then 2/, (Intgl) > 0. So, by (1) of Corollary 34.10, z|I is 1-1. So,
since t,p € [p|t] = I and since ¢t # p, it follows that x(t) # z(p).
By assumption, z(p) = 0. Then z(t) # 0, as desired. O

DEFINITION 41.13. Let Y be a topological space, p € Y. Then
N (p) = [Ny (p)] v [Ny (p)]. For any U = Y, by U is a possibly
punctured neighborhood of p in Y we mean: U € Ny (p).

REMARK 41.14. LetY be a topological space, pe Y, U < Y. Then:
[UeAi(p)] = [Uf eMvp)] = [U e M) ],

Proof. Unassigned HW. U

REMARK 41.15. Let Y be a metric space, pe Y, U < Y. Then:

[UeNy(p) ] < [FAeBy(p) st. AU |.

Proof. Unassigned HW. U

REMARK 41.16. Let pe R and A € By (p). Then p € LPrA.

Proof. Unassigned HW. O

The following is L’Hospital’s Rule, continuous version

THEOREM 41.17. Let z,y : R --» R and let pe R. Assume:
(1) doml[y'/x'] € Ng(p),
(2) = and y are continuous at p, and
(3) z(p) = 0= y(p).
Then lim(y/z) =* lm(y'/2").
P P
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Proof. Since dom[y'/2'] € Ng(p), by Remark 41.15, choose A € By (p)

s.t. A < dom[y'/2’]. Then, by Lemma 41.12, we have A < dom|[y/x].

Let f:=y/x, g :=9y'/2'. Then A < dom[f]. Want: lim f =* lim g.
p

By Lemma 41.16, p € LPrA. Since A < dom|[f], LPrA < LI};DRf.
Since p € LPrA < LPDgf, and since R is Hausdorff, by Lemma 41.3,
it suffices to show that f follows g near p. Then, by Lemma 41.11, we
wish to show: Vt € A, 3s € (p|t) s.t. g(s) = f(t). Let t € A be given.
We wish to show: 3s € (p|t) s.t. g(s) = f(t).

By Theorem 40.8 (with « replaced by p, 8 by t and ¢ by s), choose
se (plt) s.t. (v'/2")(s) = (DQasy)(p,t). We want: g(s) = f(t).

We have

g(s) = W/2)(s) = (DQzy)(p:1)

as desired. O

THEOREM 41.18. Let Y, Z be topological spaces, ¢, Y --» Z.
LetpeY. Let Ae By(p). Assume ¢ =1 on A. Then lim ¢ = lim 4.
p p

Proof. Tt suffices to show: LIMS ¢ = LIMS . Want:
p p

(1) LIMS ¢ = LIMS 1) and
p p

(2) LIMS ¢  LIMS t).
p p

Proof of (1): We wish to show: Vqe LIMS¢, g LIMS4. Let
p p
q € LIMS ¢ be given. We wish to show: ¢ € LIMS . Since g € LIMS ¢,
p p p

we get ¢ — ¢ near p. We wish to show: 1y — ¢ near p. We wish
to show: VW € Nz, 3U € Ny (p) s.t. ¥.(U) € W. Let W € Nz be
given. We wish to show: 3U € NS (p) s.t. ¥.(U) € W.

Since ¢ — ¢ near p, choose V€ Ny (p) s.t. ¢.(V) < W. Since
A e Ny (p) and V € N (p), it follows that A n V € N (p). Let
U:=AnV. We wish to show: ¢, (U) < W.

Since U = AnV < A and since ¢ = 1 on A, it follows that
¢(U) = 4 (U). Since U = AnV <V, we get ¢.(U) < ¢«(V). Then
Ve (U) = ¢ (U) € ¢4 (V) € W, as desired. End of proof of (1).

Proof of (2): Unassigned HW, similar to (1). End of proof of (2). O
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The following is L’Hospital’s Rule, limit version

THEOREM 41.19. Let f,g: R --+ R and let p e R. Assume:

(A) domlg'/f'] € Ng(p) ~ and
(B) lim f =0 = lim g.
P )

Then lim(g/f) =* lim(g//").

Proof. Let © := adjgf, Yy = adjgg. Then = and y are both contin-
uous at p. Also, x(p) = 0 = y(p). Let U := RY. Then U is
open in R and U € NF(p). As x = f on U, by HW#3-4, we have:
= f onU. Asy = g on U, by HW#3-4, we have: ¢y = ¢’ on U.
Then y/x = g/f on U. Also, y'/x' = ¢'/f on U. Then, by Theo-
rem 41.18; we get li;n(y/:v) = lillgn(g/f) and lizr)n(y’/a:’) = lizr)n(g’/f’). Let
S = doml[y'/2'], T := dom[g¢'/f']. Since y'/z' = ¢'/f" on U, it fol-
lows that S " U = T n U. By assumption, T" € Ng(p). So, since
UeNZ(p), we get TnU e Ng(p). So,sinceTnU=5SnUCcS, we
get S € NR(p). That is, dom[y'/2'] € N3(p). Then, by Theorem 41.17,
we have lilr)n(y/x) =" li;n(y'/x’). So, since lilr)n(y/x) = lizljrn(g/f) and

lim(y'/2") = lim(¢'/f"), we get im(g/f) =* lim(¢'/f"), as desired. O
p p p p

After Spring Break, we will discuss the necessity of the hypotheses
to Theorem 41.17 and Theorem 41.19. We will also show how to use
L’Hospital’s Rule to prove the “fourth derivative test”.

Then we will begin analysis on functions of more than one variable.

42. CrLASs 16 oN 20 MARCH 2018, Tu orF WEEK 9
Midterm on Thursday 22 March.

Recall: Let S be a set and let W be a vector space. Then W¥ is a
vector space under the linear operations given by

(f +9)x) = [f(@)] + [9(x)]  and
(ef)(z) = c-[f(2)].

DEFINITION 42.1. Let V and W be vector spaces. Then
L(V, W) = {TeWY | T is linear }.
REMARK 42.2. Let V and W be vector spaces. Then L(V,W) is a

vector subspace of WV
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Proof. Unassigned HW. O
DEFINITION 42.3. For any vector space X,

Tx := {open subsets of X}, and

T = {closed subsets of X}.

For any metric space X, dx denotes the metric on X. For any normed
vector space V, | o |y denotes the norm on V.

DEFINITION 42.4. Let V be a normed vector space. Then

Sy = {ueV st |uly =1},
By = {xeV st |z|y <1} and
By = {reV st |z|y <1}

FACT 42.5. Let V' be a nonzero normed vector space and let x € V.
Then there exists a = 0 and u € Sy s.t. x = au.

Proof. Let a := |z|y. We wish to show: Ju € Sy s.t. z = au.
One of the following must be true:
(1) a=0 or
(2) a #0.
Case (1): Since V' # {0y}, choose y € V\{Oy}. Let b := |y|y. Since
y # Oy, we get b # 0. Then |y/bly = |y|lv/b = b/b =1, so y/b e Sy.
Let u := y/b. We wish to show: z = au.
Since |x|y = a = 0, we have © = Oy. Then z = 0y = 0 u = au, as
desired. End of Case (1).
Case (2): Since |z/aly = |z|y/a = a/a = 1, we get x/a € Sy. Let
u := x/a. We wish to show: = = au.

We have x = a - (z/a) = au, as desired. End of Case (2). O

For any metric space X, let By := By, be the set of balls in X.
Recall (Definition 23.1): Let X be a metric space and let A < X.
Then A is bounded in X means: 4B € By s.t. A € B.

The next lemma will be called the Recentering Up Lemma.

LEMMA 42.6. Let X be a metric space, let B € Bx and let p € X.
Then 3C' € Bx(p) such that B < C.

Proof. Choose ¢ € X and r > 0 s.t. B = Bx(q,7). Let s := dx(p,q).
Let C := Bx(p,7+s). Then C € Bx(p), and we wish to prove: B < C.
We want: Vz e B, ze C. Let z € B be given. We want: z € C.
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Since z € B = Bx(q,r), we get dx(z,q) < r. By the triangle in-
equality, dx(z,p) < [dx(z,q)] + [dx(q,p)]. So, since dx(z,q) < r and
dx(q,p) = dx(p,q) = s, we get dx(z,p) < r+s. Then z € Bx(p,r+s).
That is z € C, as desired. O

DEFINITION 42.7. Let V be a normed vector space and let A < V.
Then |Aly = {|z|y s.t. x € A}.

REMARK 42.8. Let V' be a normed vector space and let A < V.
Then: ( Ais bounded in V) < (sup |Aly < ©)

Proof. Proof of =: Assume A is bounded in V. Want: sup |A|y < oo.
Choose z € V and r > 0 s.t. A < By(x,r). By the Recentering Up
Lemma (Lemma 42.6), choose s > 0 s.t. By(x,r) € By(0y,s). Then
AC Bv(ZL‘ 7“) o BV(OV; ) - Ev(OV,S), SO |A|V - |§(0v,8)|v.
Then |Aly € |B(Oy, s)|y < s, so sup |Aly < s. End of proof of =.
Proof of <: Assume sup |Aly < oo. Want: A is bounded in V.
Let s := sup |A|y. Then |A|y < s, and so we have A € By (0y, s).
Let B := By (0y,s + 1). Since B € By and since

A C Ev(OV,S) - Bv(OV,S+ 1) = B,
we conclude that A is bounded in V. End of proof of <. U

DEFINITION 42.9. Let V and W be normed vector spaces and let
T e L(V,W). Then

EKET = T*(Sv),
T = sup |Elly|w and

T = inf |Ellr|w.
Let V and W be normed vector spaces and let T" € L(V,W). For
clarity, we sometimes write E¢0)."" for E¢(y. For clarity, we sometimes
write Ty for T'. For clarity, we sometimes write Ty for T

DEFINITION 42.10. Let V and W be normed vector spaces and let
Te L(V,W). Then

(1) T is bounded means: T < oo,

(2) T is bounded below means: T > 0,

(3) ¥ 0, T is K-bounded means: T < K, and
(4) Vs > () T is e-bounded below means: T > ¢
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Assigned HW#9-1 and HW+#9-2.
HW#9-1 is a quantified equivalence for K-bounded. Here’s another:

REMARK 42.11. Let V., W be normed vector spaces, T' € L(V,W),
K >0. Then: [T is K-bounded | < [Vue Sy, |Tulw < K |.

Proof. Unassigned HW. O
Assigned HW#9-3.

REMARK 42.12. LetY and Z be metric spaces. Let f:Y --+ Z be
Lipschitz. Let A<Y be bounded. Then fi(A) is bounded in Z.

Proof. Choose K > 0 s.t. f is K-Lipschitz. Since A is bounded in Y,
choose z € Y and r > 0 s.t. A € By(z,r). By HW#9-3, we have
f«(A) € Bz(f(z), Kr). Then f.(A) is bounded in Z, as desired. [

Assigned HW#9-4.
Recall: Let M and N be metric spaces and let f : M --» N. Then:

(f is Lipschitz) = ( f is uniformaly continuous )

= ( f is continuous ).

THEOREM 42.13. Let V and W be normed vector spaces and let
T e L(V,W). Then the following are all equivalent:

(1) T is continuous at Oy .

(2) T is bounded.

(3) T is Lipschitz.

(4) T is uniformly continuous.
(5)

T is continuous.

Proof. 1t suffices to show:
H = @ = 6 = @ = 06 = Q.
By HW#9-4, (1)=(2). By HW#09-1,

(2)=(3). Since Lipschitz im-
plies uniformly continuous, we have (3)=(

4). Since uniformly contin-
uous implies continuous, we have (4)=(5). Want: (5)=(1).
Since Oy € V' = dom|T'], we have (5)=(1), as de31red O

We now return to L’Hospital’s Rule.
Recall Remark 41.15: Let Z be a metric space, S € Z, p€ Z. Then:

[SeNZ(p)] <= [36>0st. By(p,d)<S|.
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Recall our last version of L’Hospital’s Rule:

THEOREM 42.14. Let f,g: R --+ R and let p e R. Assume:

(A) 36 > 0 s.t. By (p,6) < dom[g'/f’] and
(B) lim f =0 =lim g.
P )

Then lim(g/f) =" lim(g'/f)-

In the proof given, you should take lim to mean (R* R*)-lim. So,
p p

for exmaple, if lim(¢'/f") = oo, then lim(g/f) = co.
p p
We next address the question of whether, in Theorem 42.14, we can

w_»

replace “=*" by , and the answer is no: Define g, : R --» R by
gx(t) = t* - [sin(t7)]. Let f :=idg : R — R and let g := adjp(gx) :
R — R. We have studied g before, and we leave it as an unassigned
exercise to show that

lim(g/f) =0 and  lim(g"/f') = @.

Thus the contingency on the equality in Theorem 42.14 is needed.
We next address whether, in Theorem 42.14, we can replace (A) by

(A") pe LPDr(g'/f"),
and the answer is no: Let p := 0. In class, we described piecewise
linear functions f and g such that (A’) and (B) hold, but

lim(g/f) =1 and  lim(g'/f") = 0.
Specifically: take any decreasing sequence a € RY such that a, — 0.

Define g to be

1 on [ai|as], 1/2on [as|las], 1/3 on [as|ag], etc.
linear on [as|az], linear on [a4]as], etc..

Then define f to be

lLatay;, 1/2on [as]as], 1/3 on [as|as], ete.
linear on [aj]|az], linear on [ag|ay], etc.

We graphed ¢/f, and observed that lign(g/ f) = 1, although we did not
write out a full symbolic proof. We noted that

dom[g'/f'] = (ai]az) U (as|as) v (aslag) v---.

We noted also that ( Vt € dom[¢'/f'], (¢’'/f)(t) = 0 ). From this, we
have: 0 € LPDg(¢'/f’) and li(I)n(g’/f’) =0.
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We call Theorem 42.14 the “0/0 near p version of L’Hospital’s Rule”.
We wish to state the “co/(—o0) near p* version of L’Hospital’s Rule”.

First, we define right handed limits, denoted lign.
p

DEFINITION 42.15. Let Y be a topological space, let ¢ : R* --» Y
and let pe R. Then

(1) YVge Y, by ¢ — q near p*, we mean:
VYV e Ny(q), 30 > 0 s.t., Yx € dom|[¢],

[p<z<p+d] = [o(x)eV]
(2) LHY[SQS = {qeY|¢— qnearp"} and
(3) lim ¢ = ELT(LIVS ).

The following is the oo/(—0o0) near p* version of L’Hospital’s Rule:

THEOREM 42.16. Let f,g: R --> R and let pe R. Assume:

(A) 360 > 0 s.t. (p,p+0) < dom|d'/f'] and
(B) lim f = - and lim g = .
pt pt
Then lim(g/f) =* lim(g'/f").
pt pt
Proof. Omitted. O

The following is the (—o0)/o0 near —oo version of L’Hospital’s Rule:

THEOREM 42.17. Let f,g: R --» R. Assume:
(A) 3N e R s.t. (—o0, N) < dom[g'/ '] and

(B) lim f =00 and lim g = —c0.
) —0
Then lim(g/f) =* lim(q'/f’).
—© —0
Proof. Omitted. O

The following is the 0/0 near p* version of L’Hospital’s Rule:

THEOREM 42.18. Let f,g: R --»> R and let p e R. Assume:

(A) 30 > 0 s.t. (p,p+9) < dom|g'/f'] and
(B) lim f =0 and limg=0.
pt p+

Then lim(g/f) =" lim(g'/f).

Proof. Omitted. 0
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Theorem 42.14 is the “0/0 near p version of L’Hospital’s Rule”. We
can replace “0/0” by any of the following:

0/0, w0/ (=w)/w w/(-n) (=w0)/(-w).
We can replace “near p” by any of the following:
near — oo, near p, near p, near p, near 0.

Thus we obtain 5 x 5 = 25 different versions of L’Hospital’s Rule, all
of them true. In all of them, lim means (R*, R*)-lim.

We can’t prove all 25 versions, for lack of time. The five 0/0 versions
are not so hard to prove, and we’ll indicate how below. The proofs
of the other 20 are similar, in that they are based on the Cauchy Mean
Value Corollary (Theorem 40.8). However, they are technically more
complicated than the proofs of the 0/0 versions.

Currently (21 March 2018), all 25 proofs are unified into one in the
Wikipedia article “L’Hopital’s rule”, in the section “General proof”.

FACT 42.19. Let h : R --» R. Let n : (0,00) --» R be defined by
n(t) = h(1/t). Then both of the following are true:

(1) im A = lim 7 and
0 0+
h(1/t
@) vee 0.0, () ="
Proof. Unassigned HW. O

Assigned HW#9-5.
Hint: Theorem 42.18 and Fact 42.19 are both useful in HW#9-5.

43. CrAss 17 oN 27 MARCH 2018, Tu oF WEEK 10

Recall (Fact 42.5): Let V' be a nonzero normed vector space, x € V.
Then there exists a > 0 and u € Sy s.t. = au.
Recall: Let V and W be normed vector spaces, T' € L(V,W). Then
(1) T is bounded means: T < o0,
(2) T is bounded below means: T' > 0,
(3) VK =20, T is K-bounded means: 7' < K, and
(4) Ve >0, T is e-bounded below means: 17" > «.
Assigned HW#10-1.

HW#10-1 is a quant. equiv. for e-bounded below. Here’s another:
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REMARK 43.1. Let V., W be normed vector spaces, T € L(V,W),
and € > 0. Then: [T is e-bounded below| < [Yu e Sy, |Tulw = ¢].

Proof. Unassigned HW. U

Let V' be a vector space, let | e | € N (V) and let K > 0. We define
K|e|:V —[0,00) by (K|e])(v) = K|v|. Note:

[ K >0 | = [ Kle|] € N(V) .

For any vector space V, for any |e |, | e| € N(V), for any K > 0, by
|o| < K| e, we mean: Vx eV, |z| < K|z|.

REMARK 43.2. Let V be a vector space, let | o], | o] € N(V) and let
K>0. Let [ :=idy : V> V. Let V' := (V| o |) and V" := (V, | o ||).
Then: [|o| < K|eo|] < [I:V" — V' is K-bounded].

Proof. Proof of =: Assume that | e | < K| e |. We wish to prove:
I:V" - V'is K-bounded. We want: Vo € V", |I(z)|y: < K|z|y».
Let 2 € V" be given. We want to show: |[I(x)|y < K|x|y».

Because | o | < K| o |, we get |z] < K|z|. Also, Iz = idy(z) = x.
Then |Iz|y = |z|v = |2| < K|z| = Kl|z|v». End of proof of =.

Proof of <: Assume that I : V” — V’is K-bounded. We wish
to prove: | e | < K| o |. We want to show: Vo e V| |z| < K|z|. Let
x €V be given. We want to prove: |z| < K|z|.

AsI:V" - V'is K-bounded, |Iz|y < K|z|y». Also, [x=idy(z)==z.
Then |x| = |z|y = [[z|y < K|z|y» = K|z|. End of proof of <. O

DEFINITION 43.3. Let V' be a vector space and let |o|, | o] € N (V).
Then, by | o | << | o |, we mean: IK >0 s.t. |o | < K| o].

REMARK 43.4. Let V be a vector space and let | e |, || o | € N(V).
Let I :=idy : V > V. Let V' := (V| e|) and V" := (V| o |). Then:
[[e] << o] & [I:V"— V"is bounded].

Proof. Proof of =: Assume that | e | << || e |. We wish to show that:
I:V" —V"is bounded.

Since | o | << || o |, choose K > 0 s.t. | e | < K| e|. Then, by =
of Remark 43.2, I : V" — V'’ is K-bounded. Then [ : V" — V' is
bounded. End of proof of =.

Proof of <: Assume: I : V" — V’ is bounded. Want: |e| << | e]|.

Let J := IAV//,V/. Since I : V" — V' is bounded, we get J < o0. Then
J€[0,0). Let K :=J + 1. Then K > 0. Want: |e| < K| e |.
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Since Iyny = J < K, it follows that I : V" — V' is K-bounded.
Then, by < of Remark 43.2, | e | < K| o |. End of proof of <. O

Recall: Let m € N. Then:
(1) ¥p = 1, define | o|,,,, € N(R™) by |7 = [|21[P+- -+ |2m|P]VP,
&(2) define | o |4, € N(R™) by |2]e, = max{|z1], ..., |Tm|}.
For all p € [1, 0], for all x € R™, in the notation |z|,,, we often omit

the subscript m, and write |z|,. The standard norm on R™ is | e |5.
We drew pictures in R? of Sj,|,, and S|, and S.,. We observed:

B, 2 B, 2 B, 2 [1/2]- By, = Ba,-

By the “compensation principle” (big norms have small balls and small
norms have big balls), we concluded:

ol < fols < lol < 2o]a
More precisely: |® o < |0]a2 < |@]21 < 2|0 ]gp.
Assigned HW#10-2.
From HW#10-2, we concluded: Vm e N,
[ofme << eolmnz << folmy << |o|nw

DEFINITION 43.5. Let V' be a vector space and let |o|, o] € N(V).
Then, by | o] ~ | o |, we mean: both || << || and |+ | <<|s|.

Let V be a vector space, |e |, | o | € N (V). Then, by |e| and | e |
are equivalent, we mean: | e |~ || e |.

From HW#10-2, we see: Vm e N, | o |, o0 ~ | @ |2 ~ | @ |1 We
will eventually show that, on any finite dimensional vector space, any
two norms are equivalent.

REMARK 43.6. Let V' be a vector space, let Z be a set and letp e Z.
Let p : V --» Z. Then dom[u(p + )] = (dom[pu]) — p.

Proof. Unassigned HW. U

LEMMA 43.7. Let ¢,¢ : R --» R. Let ¢ € LPDg(¢/¢). Then
lim(y/¢) =" [lim¢]/[lim ¢].
Proof. Unassigned HW. Hint: Use Theorem 20.6. U

Assigned HW#10-3, HW#10-4 and HW#10-5.
We will call the next result Easy L’Hospital’s Rule.
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THEOREM 43.8. Let f,g : R --» R, and let p € LPDg(g/f).
Assume: f(p) =0 = g(p). Then: lim (9/f) =" 9 I/ (p)].

Proof. Let R := [¢'(p)]/Lf(p)]. Want: lim (g/f) =

Let A := (g/f)(p + o). Then, by Remark 43.6, we conclude that
dom[\] = (dom[g/f]) — p. Tt follows that LPDgA = (LPDg(g/f)) —
By assumption, p € LPDg(g/f). Then 0 = p — p € LPDgA.

By HW#10-3, we have li(gn A= liin (9/f). We want: li(r)n A =" R.

Let ¢ := SSY, ¢ := SSP. Then f'(p) = lién(;ﬁ and ¢'(p) = lignw.
Also ¢(0) = ® and ¢(0) = ®. Then (¢/¢)(0) = ®. By assumption,
f(p) = 0=g(p). Then [g(p)]/[f(p)] = @ Then

MO = @/DE+0) = WHE) = V] = e

Then A(0) = ® = (¢/¢)(0). For all h € R, we have:

A0 = @ = S

/h

/h

S557)(h ) _ (b))

So, since A(0) = (¢/¢)(0 ), we see that A = /¢ on R. Since R is
a common superdomain of A and /¢, we conclude that A = /¢.
Then 0 € LPDgA = LPDg(¢)/¢). Then, by Lemma 43.7, we have

lim(¢/¢) =* [lim¢]/[lim ¢]. Then

lg
Lf
(Lol +M)] = l9@)])
(Lf
(
(

lim w /
; _ . _* 0 9 (p)
ll(I]Il A = lim E = ho 5 o)

as desired. O

The tame hypothesis in Theorem 41.19 reads: dom[g'/f'] € NR(p).
The tame hypothesis in Theorem 43.8, p € LPDg(g/f), is weaker, and
this means that there are times when Theorem 43.8 can be used even
though Theorem 41.19 cannot.

However, care is required, because the conclusion of Theorem 43.8
is also weaker, in a substantial way. In particular, in Theorem 43.8,
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if f'(p) = 0, we get no information whatsoever. By contrast, in The-
orem 41.19, the contingent equality has lim(g’/f’) on the right hand
P

side, and, even if the denominator f’ is approaching zero, one can
still hope to show that the limit lim(g'/f’) exists, possibly by applying
p

L’Hospital’s Rule a second time, and studying lim(g"/f").
p

DEFINITION 43.9. Let X be a top. space, f : X --+ R, p e X.
By f has a local unique max at p in X, we mean: 3V € Nx(p) s.t.

(Vedom[f]) and  ( f(p)> f(V))).
By f has a local unique min at p in X, we mean: 3V € Nx(p) s.t.

(Vedom[f]) and  (f(p) < fu(V,5) )

The next result is the Asymptotic Opimization Th’m for umin.

THEOREM 43.10. Let Y be a topological space. Let f,g:Y --+ R.
Let p € IntDy (f,g). Assume:

(1) f(p) =0=g(p),
(2) f/g — 1 near p and
(3) f has a local unique minimum at p in'Y.

Then g has a local unique minimum at p in Y.
Proof. Let D := dom[(f,g)]. Then

p € ItDy(f,g) = Inty(dom[(f,g)]) = IntyD,

so, by HW#3-1, we conclude that D € Ny (p).
By (2), choose U € Ny (p) s.t., Vt € dom[g/f],

[teU] = [llg/HB]I-1]<1/2]

Note that U € Ny(p) and that (US) = U.
By (3), choose V € Ny (p) such that

[V cdom[f]] and [ f.(V,])> f(p) ]
Want: 3W € Ny (p) such that
[ W< dom[g] ] and [ g.(W,") > g(p) ].
Let W:= D n (US) n V. Then W e Ny(p) and we want:
[ W < domlg] | and [ g.(W))>g(p) |
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We have W < D = dom|[(f,g)] € dom[g]. Want: g,(W,) > g(p). We
want: Vy € g.(W)), y > g(p). Given y € g.(W)). Want: y > g(p).
Since y € g«(W)*), choose t € W, such that y = g(t). Because
W:=Dn(US)nVand (Uf); =U, we get W) = (D)) nUn (V).
Thente D) and te U and t € V.*. Since t € D < D = dom[(f, g)],
it follows both that ¢ € dom|[f] and that ¢ € dom[g].
By assumption, f(p) = 0 = g(p). Since t € dom[f] and t € V¥, we

get £(t) € f(V;). Then f(t) € fu(V,) > f(p) = 0, 50 (£) > 0.
Since t € dom[f] and ¢ € dom[g] and f(t) # 0, we conclude that
t € dom[g/f]. So, since t € U, by the choice of U, it follows that

[(g/f)(#®)] —1] <1/2. Then 1 — (1/2) < (g/f)(t) <1+ (1/2). Then

g(t)
ol (9/H@) > 1-(1/2) = 1/2.

So, since f(t) > 0, we get g(t) = [1/2] - [f(t)]. So, since f(t) > 0, we
get g(t) > 0. Then y = g(t) > 0 = g(p), as desired. O

REMARK 43.11. Lety : R --» R and let g € R. Then (y—C%) =+/.

Proof. Unassigned HW. U
Recall Remark 41.16:

REMARK 43.12. Let pe R and let A € Br(p). Then p € LPr(A).

Proof. Unassigned HW. O
The following is called the Fourth Derivative Test for umin.

THEOREM 43.13. Let v : R --» R and let p € IntDg(~"). Assume

(1) 0=~"(p) ="(p) =7"(p) and
(2) 0 <~"(p) # ®.

Then v has a local unique minimum at p.

Proof. Next class. ]

44. CLASS 18 ON 29 MARCH 2018, TH oF WEEK 10

We recalled:

e the Asmptotic Optimization Theorem for umin (Theorem 43.10)
e Easy L’Hospital’s Rule (Theorem 43.8)

e various HW problems (HW#10-3, HW#10-4, HW#10-5)

e various remarks (Remark 43.6, Remark 41.16, Remark 43.11)
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Here is a restatement of L’Hospital’s Rule for 0/0 near p (Theo-
rem 41.19):

THEOREM 44.1. Let f,g: R --» R and let p e R. Assume:

(A) Ae B, s.t. Ay < dom|g'/f'] and
(B) lim f =0 =lim g.
P )

Then lim(g/f) =* lim(q'/f').
p p
The following is called the Fourth Derivative Test for umin.

THEOREM 44.2. Let v : R --» R and let p € IntDg(y"”). Assume

(1) 0=+"(p) =7"(») = +"(p) and
(2) 0 <~"(p) # ©.

Then v has a local unique minimum at p.

Proof. Let ¢ := ~(p) and g := v — Cg. Then ¢g(p) = 0. By Re-
mark 43.11, ¢’ = /. Then ¢’ = +", ¢" = '7/”, g" = ~". Then
p € IntDg(g”). Also,

(A) 0=g(p) =d'(p) =9"(») = 9" (p) and
(B) 0 < ¢"(p) # ®.

By HW#10-5, we wish to show: ¢ has a local unique minimum at p.
Let 0 := [1/24][¢" (p)]. Define f : R — R by f(t) = o(t — p)*. Since
o > 0, it follows that f has a local unique minimum at p, Because
dom[¢”] < dom|g] = dom|[(f,g)], we get IntDr(¢”) < IntDg(f,g).
So, since p € IntDg(¢”), we conclude that p € IntDg(f,g). So, since
f(p) = 0 = g(p) and since f has a local unique minimum at p, by the
Asmptotic Optimization Theorem for umin (Theorem 43.10), it suffices
to show: g/f — 1 near p. It therefore suffices to show: lim, (¢/f) = 1.
For all t € R, we have

ft)y = olt—p)*,
f't) = do(t—p)’,
'ty = 120(t —p)*
") = 240(t —p) and
(t)

) = 240,
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Then f"(p) = ¢"(p) = 24 £ 0, 50 [¢"()]/[f"(p)] = 1. We have
dom[f'] = dom[f”] = dom[f"”] = R. Also, we have

{teR[f'(t) =0} = {p},

{teR|f()=0} = {p} and

{teR[f"(t) =0} = {p}

Then
doml[g'/f'] = (dom[g']);,
dom[g"/f"] = (dom[g"]);  and
domg”/f"] = (dom[g"]);.

By assumption, p € IntDg(¢g”). That is, p € Intg(dom[g”]). By
HW#10-4, choose A € Br(p) such that A < dom[¢g”]. Then

A < dom[¢"] < dom[g"] < dom[d],
S0

AX © (domlg"]); < (dom[g"]); € (domlg]);.

P p P
That is,

Ar < domlg"/f") < dom[g’/f')<  dom[g/f].
Then, by three applications of Theorem 44.1, we have
ll(l]’n (g/f) :* h(l;n (g//f/) :* h(r)n (g///fl/) :* h(l;n (g”//f”/)-
It therefore suffices to show: lign (¢" /" =1.

By Remark 43.12, p € LPr(A)). Since A < dom[g"/f"], we get
LPr(A)) < LPgr(dom[g”/f"]). Then

p € LPr(4)) < LPr(dom[g”/f"]) = LPDg(g"/f").

Also, f"(p) = 0 = ¢”(p). Then, by Easy L’Hospital’s Rule (Theo-
rem 43.8, with f replaced by f” and g by ¢"”), we conclude that

IIII)II (g////f///) :* [g//// (p)]/[f//”(p)]
Recall that [¢" (p)]/[f" (p)] = 1. Then
llzl;rl (g////f///) :* [g////(p)]/[f////(p)] — 1 7& @7

so lim (¢"/f") = 1, as desired. O
p
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Recall: Let V' and W be vector spaces and let T' e L(V,W). Then
ker[T'] := T*({Ow }).
FACT 44.3. Let V and W be vector spaces and let T € L(V,W). Then

(1) ker[T'] is a vector subspace of V,
(2) im|T] is a vector subspace of W,
(3) (T is 1-1) <= (ker[T] = {0v}) and
(4) (T is onto W) < (im|[T]=W).
Proof. Proof of (1): Unassigned HW. End of proof of (1).
Proof of (2): Unassigned HW. End of proof of (2).
Proof of (3): Proof of =: Unassigned HW. End of proof of =.
Proof of <: Assume ker[T| = {0y }. We wish to show that 7" is 1-1.
That is, we wish to show: Vz,y e V,
[Tz =Ty]| = [xz=uy].
Let z,y € V be given. We wish to show:
[Tz =Ty] = [z=yl]

Assume Tx = Ty. We wish to show: z = y.
We have T'(x —y) = (T'x) — (T'y) = Oy. Then

x—y € T*({Oy}) = ker[T] = {0y},
sox —y =0y, sox=y. End of proof of <. End of proof of (3).
Proof of (4): Unassigned HW. End of proof of (4). O

FACT 44.4. Let V and W be vector spaces and let T € L(V,W).
Assume that T : V — W is 1-1. Then T~' € L(im[T],V).

Proof. Let Z := im[T] and let U := T—'. We wish to show: U €
L(Z,V). Since T : V <> Z we get U : Z <> V. It remains to show
that U : Z — V is linear. That is, we wish to show:
(1) VaeR, Yye Z, Ulay) =a-[Uy], and
(2) Ve,ye Z, Uz +y)=[Ux]+ [Uy].
Proof of (1): Givena € R, y € Z. We want to show: U(ay) = a-[Uy].
Since T'is 1-1, it suffices to show: T'(U(ay)) = T'(a - [Uy]).
Since U = T, we get T(U(ay)) = ay and T(Uy) = y. By linearity
of T, T(a-[Uy]) = a-[T(Uy)]. Then

T(U(ay)) = ay = a-[T(Uy)] = T(a-[Uy]),
as desired. End of proof of (1).
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Proof of (2): Unassigned HW. End of proof of (2). O

Unassigned HW: Let V be a vector space, |e| € N'(V), K > 0. Show:

(1) K|e| € N(V) and
(2) Bijoj = [1/K]- Bys.

Unassigned HW: Let V' be a vector space, |e|,| | € N(V). Show:

[[e] < |ell] = [Be 2 Byl

Recall (Definition 43.3 and Definition 43.5): Let V' be a vector space
and let |e |, | e | € N(V). Then

(1) |o]| << | o means: (K >0s.t. |o| < K| e ) and
(2) [o] ~ | o] means: both ([e|<<|e] )and ([e]<<]e]).

Recall (HW#10-2): Let m e N. Then | e |,,,1 ~ | ® |2~ | ®|mow.

We will eventually show that any two norms on a finite dimensional
vector space are equivalent.

LEMMA 44.5. Let V be a vector space and let | o |, | o € N (V).
Assume |o | << | o |. Then T S Tjo|-

Proof. We wish to show: VX € 7,;, X € Tj,. Let X € T}, be given.
We wish to show: X € Tj,. That is, we wish to show: X € (Bjq|)o-
By Quantified Equivalence for union closure, we wish to show: Vp e X,
U € By st. pe U = X. Let p € X be given. We wish to show:
U e BH'” st.peU < X.

We have X € Tjo| = (Bja)o. Thenp € X € {Bj,)s, so choose W € By,
st. p e W < X. By the Recentering Down Lemma (Lemma 14.2),
choose V' € By, (p) st. V. W. Since V € By, (p), choose r > 0
st. V. = B (p,7). By assumption | e | << | e, so choose K > 0
st.|e| < K|e|. Let U := By (p,7/K). Then U € By.|, and we wish
to show: pe U < X.

Because [p —p|| = 0 < /K, we see that p € Bj,(p,7/K). Then
p € Bj(p,7/K) = U, and it remains to show: U < X. We wish
to show: Vge U, qe X. Let g € U be given. We wish to show g € X.

We have g € U = Bjo|(p,7/K), so |l¢ — p| <r/K, so K|lg —p| <.
Since o] < K|, we get |g—p| < Klg—p[. Then [¢—p| < Klq—p| <,
SO q € B‘.|(p, r). Then g € Bjo|(p,7) =V € W < X, as desired. O
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COROLLARY 44.6. Let V be a vector space and let |o|, |o] € N'(V).
Assume | o | ~ | o|. Then Tjo = T

Proof. Since |e| ~ ||, we have both |e| << ||e|| and ||e| << |e|. Then,
by Lemma 44.5, both 7T.| - o]l - and N.H - 7‘1.|. Then 7‘1.| = 7].”. O

COROLLARY 44.7. Let m € N. Then Tjap,.. = Tjelms = Tjolm.oo-
Proof. By HW#10-2, |e|,,1 ~ |®|m2 ~ |®|m.«. Then, by Corollary 44.6,
we get Talpir = Tolmo = Tjolm.o> as desired. O

Recall: Let m € N. Then the standard topology on R™ is T, ,-
Corollary 44.7 asserts that the topologies coming from the two norms
| ®|m1 and | e |, o are both equal to the standard topology.

Let V' be a finite dimensional vector space. We will eventually show
that any two norms on V are equivalent. So, by Corollary 44.6, we
will be able to conclude that, even though V' has many norms, they all
give rise to the one single topology, called the standard topology on V.
This only works in the world of finite dimensional vector spaces. In in-
finite dimensions, there are many norms and many topologies to track,
making it a more complicated subject. Fortunately, undergraduate
mathematics is focused on finite dimensional vector spaces.

Recall: Let V' be a normed vector space. Give V its standard topol-
ogy Tv. Then Ty = T, = (Bjs|,,)u- That is, Ty is the union-closure
of the set of | e |-balls in V. By HW#37 from Fall semester, the
map | e | : V — R is distance-semidecreasing, i.e. 1-Lipschitz. Then
| o |y : V' — R is Lipschitz, hence unif. continuous, hence continuous.

REMARK 44.8. Let m € N and give R™ 1its standard topology. Then
| o |m1 : R™" >R and
| o |m2: R™ >R and
| ® o : R™ - R

are all continuous.

Proof. Let T be the standard topology on R™. Then T = 7,,.,, s0,
by Corollary 44.7, we have T = Tj,,, and T =T,

Since T = Tja|pni> | ® [m1 : R™ — R is continuous.

‘m,OO'

Since T = Tja},2> | ® lm2 : R™ — R is continuous.
It remains to show: | e |, » : R™ — R is continuous.
Since T = Tjajyn.o> | ® lm,eo : R™ — R is continuous, as desired. O
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45. CLAass 19 oN 3 AprIL 2018, Tu oF WEEK 11
Assigned HW#11-1.

DEFINITION 45.1. Let V and W be vector spaces, let f .V --» W
and let g,u e V. Then SST" : R --» W is defined by

(SST)(R) = [f(qﬂthu;l] - [fd]

The fn SS? is the “secant slope function of f at p in direction u”.

DEFINITION 45.2. Let V and W be normed vector spaces, let f :
V--—>W and letue V. Then 0,f : V --+» W 1is defined by

(@) = limSSp"
The fn 0, f is the “directional derivative of f in direction u”.

DEFINITION 45.3. Let m € N, let W be a normed vector space, let
fiR™-—> W and let j € [1..m]. Let e be the standard ordered basis of
R™. Then 0;f := e, f.

The function 0;f is called the “jth partial derivative of f”.

We went through three examples showing that: mere existence of di-
rectional derivatives at a point tells us very little, even about continuity
of the function at that point.

First, let V := R? and let S := (R x {0}) u ({0} x R) be the union
of the coordinate axes in V. Let f := x% : V — R. Then f is not
continuous at 0. However, f is “partial differentiable at 05”7, in the
sense that: Vj e [1..2], 0, € dom|0; f].

Second, let V := R? and let S := {(z,y) € R?| (y = 2*)&(z > 0)}.
Let f := x{ : V — R. Then f is not continuous at 0. However,
the function f is “directional differentiable at 057, in the sense that:
Yu eV, 0y € dom[0, f].

Third, let V := R%2. We will construct a fuction f : R? — R that is
“infinitely directional differentiable at every point of R?”, in the sense
that: Vk e N, Vuy,...,uy € V, 0y € dom[0,, - - - 0y, f]. The construction
is contained in the following discussion.

Discussion about infinite directional differentiability:

Let V:=R2% Forall ke N, forall s e V¥ forall ¢ :V --» R, let
Osp i= 05, -+ 05, 0. Let S:=V uVZUuV3uU---. We will say that a
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function ¢ : V' — R is infinitely directionally differentiable if, for
all s € S, we have dom[ds¢] = V.

Choose an infinitely differentiable function ¢ : R — R such that
(g=0on (—0,1] U[3,0) ) and ( g(2) =1) and ( im[g] < [0,1] ).
g(y/x?), if x #0;

Define f: V - R b xr,y) =
! y f@y) 0, if x =0.

FACT 45.4. The function f : V — R is infinitely directionally differ-
entiable, and is discontinuous at 0s.

Proof. We define

U = {(z,y)eV|2* <y < 3z? and
u = {(v,y)eV]2? <y<32’}.

Then Oy = (0,0) € u. Also, U is the interior in V of @, so V\U is the
closure in V' of V\w. Let ® be the set of all ¢ : V' — R such that

e o»=0o0n V\U and
o forall se S, 0s¢ is continuous on V\{0y }.

Claim 1: f € ®. Proof of Claim 1: By construction, f = 0 on V\U.
Let s € S be given. We wish to show that ds¢ is continuous on V\{0y }.

By the Multivariable Chain Rule (to be proved later), Vz,y € R, we
have: if x # 0, then dsf is continuous at (z,y). Let Y := {(0,y)|y € R}
denote the y-axis. Then 0, f is continuous on V\Y. It therefore suffices
to show that ds¢ is continuous on Y\{Oy}. Let v € Y\{Oy} be given.
We wish to show: 0s¢ is continuous at v.

Let Vp := V\u. We have v € Y\{Oy} < V\U = V4. So, since Vj is
open in V| we see that V4 is an open nbd in V' of v. Since Vy < V\U
and since f = 0 on V\U, we see that f = 0 on Vj. So, since V; is open
in V, it follows that ds¢p = 0 on Vj. So, since Vj is an open nbd in V'
of v, it follows that dys¢ is continuous at v. End of proof of Claim 1.

Claim 2: Let ¢ € ® and let v € V. Then we have (0,6)(0y) = 0.
Proof of Claim 2: Let L := Rv < V denote the line through v in V,
and give L the relative topology inherited from V. Choose a nbd L
of Oy in L such that Ly < V\U. Since ¢ = 0 on V\U, we conclude that
¢ =0on Ly. Then (0,0)(0y) = 0, as desired. End of proof of Claim 2.

Claim 3: Let ¢ € ®,let v e V and let s € S. Then 0,0,¢ is continuous
on V\{Oy}. Proof of Claim 3: Because s € S =V uVZ2uV3yu.- -,
choose k € N such that s € V¥ Let t := (s1,...,8,v). Then we
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have t € V! < S and 0,0 = 0,0,¢. Since ¢ € ®, we see that d,¢ is
continuous on V\{0y}. Then 0;0,¢ is continuous on V\{0y }, as desired.
End of proof of Claim 3.

Claim 4: Let ¢ € ® and let v € V. Then we have d,¢ € ®. Proof
of Claim 4: By Claim 3, it suffices to show that d,¢ = 0 on V\U. Since
¢ € @, we know that ¢ = 0 on V\U. So, since V\u < V\U, it follows
that ¢ = 0 on V\u. So since V\u is open in V', we see that d,¢ = 0
on V\w. By Claim 2, (0,¢)(0y) = 0. Let U* := @\(U u {Oy}). It
remains to show that d,¢ = 0 on U*. Let x € U* be given. We wish
to show that (d,¢)(x) = 0.

Aspe dand v eV < S, we know that d,¢ is continuous on V\{0y}.
We have z € U* < V\{Oy}. Then 0,¢ is continuous at x. Also,
xeu\U < V\U, and V\U is the closure in V' of V\u. Then z is an
element of the closure in V' of V\1, so, since d,¢ = 0 on V\w and since
0,¢ is continuous at x, we get (0,¢)(x) = 0. End of proof of Claim 4.

Claim 5: Let ¢ € ®. Then we have: Vk € N, Vs € V¥, 0,0 € ®.
Proof of Claim 5: We argue by induction on k. By Claim 4, we have:
Vs € V, 0s¢0 € ®, proving the base case. Let k € N be given and
make the induction assumption: Vs € V¥ 0,0 € ®. We wish to show:
Vse VFL 0,0 € ®. Let s € VF*! be given. We wish to show: d;¢ € ®.

Letr := (sg,...,8¢41) € VFand ¢ = 0,¢. Then 0,¢ = 0,,0,¢ = 04,1).
By the induction assumption, 0,¢ € ®. That is, we have 1) € ®. Then,
by Claim 4, dq,¢ € ®. Then ds¢ = 0,0 € . End of proof of Claim 5.

Let C' := {(x,y) € V |y = 22%}. By construction, know both that
f=1on C\{Oy} and that f(0y) = 0. Thus f is discontinuous at Oy.
It remains to show that f is infinitely directionally differentiable. Let
s € S be given. We wish to show that dom[ds¢] = V.

Since se S =V uV2uV3uU---, choose k € N such that s € V*.
By Claim 1, we have f € ®. Then, by Claim 5, we have d,¢ € ®. Then,
by definition of ®, we see that dom[ds¢] = V, as desired. O

We say a function ¢ : V' — R is directionally differentiable if, for
all ve V, dom[d,¢] = V. Recall: f:V — R is defined by

~ Jgly/a?), ifx #0;
f(v>_{o, if 2 = 0.

Let 0 : V' — R be an infinitely differentiable function satisfying ¢ = 0
on V\(B(0s,1)) and 0(02) = 1 and im[o] < [0, 1]. For all € > 0, define
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0.V - Rbyo.(r) =c-[o(x/e)]; then 0. = 0 on V\(B(0s,¢)) and
0:(02) = € and im|o.] < [0,¢]. For all € > 0, for all p € V, we define
foe: V= Rby foe(x) = [oz(x = p)][f(z — p)]; then

* fpe =0o0n V\(B(p,e)),

e im[f,.] = [0,¢€],

e f,. is infinitely directionally differentiable and

e f,. is discontinuous at p.

For any sequence py, po, ... of distinct points in V', there is a sequence
€1,€2,... of positive real numbers s.t. f,, o, + fp,c, + -+ is both direc-
tionally differentiable and discontinuous at each point of {p1,pa, ...}
In particular, there is a directionally differentiable g : V' — R such that
g is discontinuous at each point of Q2.

A subset S of a topological space X is said to be interior-free in X
if the interior in X of S is empty. A subset S of a topological space X is
said to be meager in X if S is a subset of a countable union of closed
interior-free subsets of X. A subset S of a topological space X is said
to be comeager in X if X\S is meager in X. By the Baire Category
Theorem, for any n € N, any comeager subset of R" is to be dense
in R™; in particular, a comeager subset of R™ is nonempty.

For any ¢ : V — R, define Cy := {z € V| ¢ is continuous at z}, and
let Dy := V\Cy be the set of points of discontinuity of ¢.

FACT 45.5. Let ¢ : V — R and assume: Vi € {1,2}, dom[0;¢] = V.
Then Cy is comeager in V.

Proof. For all x € R, the maps ¢(z,e) : R — R and ¢(e,z) : R — R are
both differentiable, hence continuous. Then, by e.g., Namioka, Sepa-
rate continuity and joint continuity, Pacific Journal of Mathematics,
Volume 51, Number 2, 1974, we see that Cy is comeager in V. L]

FACT 45.6. Let ¢ : V — R. Assume: Vi, j € {1,2}, dom[0;0;¢] = V.
Then Cy contains a dense open subset of V.

Proof. Since Dy = V\Cy, we wish to show that D, is nowhere dense
in V. Let D be the closure in V of Dy. Let U be the interior in V of D.
We wish to show: U = (. Assume, for a contradiction, that U # (.
For all j € {1,2}, let ¢; := 0;¢. For all i € {1,2}, dom[0;¢)1] = V,
so, by Fact 45.5, we see that Cy, is comeager in V. For all i € {1,2},
dom[d;12] = V, so, by Fact 45.5, we see that Cy, is comeager in V.
Let C' := Cy, n Cy,. Then C is comeager in V, so, by the Baire
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Category Theorem, C' is dense in V. So, as U is a nonempty open
subset of V', we conclude that C' n U # . Choose x € C' n U. Since
x e C = Cy, nCy,, we see that 1; and 1)y are both continuous at z.
For all j € {1, 2}, choose an open neighborhood U; in U of x such that
; is bounded on U;. Then U; nUs is an open neighborhood in U of z,
so choose open intervals I, J < R such that x € [ x J < U; nUy. Then
11 and 1), are bounded on I x J. That is, d1¢ and dy¢ are bounded
on I x J. Then, by the Mean Value Theorem, ¢ is continuous on [ x J.
Let W:=1xJ. Then W < Cy,s0 W n Dy = &.

We have both z € I x J =W and W =1 x J < Uy nU,. Also,
U, < U and U, < U. Also, by definition of U, we have U < D. Then
reW cU nUy,<cUc D. Since I and J are open intervals in R and
since W = I x J, it follows that W is an open subset of V. So, since
x € W, we see that W is an open neighborhood in V of z. So, since
x € D and since D is the closure in V of Dy, it follows that WDy # .

However, we showed that W n D, = ¢J. Contradiction. U
End of discussion about infinite directional differentiability.

Assigned HW#11-2.

REMARK 45.7. Let m e N, let V := (R™,| ®|,,1) and let S < V.
Assume S is closed and bounded in V. Then S is sequentially compact.

Proof. We wish to show that (.S, 7y|S) is sequentially compact.

Let W = (R™, | ® [;m2). By HW#10-2, | [z ~ | ® [;m1. That is,
| o |w &~ | @ |y,. Then by Corollary 44.6, Ty = Ty. It therefore suffices
to show that (S, Tiw|S) is sequentially compact.

By Corollary 24.14, W is proper. So, by Theorem 25.3, it suffices
to show that S is closed and bounded in W. Since S is closed in V' and
since Ty = Ty, it follows that S is closed in W. It remains to show
that S is bounded in W.

Since | e |y &~ | o |y, it follows that | e |y << | e |y. So, since S is

bounded in V', we see, by HW#11-2, that S is bounded in W 0
COROLLARY 45.8. Let me N and let V := (R™, | o |,,1). Then Sy

15 sequentially compact.

Proof. Since Sy < By(0,1) € By(0,,2), it follows that Sy is bounded

in V. So, by Remark 45.7, it suffices to show that Sy is closed in V.
Let f :=|e|y : V — R. By HW#37 from Fall Semester, the

function f : V — R is distance-semidecreasing. That is, f : V — R
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is 1-Lipschitz. Then f : V' — R is Lipschitz, hence uniformly con-
tinuous, hence continuous. So, since {1} is closed in R, we conclude,
from Theorem 28.11, that f*({1}) is closed in V. So, because

Sy = {eeV]|fle)=1} = [f({1}),
it follows that Sy is closed in V', as desired. O
Let V and W be normed vector spaces and let 7' e L(V,W). Recall:
Etlr = Ep" = Ty(Sv),
I' = Tyw = sup | EClr |w and
= Tyw = inf | Ellr|y.
Recall:

(1) T is bounded means: T' < o0,

(2) T is bounded below means: 1" > 0,

(3) VK =20, T is K-bounded means: T <K, and
(4) Ve >0, T is e-bounded below means: T > .

Recall: For all K > 0, we have
[ T is K-bounded | =
[Vue Sy, |Tulw < K | <=
[Ve eV, |Tzlw < K- l|z|yv ]
Recall: For all € > 0, we have
[ T is e-bounded below | <
[ Vue Sy, |Tulw = €] =
[Ve eV, |Txlw = e |z|y |

Assigned HW#11-3 and HW#11-4.

LEMMA 45.9. Let V, W be normed vector spaces. LetT : V —> W
be a vector space isomorphism. Assume that T : V — W s bounded.

Then T—Y: W — V is bounded below.

Proof. Since T' : V. — W 1is bounded, we have fvw < o0. Then
Tyw € [0,0). Let K := (Tyw) + 1. Then K € (0,00) and T is K-
bounded. Let ¢ := 1/K. Then & > 0. We wish to show: 771 : W — V
is e-bounded below. We wish to show: Vy e W, |T " (y)ly = ¢ |ylw-
Let y € W be given. We wish to show: [T '(y)|y = ¢ - |y|lw. Let
z:=T 1 (y). Then Tz = y, and we wish to show: ¢ - |y|w < |z|y.
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Since T : V' — W is K-bounded, we get: |Tz|w < K -|z|y. So, since
Tz =y, we get |ylw < K - |z|y. So, since € > 0, we conclude that
e-ylw <e-K-l|x|y. So, since e - K =1, we get ¢ - [ylw < |z|y. O

Assigned HW#11-5.
Recall: Let W, X be normed vector spaces. Let T' € L(W, X). Then
[T:W — X isbounded | < [T :W — X is continuous ].

It may seem, in light of this, that, for linear transformations between
normed vector spaces, the word “bounded” is useless; it can always be
replaced by “continuous”. However, one may then ask, “How continu-
ous?”, and so it’s really K-bounded that is useful, because it gives us
a quantification of continuity.

Let W, X be normed vector spaces. Assume that W is finite dimen-
sional. Let T e L(W, X). Then we will eventually show:

[T:W — X is bounded below | < [T:W — X is 1-1].

It may seem, in light of this, that, for linear transformations between
finite dimensional normed vector spaces, the phrase “bounded below”
is useless; it can always be replaced by “injective”. However, one may
then ask, “How injective?”, and so it’s really e-bounded below that is
useful, because it gives us a quantification of injectivity.

Mostly we will focus on finite dimensional normed vector spaces.
However, we went through one example, just to show how different
things become in the infinite dimensional setting. For all j € N, let
ej = XI{\;} e RY. Then

eq = (1,0,0,0,0,0,0, ...
e = (0,1,0,0,0,0,0,...
(0,0,1,0,0,0,0, ...
(0,0,0,1,0,0,0, ...

€3 =

~— N

€4 =

Let V' := ({e1,e2,€3,¢4,...})]5, be the set of all finite linear com-
binations of the vectors e, es, es,€4,.... For all z € RN, we define
suppz := {j € N|x; # 0}. Then, for all z € RN, we have:

[reV] = [ #(suppz)<w].
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So, for example
(0,0,0,2,-1,0,8,0,0,0,0,0,0,0,...) = 2e4 — e5 + 8e7 € V,

while (1,2,3,4,5,...) ¢ V. Note that supp(2e4 — e5 + 8e7) = {4,5,7}
and that supp (1,2, 3,4,5,...) = N. Define | e | € N (V) by

x| = max{|a], |2, |23, [2a], [as], ..}
(This norm is called the £* norm on V.) Define T: V — V by
Tx = (z1, 2%y, 3x3, dxy, b5, ...).
Then T : V < V is a vector space isomorphism, and we have: Vx € V,
T 'z = (a1, 79/2, 13/3, 24/4, 25/5, ...).

Note that 77! : V — Vis 1-1, and (T"!)™' = T. Let W := (V,| o |).
Then T : W — W is NOT bounded. So, by HW#11-5, T~ W — W
is NOT bounded below (for, if it were, then (7~1)~! would be bounded,
but (T71)~' = T and we know that 7" is NOT bounded). So, in the
setting of infinite dimensional normed vector spaces,

e not all linear transformations are bounded, and
e not all injective linear transformations are bounded below.

In the next class, we will show that, in the world of finite dimensional
normed vector spaces, things are much better.

46. CrAss 20 oN 5 APrIL 2018, TH oF WEEK 11

Recall (Corollary 45.8): Let m e N and let V := (R™, | ®|,,1). Then
Sy is sequentially compact.

Recall (Corollary 25.12 and Theorem 25.1): Let K < R. Assume
that K is nonempty and sequentially compact. Then K has a maximum
and a minimum.

Recall (HW#11-1): Let S < R. Assume that S has a minimum.
Then inf S =minS € S.

THEOREM 46.1. Let me N and let V := (R™,| e |,,1). Let W be a
normed vector space and let T € L(V,W). Then

(1) T:V — W is bounded and
(2) (Tis1-1 )= (T:V — W is bounded below).
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Proof. Proof of (1): Let e be the standard ordered basis of R™. Let
K = max{|Tei|w,...,|Tenlw} Wewant: T:V — W is K-bounded.
We wish to show that: Vo € V, |Tz|w < Klz|y. Let x € V be given.
We wish to show that: |Tz|w < K|z|y.

We have |z]y = |Z|m1 = |z1| + -+ + |2m|. Since

x = (x1,...,Tym) = Ti€] + - + Tplm,

we get Tz = xy - [Ter] + -+ + Ty, - [T€sn]. Then

Txlw = |z1-[Ter] + -+ + xm - [Ten]|w
< x| |Tellw + - 4 |zl [Temlw
< o K + - + o] K
= K-[|o] + - + |zl ] = Klaly,

as desired. End of proof of (1).

Proof of (2): Assume that T"is 1-1. We wish to show: 7" is bounded
below. That is, we wish to show that T > 0.

By Corollary 45.8, Sy is sequentially compact. By (1) of Theo-
rem 46.1, T : V' — W is bounded, so, by (2)=(5) of Theorem 42.13,
T : V. — W is continuous. So, since Sy is sequentially compact,
by Lemma 36.1, we see that T,(Sy) is sequentially compact. Let
E = Ellr. Then E = T,(Sy), so E is sequentially compact. By
HW#37 from Fall Semester, the function | e |y : W — R is distance-
semidecreasing, hence 1-Lipschitz, hence Lipschitz, hence uniformly
continuous, hence continuous. So, since E' is sequentially compact, by
Lemma 36.1, we conclude that |E|y is sequentially compact. So, by
Corollary 25.12 and Theorem 25.1, |E|y has a maximum and a mini-
mum. Then, by HW#11-1, inf |E|y = min |E|w € |E|w. Then

T = inf |Elz|lw = inf |[Elw € |Elw = |[Tu(Sv)|w,
so choose u € Sy such that 7' = |T(u)|w. Since u € Sy, it follows that
luly = 1. Since |u|y =1 # 0, we get u # Oy, so, as T is 1-1, we get

Tu # T(0y). Since Tu # T(0y) = Ow, we get |Tu|w # 0. So, since
Tulw =0, |Tulyw > 0. Then T' = |Tu|w > 0. End of proof of (2). O

Unassigned HW: Let X and Y and Z all be sets. Let f : X - Y
and let f:Y — Z. Assume

e f: X >Yisl-1 and
e g:Y — Zis 1-1.
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Then go f: X — Z is 1-1.
Unassigned HW: Let X and Y and Z all be normed vector spaces.
Let f: X > Y and let f:Y — Z. Assume

e f: X — Y is bounded and
e g:Y — Z is bounded.
Then go f : X — Z is bounded.

Unassigned HW: Let X and Y and Z all be normed vector spaces.
Let f: X > Y andlet f:Y — Z. Assume

e f: X — Y is bounded below and
e g:Y — 7 is bounded below.

Then go f : X — Z is bounded below.
Recall (Definition 13.8) the definition of Lp.

THEOREM 46.2. Let W be a finite dimensional normed vector space.
Let X be a normed vector space and let T'€ L(W, X). Then

(1) T:W — X is bounded and
(2) (Tis1-1 )= (T :W — X is bounded below).

Proof. Let m := dim W. Let B be an ordered basis of W. Let L := Lp.
Then L : R™ — W is a vector space ismorphism. Let V := (R, |e|,, ).
By (1) of Theorem 46.1, L : V' — W is bounded, so, by Lemma 45.9,
L7!': W — V is bounded below. By (2) of Theorem 46.1, L : V — W
is bounded below, so, by HW#11-5, L' : W — V is bounded.

Proof of (1): By (1) of Theorem 46.1, T'o L:V — X is bounded. As

LYWV and ToL:V—>X

are both bounded, it follows that T o Lo L™' : W — X is bounded.
That is, T : W — X is bounded. End of proof of (1).
Proof of (2): Assume: T is 1-1. Want: T': W — X is bdd below.
Since L : V' — W is a vector space isomorphism, L is 1-1. As

L:V W and T:-W—->X

are both 1-1, it follows that T o L : V — X is 1-1. Then, by (2)
of Theorem 46.1, To L : V — X is bounded below. As

LW >V and ToL:V—>X

are both bounded below, it follows that ToLoL~! : W — X is bounded
below. That is, T : W — X is bounded below. End of proof of (2). O
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THEOREM 46.3. Let V be a finite dimensional vector space and let
(o], [ o] € N(V). Then |o ]|~ |e].

Proof. Let I :=idy : V — V. Let V' := (V,|e|) and let V" := (V| o|)).
Since V" is finite dimensional, we conclude, by (1) of Theorem 46.2,
that I : V" — V' is bounded. Then, by < of Remark 43.4, we get:
| o | << | o|. It remains to show: |e| << |e]|.

Since V" is finite dimensional, we see, by (1) of Theorem 46.2, that
I:V'"— V"isbounded. Then, by < of Remark 43.4, |e| << |e|. O

REMARK 46.4. Let V' be a finite dimensional vector space. Then
N(V) # &

Proof. Let m := dim V. Since | o |,,2 € N(R™), we get N(R™) # &.
Choose an ordered basis B of V. Then Lg : R™ — V is a vector
space isomorphism, so R™ and V are vector space isomorphic. So,
since N (R™) # &, we see that N'(V') # . O

Another way of looking at the preceding proof: Let m := dim V', and
choose an ordered basis B of V. Then (| ® |,,2) o (L5') : V — [0,00) is
anorm on V', and so we have: N'(V) # &, as desired. QED

It turns out that, using fancy set theory (specifically, two results,
one called “Zorn’s Lemma”, and another called “the Well-Ordering
Principle”), one can prove that infinite dimensional vector spaces also
have ordered bases, although the meaning of “ordered” needs to be
made precise. Then, using this, one can prove that, Vvector space V,
N (V) # &. In this exposition, we will only need this result for finite
dimensional vector spaces, so we are content with Remark 46.4.

REMARK 46.5. Let V be a finite dimensional vector space. Then
#{T st |o|e N(V)} = 1.

Proof. Let A := {Tj s.t. | o | € N(V)}. We wish to show: #A = 1.
By Remark 46.4, choose e |y € N'(V). Then 7},|, € A. Then A # &, so
#A > 1. We wish to show: #A4 < 1. It suffices to show: VT, T" € A,
T =T" Let T', 7" € A be given. Want: 7' = T".

Since 7', T" € A, choose | o |,|| o | € N(V) such that 7' = T}, and
T" = Tjs|- By Theorem 46.3, we have | e | ~ | e |. Then, by Corol-
lary 44.6, Tjo = Tjo|- Then T' = Ty = Tjoy = T", as desired. d

DEFINITION 46.6. LetV be a finite dimensional vector space. Then
Tv := ELT{T, s.t. || e N(V)}.
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Let V' be a finite dimensional vector space. Then, by Remark 46.5, we
see that Ty # @, so Ty is a topology on V. The standard topology
on V is the topology Ty of Definition 46.6.

The upshot of Theorem 46.3 is that, while a finite dimensional vector
space V' will have many norms, they are all equivalent, and so they all
give the same topology, and this one topology is the standard topology
Ty on V. In infinite dimensions, there are even more norms, and they
often give quite different topologies from one another, and so the infi-
nite dimesional world is richer and more complicated. Fortunately (or
unfortunately, depending on point of view), this infinite dimensional
world is typically not a focus of undergraduate mathematics.

In the sequel, every finite dimensional vector space is given its stan-
dard topology, turning it into a topological space.

We record that any norm on a finite dimensional vector space gives
rise to the standard topology:

REMARK 46.7. Let V be a finite dimensional vector space and let
o | e N(V). Then T = Tv.

Proof. Let A := {7}, s.t. || e N(V)}. Then Ty, = ELTA.

As | e | € N(V), we get T, € A. By Remark 46.5, #4 = 1. So,
since 7j,| € A, we see that A = {7}, and so ELTA = 7},. Then
7oy = ELTA = Ty, as desired. d

THEOREM 46.8. Let V be a finite dimensional vector space and let
W be a normed vector space. Let T € L(V,W). Then T : V — W s
CONntinuUoOuUSs.

Proof. By Remark 46.4, choose |e| € N'(V). By Remark 46.7, T}s| = Ty .

Let V' := (V,] o). Then the standard topology on V' is given by:
Tv: = T4 Since V' is finite dimensional, by (1) of Theorem 46.2, we
see that T : V' — W is bounded. Then, by (2)=(5) of Theorem 42.13,
T : V' — W is continuous. So, since Ty» = Tjo| = Ty, we conclude that
T :V — W is continuous. U

COROLLARY 46.9. Let V and W be finite dimensional vector spaces.
LetT e L(V,W). Then T : V. — W s continuous.

Proof. By Remark 46.4, choose |[o|e N'(IW). By Remark 46.7, Tjs| = T
Let W’ := (W,| e|). Then the standard topology on W’ is given
by: Tw+ = Tj.. Since V is finite dimensional, Theorem 46.8, we see
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that 7 : V' — W' is bounded. Then, by (2)=(5) of Theorem 42.13,
T :V — W'is continuous. So, since Tyy» = T = Tw, we conclude
that T': V — W is continuous. OJ

COROLLARY 46.10. Let V., W be finite dimensional vector spaces.
LetT .V —> W be a vector space isomorphism. Then T : V —> W
1s a homeomorphism.

Proof. Since T' € L(V, W), by Corollary 46.9, T' : V' — W is continuous.
It remains to show: 7! : W — V is continuous.

By Fact 44.4, T~' € L(W,V). So, by Corollary 46.9, T~ : W — V
is continuous, as desired. 0

DEFINITION 46.11. Let m € N and let v,w € R™. We define the
dot product of v and w as vew ;= viwy + - - - + VW,

For example, (2,5,7)-(0,1,—1) = (2)(0) + (5)(1) + (7)(—1) = —2.
We will sometimes write vew = Z vjw;. It will be the reader’s
J
responsibility to figure out, from the context, that Z means Z
i i=1
We will NOT be following the Einstein Summation Convention,
which asserts that, whenever one sees a repeated index (in any term
in any formula), a summation on that index is understood. So, for
example, those who follow that convention might write v e w = vjw;,
with the understanding that, because the index j appears twice in the

term “vjw;”, the “» 7 is understood, without being written.

J
Recall that, for any vector space S, for any set Z, the set SZ (of
functions Z — S) has a standard vector space structure, given by:

o Vf.ge 8% f+ge S7is defined by (f +g)(2) = [f(2)] +[9(2)],
e VeeR,VfeS% cf € SZ is defined by (cf)(2) = c- [f(2)].

Recall that, for any ¢ € N, [1..4] = {1,...,m}. So, for example,
[1.5] = {1,2,3,4,5}. Also,
[1..2] x [1.3] = {(1,1),(1,2), (1,3), (2,1), (2,2), (2,3) }.
Recall (Definition 39.11) that, for any ¢,m € N, for any set .S,
Séxm = S[l..f]x[l..m],

)

if S is a vector space, then S®*™ has a standard vector space structure.
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DEFINITION 46.12. Let {,m,n € N and let S be a set. Then

Sﬁxmxn = S[l..é]x[l..m]x[l..n]‘

For all £,m,n € N, for any vector space S, the set S®*™*" has a
standard vector space structure.
More generally,

DEFINITION 46.13. Let d € N, let {1,...,{4N and let S be a set.
Then
S£1><~--><£d = S[l..Kl]xmx[l..(d]‘

For all d € N, for all ¢q,...,¢4N, for any vector space S, For all
¢,m,n € N, for any vector space S, the set S“* <% has a standard
vector space structure.

Let A € R>*™Y9 Sometimes we say that A is a three dimensional
tensor with entries in R. Or, to be more specific we might say that
Ais a2 x 7 x9 tensor with entries in R. Note that while each el-
ement of R?*7*? is three dimensional, the full vector space R?*™* is
2-7-9 = 126 dimensional. Because A is three dimensional, we cannot
display it easily on a two dimensional space like a page of paper, but
there are ways of “flattening” A: For example, there’s a vector space
isomorphism R**7*% — (R?)™9 and the image of A in (R?)™ can be
displayed as a 7 x 9 matrix, with entries in R2.

NOTE: A zero dimensional tensor is a scalar. A one dimensional
tensor is sometimes called a vector, although this is not to be confused
with an element of an abstract vector space. To avoid this confusion,
a one dimensional tensor is sometimes called a “tuple”. A two dimen-
sional tensor is a matrix.

For the rest of this class, we fix
1230
X = 4 5 6 0 e R4
78 90

Then X : {1,2,3} x {1,2,3,4} — R, and, for example, X(2,3) = 6.
Howoever, usually, when tensors are involved, we use subscripts for
the input values, writing Xy3 = 6, or, sometimes, Xy3 = 6. We have
Xoe : {1,2,3,4} —» R, i.e., Xo, € RY. We have Xy, = (4,5,6,0); this
is the second row of X. Similarly, we have X,3 = (3,6,9) € R3; this is
the third column of X.
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This notational convention continues to three dimensional tensors.
So, for example, for any Z € R3***2 we have both Z,,; € R*** and
Zees € R4 because of the “2” in “3 x 4 x 27, we have Z,03 = @. If
I have in mind some three dimesional tensor Z € R3*4*2 it’s hard to
display it on a page of paper. Instead, I could show you Z,.; and Z,,s.

DEFINITION 46.14. For all m € N, we define €™ to be the standard
ordered basis of R™.

Thus, for all m € N, we have ¢ € (R™)™ and

e = (1,0,...,0) e R™ |, ... ., " =(0,...,0,1) € R™.

m

We will sometimes be sloppy and omit the superscript m, writing
e1,...,em. Recall X above. Recall that Xy, = (4,5,6,0). Then

XQ. = 461 + 562 + 663 + 064,

or, being more careful about superscripts, Xo. = 4ef + 5¢3 + 6¢e3 + Oej.
Of course Oej = 04, so we also have Xy, = 4e] + bej + 6es. This kind
of equation will sometimes be called a reproducing equation. In this
example, we “reproduced” the second row of X as a linear combination
that uses its (nonzero) entries as coefficients.

The next fact records three reproducing formulas. It reproduces (1)
a vector, (2) a row of a matrix, and (3) a column of a matrix:

FACT 46.15. The following are all true:
(1) YmeN, Yo e R", v = Z vje;,

j
(2) V¢, me N, VA e R™™ Vj, Aje = Z Ajrer, and
k

(3) V&,m e N, VAe R™™ Vk, Ay = > Ajpe;.
J

Proof. Omitted. O

Much is expected of the reader in understanding (1), (2) and (3)
of Fact 46.15. For example, in (2), we write “¥;j”, and the reader is
supposed to understand, from context, that this means “Vj e [1..4].
Note that, if we were following the Einstein Summation Convention,
then the equation in (2) could be simplified to read: “A;, = Ajre;”,

7

and “ would be understood, because k is the only repeated index

)
in the term “Aj;ie;”. Being more careful, we would rewrite Fact 46.15:



NOTES 1 337
FACT 46.16. The following are all true:

(1) Yme N, Yo e R™, v = Z vjer’,
j=1

and (3) V&, m e N, VAe R™™ Vke[L.m], Au =) Ajel.
j=1

Proof. Omitted. 0

47. CrAss 21 oN 10 APRIL 2018, Tu oF WEEK 12
We define 0° = 1. Then, Vz € R, 2° = 1. Define

In = exp ! : (0,00) —> R.

For all p > 0, we define 0? = 0. For all x > 0, for all p € R, we define
P = exp(p - [Inz]). Finally, we define

tan := sin/cos and cot := cos/sin.

Let V be a vector space. Let | e | € N (V). For any p > 0, define
o3V = [0,50) by (o ")) = [2]". Then [[° = C} and |o|' = |o].

Let |e| : R — [0, 00) denote the usual absolute value function. Then,
since | o | € N (R), we get | o] = Cf and | e |' = | e |. For all p € Ny, let
(e)? : R — R denote the pth power function, defined by (e)P(z) = 2P,
Then (o) = C and (e)! = idg.

DEFINITION 47.1. Let V and W be finite dimensional vector spaces.
Then, by 6(V, W), we mean the set of functions e : V --» W such that
(1) domle] € Ny (0y),
(2) € is continuous at Oy and
(3) e(0y) = Ow.

We will sometimes omit (V,W) and write & in place of o(V, W),
provided V and W are clear. Also, we may sometimes o instead of .
Condition (1) in Definition 47.1, is expressed by saying, “c is defined
near zero.” Conditions (2) and (3) in Definition 47.1 are expressed by
saying, “c vanishes continuously at zero.”
Focusing on partial functions R --» R, we have:
o (¢) ¢ O[RR),
o (9)'. ()% (0),... € ORR),
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ofe|” ¢ ORR),

o Vp >0, leP € O(R,R),
e sin,tan € O(R,R) and

e cos,cot ¢ O(R,R).

DEFINITION 47.2. Let VAand W be finite dimensional vector spaces.
Let |o| € N(W). Then, by O(V,W,]| e|), we mean the set of functions
a:V --» W such that: 3U € Ny (0y) s.t.

(1) U < dom|a] and

(2) sup | (U)|w < 0.

Condition (1) in Definition 47.2 is expressed by saying, “« is defined
on U.” Condition (2) in Definition 47.2 is expressed by saying, “o is
bounded on U.” Conditions (1) and (2) in Definition 47.2 are expressed
by saying “a is defined and bounded near zero.”

Assigned HW#12-1.

DEFINITION 47.3. LetV and W be finite dimensional vector spaces.
Then O(V,W) := ELT{O(V, W, | e |) s.t. |e| e N(W)}.

We will sometimes omit (V, W) and write O in place of O(V, W),
provided V and W are clear. Also, we may sometimes write “O”
instead of “O”.

Assigned HW#12-2.

COROLLARY 47.4. LetV and W be finite dimensional vector spaces.
Then o(V,W) < O(V,W).

Proof. We wish to show: Ve € 3(V,W), e € O(V,W). Let e € 5(V, W)
be given. We wish to show: £ € O(V, W).

By (1) and (2) of Definition 47.1, we know that dom[e] € Ny (0y)
and that ¢ is continuous at Oy. Then, by HW#12-2, ¢ € (5(1/, w)y. O

Focusing on partial functions R --» R, we have:

A~

o (0)% ()" ()% (0)% ... € ORR),
. Vp=0, o ¢ ORR),
e sin,cos,tan € @(R,R),

ecot ¢ O(R,R),

adjp’(cot) ¢ O(R,R),

A~

Ve ¢ ORR),
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~

e adjp(CL) € O(R,R) and
o YW ¢ OR,R).

DEFINITION 47.5. Let V and W be finite dimensional vector spaces.
Let |o| € N(V) and let p = 0. Then
(VW [el) == [[e]-[0(V,W)],  and

Op(V,W.le]) = [le]-[O(V,W)].

Assigned HW#12-3.

DEFINITION 47.6. Let V and W be finite dimensional vector spaces.
Let p > 0. Then

5,(V,W) = ELT{3,(V,W,|e]|) s.t. |e|e N(W)},  and
O,(V.W) = BLT{O,(V.W,|e]) s.t. |s|eN(W)}.

Let V and W be finite dimensional vector spaces. Let | o | € N (W).
Then we have both 6g(V, W) = o(V,W) and Oy(V, W) = O(V,W).
Also, for all p = 0, we have 0,(V, W) < O,(V,W).

Given a function f, the next remaﬁk gives us criteria for determining,
for each p > 0, whether f in 6, or O, or both or neither.

REMARK 47.7. Let V and W be finite dimensional vector spaces,
let |o| e N(V), let p>0 andlet f:V --» W. Let g := f/[| ®|"], and
let h := adjgg’ (9). Then both of the following hold:
(1) [feop(V.W) ] < [(heo(V,IW))&(f(0v)=0w) ]
&@2) [feO(VVIW) ] < [(he OV, W))&(f(Ov)=0w) ].

Proof. Let V* := Vi*. That is, V* = V\{Oy}. By definition of h, we
have: both (g =hon V* ) and ( h(0y) = Oy ). Since p > 0, it follows
that 0P = 0. Then we have: |0y [}, = 07 = 0.

Proof of = of (1): Assume that f € 0,(V,W). We wish to show
both that h € 6(V, W) and that f(0y) = Ow.

Since f € 0,(V,W) = [| o [P] - [0(V,W)], choose ¢ € o(V, W) such
that f = [| e |P] - &. Since e € 6(V, W), we get €(0y) = Oy. Then

fOv) = [Iovi]-[e(Ov)] = 0-0w = Ow.

Want: h e o(V,W). Since € € 6(V, W), it suffices to show: h = ¢.

Since f = [| o |P] - &, we get: f/[| ® [P] = € on V*. That is, we get:

g =¢con V* So, since h = g on V* we get: h = ¢ on V*. So, as
h(0y) = Ow = (0y), we get h = . End of proof of = of (1).
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Proof of < of (1): Assume that both h € o(V, W) and f(0y) = Oy .
We wish to prove: f e 0,(V,W). We define ¢ := [| @ |P] - h. Then we
have ¢ € [| o [P] - [0(V, W)] = &,(V, W), so it suffices to show: f = ¢.

As f/[|o|P] = g, we get: f =[|e|P]-g on V*. So,as g =honV* we
get: f=1[le[’]-hon V* Thatis, f =¢ on V*. It remains to show:
f(0y) = ¢(0y). Since f(0y) = Ow, we wish to show: ¢(0y) = Ow.

We calculate: ¢(0y) = [|0y[?] - [R(Oy)] = 0- 0y = Ow, as desired.
End of proof of < of (1).

Proof of = of (2): Assume that f € @p(V, W). We wish to show
both that h € O(V, W) and that f(0y) = Oy

Since f € O,(V,W) = [| o [P] - [O(V,W)], choose a € O(V, W) such
that f = [| e |’] - a. Then

fOy) = [0ov]i/] - [a(0y)] = 0-[a(0y)] = Ow.

Want: h € @(V, W). Since o € @(V, W), it suffices to show: h = a.

Since f = [| ® |P] - a, we get: f/[| ® |P] = a on V*. That is, we get:
g =aon V* So, since h = g on V* we get: h = a on V*. So, as
h(0y) = Oy = a(0y), we get h = a. End of proof of = of (2).

Proof of < of (2): Assume that h € @(V, W) and that f(0y) = Oy .
We wish to show that f € O,(V, W).

Let ¢ := [[ o ”] - h. Then ¢ € [| o '] - [O(V,W)] = O,(V, W), 50 it
suffices to show: f = ¢.

As f/[|®|P] = g, we get: f =[|®|P]-g on V*. So,as g =honV* we
get: f=1[le[’]-hon V* Thatis, f =¢ on V* It remains to show:
f(0y) = ¢(0y). Since f(0y) = Ow, we wish to show: ¢(0y) = Ow .

We calculate: ¢(0y) = [|0y[?] - [R(0Oy)] = 0- 0y = Ow, as desired.
End of proof of < of (2). O

Using Remark 47.7, Vp € Ny, one can show:
(1) (o) € ,(RR), _
(2) ¥6>0, (o) ¢ Opis(R,R),
(3) ()" ¢ 0p(R,R) ~ and
(4) Yo € (0,p], (o) € 0,_s(R,R).
We summarize (1) and (2) above as saying, Vp € Ny, that (e)? is just
barely in @p(R, R). We summarize (3) and (4) above as saying, Vp € Ny,
that (e)? is just barely outside 0,(R,R).
Using Remark 47.7, Vp > 0, one can show:

(1) [ o7 € Oy(R.R),
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(2) V6>0, |eP¢ O, s(R,R),
(3) [o P ¢ 0p(R,R)  and
(4) Vo e (0,]9], | i |p € 5P—5(Ra R)
We summarize (1) and (2) above as saying, p = 0, that | e |P is just
barely in @p(R, R). We summarize (3) and (4) above as saying, p = 0,
that | e |P is just barely outside 0,(R, R).
The remarks of the preceding two paragraphs motivate:

DEFINITION 47.8. Let V and W be finite dimensional vector spaces
and let f -V --» W. Then:

e By f is constant order, we mean f € @O(V, w).
e By f is linear order, we mean [ € (51(1/, W).

e By f is quadratic order, we mean f € (52(‘/, W).
e By f is cubic order, we mean f € @g(V, w).

e By f is quartic order, we mean f € (’34(\/, w).
e Vp =0, by f is order p, we mean f € @p(V, W).
e By f is subconstant, we mean f € oq(V,W).

e By f is sublinear, we mean f € o,(V,W).

e By f is subquadratic, we mean f € 05(V,W).

e By f is subcubic, we mean f € 63(V,W).

e By f is subquartic, we mean f € o4(V,W).

Vp =0, by f is sub-p, we mean f € 0,(V,W).

For all p € Ny, (¢)? : R — R is order p, but not sub-p. In particular,
(¢)2 : R — R is quadratic order, but not subquadratic.

For all p >0, |e|?: R — R is order p, but not sub-p. In particular,
| o |? : R — R is quadratic order, but not subquadratic.

Assigned HW#12-4.

Let V and W be finite dimensional vector spaces. According to
HW+#12-4, for any p = 0, for any § > 0, any sub-p function V --» W
is an order ¢ function. This implies

002502012512022522'”.

More generally, we assert: “the collection of O and & function spaces
are totally ordered by inclusion”. The precise meaning of this is:

Vp,q =0, VF € {5,,0,}, VG € {3, O,}, either F < G or G < F.

FACT 47.9. Let V and W be finite dimensional vector spaces. We
define & := 0(V,W) and O := O(V,W). Then:
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o, 1.e,Vf,ged, f+ge0,

1.e., VaeR, ero af €0,

(5,26 Vf,ge@ f+ge(9, and
i.e., Va e R, er@ afeO

Proof. Unassigned HW. O

FACT 47.10. We define & := 3(R,R). and O := O(R,R). Then:

(1)(9 OC 0, e, Vf,geo, fgeo and
()(9 (’)CO i.e. Vf,ge(? fge(’)

Proof. Unassigned HW. O

FACT 47.11. Let V., W and X be finite dimensional VSs. Then:

(1) B, X)] o [BV.W)] € 3(V,X),  and
(2) [O(W, X)] o [o(V,W)] = O(V,X).
Proof. Unassigned HW. O

WARNING: Let ¢ := o(R,R) and letO® := O(R,R). Then, un-
forunately, we have 000 e O and 30O e O. For example, define
f:R—>Randy:R\{l} > Rby f(z) =2 +1and y(z) = z/(z - 1).
Let g := adj?(y). Then f € O and g € 3 < O. Note that we have
both dom[f] = dom[g] = R and ¢g(f(0)) = ¢g(1) = 2. However, for
all z € R\{0}, we calculate (¢(f(z)) = (x + 1)/z. Then g o f is not
bounded near 0, so go f ¢ O.

As a general rule, if you see a constant order function f on the
RIGHT of a composite sign, then there’s no way to control the com-
posite, unless you somehow know that f vanishes at zero. This problem
doesn’t arise if you know, for some p > 0, that f is order p. It also
doesn’t arise if you know, for some p > 0, that f is sub-p.

FACT 47.12. Let V and W be finite dimensional vector spaces and
let | o]l e N(W). Let p> 0. Then

[V, WP = &(V,R)  and  |O(V,W)|]" = O(V,R).
Proof. By (1) of Fact 47.11, (6(V,W)) o (6(V,W)) < 6(V,R). Then

[o(V,W) [P =l |7 (a(V,W))
< (B(V,W))o (B(V,W)) < (V,R).
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It remains to show: [O(V,W)|P = O(V,R). Want: Vf € O(V,W),
If|P € O(V,R). Given f € O(V,W). We wish to show: |f| € O(V,R).
Let g := | f|?. We wish to show: g € O(V,R).

Since f € O(V, W), choose U € Ny (0y) s.t.

[ U < dom|[f] ] and [ sup | f«(U)] < oo ].
Let | o | € N(R) be absolute value. It suffices to show:
[ U < dom]g] ] and [ sup |g«(U)| < o0 ].

We have dom[g] = dom[f]. Then U < dom|f] = dom[g]. It remains
to show: sup|g«(U)| < 0. Let M := sup | f«(U)||. Then 0 < M < oo,
so MP < oo. It therefore suffices to show: |g.(U)| < MP. We wish
to show: Yz € U, |g(z)| < MP. Let x € U be given. Want: |g(x)| < M?.

Since x € U < dom[f], we get f(x) € fu(U). Then

[f@)] e £ < supr*(U)ll

As 0 <|[f(z)| < M, we get 0 < | f()|P < MP. Then 0 < g(z) < M.
Since 0 < g(x), we get [g(x)| = g(z). Then Ig( ) =g(x) <MP. [
THEOREM 47.13. For all s > 0, let 0, = S(R, R) Let p >0 and

A~

q=0. Then: @p : @q c @p+q and Oq 00, < (’)qp.
Proof. We wish to show: Vf € @p, Vg e @q,

fge @p+q and go fe @qp.
Let f € @p and g € @q be given. We wish to show:

fge @p+q and gofe @qp.

~

Let O := O(R,R). By (2) of Fact 47.10, we have O - O < O.
Let | o] € N(R ) be absolute value. Then f € O, = | o |? - O and
geO_\o\q , 50 choose a, B € O s.t.

(f=[ef-a) —and (g=|e["-F).
Then
fg = el arlelt-g = [o*T a5

e |efft1.0-Oc el 0.

It remains to show go f € @qp.
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For all x € R, we have

g(f(x)) = (o7 B)(f(x)) = |f@)|" [B(f(x))]
= | (el )@ |" - [B(f(x))]
= | [l [a(@)] |" - [B(f(2))]
= [a® - Ja(@)]? - [B(f(x)]-
Then go f = e[ ]al?- [3o f].

By Fact 47.12, |(9]‘1 c O. Then la|? € ]O\q < O. Since p > 0,
we have O c o By (2) of Fact 47.11, we have O 0 & < O. Then

BofeOo pQOo 5cO. Recallthat@~@§@. Then

gof = |e|® - |al? [0 f]
e |e|”- 0 -0 = |o|?. 0 = O,

as desired.

Assigned HW#12-5.

A~

THEOREM 47.14. For all s = 0, let O, := O, (R,R). Let p,q

Then:

—
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Proof. Unassigned HW.

In Theorem 47.14, simply remember that, when p,q > 0,

if you mix O and (5, you get (’3,

if you mix O and 3, you get 3,

o if you mix & and O, you get & and
e if you mix 0 and 0, you get 0.

Also remember that multiplication adds exponents.

= 0.

THEOREM 47.15. Let V, W and X be finite dimensional vector

spaces. Then:

(5) ¥p >0, ¥q = 0, [O,(W, X)] 0 [0,(V,W)] < O, (V, X).
(6) Vp =0, Vg > 0, [O,(W, X)] 0 [3,(V,W)] S B (V, X).
(7) ¥p > 0, Vg > 0, [B,(W, X)] 0 [O,(V,W)] S Byp(V, X).
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(8) Vvp =0, Yq =0, [04(W, X)] o [0,(V,W)] S Ogp(V, X).
Proof. Unassigned HW. O

In Theorem 47.15, the boundary cases (where either p = 0 or ¢ = 0)
are generally not important. Simply remember that, when p,q > 0,

if you mix O and (5, you get @,

if you mix O and 0, you get 0,

o if you mix & and O, you get & and

e if you mix 0 and 9, you get 0.
Also remember that, whereas multiplication adds exponents, composi-
tion multiplies them.

If you're worried about learning the boundary cases, keep in mind
that if you have (50 on the right side of o, then there is no inclusion.
On the other hand, if you have (50 on the left hand side, then, with two
exceptions, the answer is as expected. The first exception is (50 o (50,
where there is no inclusion. The second exception is (50 o O,, which is
not contained in &y, but IS contained in (50.

Specifically, let V', W, X be finite dimensional vector spaces. Then:

(5) ¥g=0,  [Og(W, X)]o[Oo(V,W)] & Op(V, X).
(6) Vp=0,  [Op(W,X)]o[5,(V, V)] & &(V, X).
(6") ¥p=0,  [Oo(W, X)]o[3,(V,W)] < Op(V, X).
() Y20, (5,7, X)]0[0 Do(V, W) & Bo(V, X).
(7) ¥a =0, [5,(W,X)] o [Oy(V,W)] & Ou(V: X).

We leave all these as exercises. For (6”) the argument is similar to the
argument in Theorem 47.13. For (5°), (6°), (7’) and (77), see the
WARNING following Fact 47.11. In (5’) and (7”), keep in mind that
(50 contains all the other function spaces. So, if a composition of func-
tions spaces is not contained in @0, then it’s not contained in any of the
others. Thus, (7’) is a consequence of (77).

48. CLASS 22 ON 12 APrIL 2018, TH oF WEEK 12

Recall that, for any vector space V, for any set S, V* has a standard

vector space structure. In particular, since R3** = RII-31x[1.4]

, we
see that R34 has a standard vector space structure. We will practice
vector addition and scalar multiplication in R*** soon. In the vector
space R3*4 the vector addition is sometimes called matrix addition.

Our mathematical world starts is scalars, proceeds to vectors, then
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to matrices, and then to what are called 3-dimensional tensors, to be
discussed soon. From there we go to 4-dimensional tensors, and on and

on.
Recall: ¥Ym € N, e™ is the standard ordered basis of R™, so
e’ = (1,0,...,0) e R™ | ... , e" =(0,...,0,1) € R™.

For all m,n € N, we let E™" € (R™*")™*" he a matrix of matrices
whose ij entry is the matrix E;7" € R™*" is an m x n matrix with
a one in the (4,j) entry and with Os in all the other entries. So, for
example, setting m to 3 and n to 4, we have

1000 000 1
Ed=looo0o0]|, ..., E¥=|[000 ,
| 000 0 | 000 0
(000 0] [0 00 0]
Ed=loo0oo0o0|, ..., EX=|0000
100 0 | 000 1]

Note that {E}!|i e [1..3],j € [1..4]} is a set of 12 matrices; it is a basis
of the 12-dimensional vector space R3**. Let

1230
X = 45 6 0 e R¥>4
78 90

This variable X will be bound for this entire class. The (2, 3)-entry
of X is Xo3 = 6. The 2nd row of X is Xo, = (4,5,6,0) € R The
3rd column of X is X.3 = (3,6,9) € R®. The (horizontal) row vector
corresponding to Xo, is (X2a)" =[ 4 5 6 0 | € R'** The (vertical)
column vector corresponding to X3 is

3

(X.s3)Y = 6 e R
9

We can reproduce X,3 from the entries 3,6,9 in the 3rd column of X:

3
X3 = (3,6,9) = 3e; + 6eg + 9e3 = ZX]BG?‘
j=1

The lazy among us would simply write X3 = Z Xjzej, expecting the
reader to understand that, because the index j is repeated, the > is on
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J, and expecting the reader to figure out that j ranges from 1 to 3, and
expecting the reader to understand that, here, e; means e?. The super
lazy among us follow the Einstein convention that any repeated index
in a term is automatically summed, and would write X,3 = Xjse;.
We can also reproduce X via the super lazy formula X = X;;F;;.
Less lazy is X = )} Xj;E}}. Better is X = 2 XijEf’j‘l. Still better:
.3
3 4
X = Z Z Xi; B3 Still better: X =Y ) X;;E3'. Note that, by
=1 j=1
commutatlwty of addition of matrices, you can interchange the order

4 3
of summation, and write X = Z Z XWE34
7j=1 =1
Define Y € R3*4 by
Y;l = (27 Oa O)
KQ = (07 4a 0)
}/o3 = (07 07 6)
Y = (97 0, 8)

Then, in a more conventional fomat, we have:

2009
Yy = 0 400 e R4,
00 6 8

This variable Y will be bound for this entire class.
Since R**4 is a vector space, we should be able to calculate 10Y and
X +Y. They are:

(20 0 0 90
10Y = | 0 40 0 0 and
0 0 60 80
(32 3 9
X+Y = |49 6 0

| 7 8 15 8

Recall that R3*4x2 = RIL-3Ix[1-41x[1-2] ' Because R is a vector space,
there is a standard vector space structure on R3*4*2,

Define Z € R¥>**2 by Z,.; = X and Z,.o = Y. There is no conven-
tional format for displaying Z on a 2-dimensional page of paper, as Z
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is, by its nature, 3-dimensional. It is an example of a 3-dimensional
tensor. Be careful, however: dim (R3*4*?) = 3.4.2 = 24, but each
element of R****2 is a 3-dimensional tensor. Since Z is 3-dimensional
array of numbers, we have to look at various ways of “flattening” Z,
so as to display it on a page. One approach is

[ 1 2 3 0

Zeat = 4 56 0 and
| 789 0 |
2 0 0 9]

Zee2 0400
080 8 |

Given a 3-dimensional tensor like Z, we would say that we “know” Z
if, Vi € [1..3], Vj € [1.4], Vk € [1..2], we can compute Z;j,. So, for
example, we should be able to compute Z35; and Z;45. We have

Zgon = Xz = 8 and Zup = Yiu = 9.

This variable Z will be bound for this entire class.

Recall that L(R3, R*) denotes the set of linear maps R? — R%; it is a
vector subspace of the vector space (R*)®’, which means that L(R?, R?)
is closed under vector addition (a.k.a. function addition) and scalar
multiplication. That is:

e VF,G e L(R3 RY), F + G e L(R3 RY), and
e Vae R, VF e L(R3 RY), aF € L(R3 RY).
In other words,
e the sum of any two linear maps R? — R* is again linear and
e any multiple of a linear map R?® — R* is again linear.

There is a standard vector space isomorphism
R*>** > L(R* RY).

We begin by describing the image 7" of X under this isomorphism.
Define T' € L(R3 R*) by

T(ei)) = Xl.;
T(eg) = X207
T(ed) = Xs..

This variable T" will be bound for the entire class.
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Because T is linear, we can now, for any z,y,z € R, compute
T(z,y,z). For example,

T(2,4,5) = T(2€} + 4ej + 5e3)

AT(eN)] +4-[T(e3)] +5- [T(e3)]

[ Xqe] 4 [Xoe] + 5 [Xa]

-(1,2,3,0) +4-(4,5,6,0) +5-(7,8,9,0)
2,4,6,0)+(16,20,24,0)+(35,40,45,0)

2
2
_
(
(53,64,75,0).

More generally, for any p € R?, we have
T (Z Pﬂ?) = 2.7 (pse))
J J
Do [TEN] = > p [X]
J J
= Z pj - [Z Xjkei] = Z Z ijjkeﬁ
j k ik
= D piXpeh
ik

We used the matrix X to construct the linear map 7. One can also

Tp

go backwards: If someone knows T and can, for any p € R?® compute
Tp and tell it to us, then we can figure out X because the rows of
X are T(e}), T(e3) and T(e3). That is, for all j € [1..3], we have
Xjo = T(e}). Recall the dot product « : R* x R* — R given by
vew = vyw; + Vawy + vzws + vywy. For all v € RY for all k € [1..4],
we have v = v eeg. Then, for all j € [1..3], for all k € [1..4], we have
X = (T(€3)r = (T(e3)) - €;. This last formula allows us to recover
all the entries of X from the linear map 7.

We have now described a way of going from a matrix X € R*** to a
linear map T € L(R3,R%), and a way of going back from T to X. We
generalize this to R™*"™ and L(R™,R") as follows:

DEFINITION 48.1. Let m,n € N. Then
(1) VAe R™" L4 e L(R™ R™) is defined by La(p) = Z piAjkey.
jk

(2) YF € L(R™, R"), [F] € R™" is defined by [F];, = [F(e™)] €}

J
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With this notation, we have Lx =T and [T] = X.
REMARK 48.2. Let m,n € N. Then the two maps

A — Ly
Rmxn PN L(Rman)
[F] — F

are both linear, and they are inverses of one another.
Proof. Unassigned HW. O

By Remark 48.2, for all m,n € N, the two vector spaces R™*" and
L(R™ R™) are isomorphic to one another, and, in fact, Remark 48.2
displays isomorphisms in each direction. In this isomorphism, X < T

For m,n € N, many people prefer the to set up an isomorphism
R™™ « L(R™,R™). Note that, on the left of <>, the n appears before
the m, whereas, on the right, it’s the other way around. Under this
new isomorphism, the matrix corrsponding to 7' € L(R?, R*) would not
be X, but rather, the transpose of X:

147
Xt = ?,(533 e R¥3

000

For this exposition, we prefer the isomorphism of Remark 48.2.
We now define multiplication of matrices, in terms of composition:

DEFINITION 48.3. Let £,m,n € N, A € R“™ B e R™ ", Then
AB = [LB @) LA]

The next result asserts: the (i, k) entry of AB is (A;.) » (B.;), i.e.,
the dot product of ( the ith row of A ) and ( the jth column of B ).

REMARK 48.4. Let {,m,ne N, AcR*™, Be R™". Letic [1..0]
j=1

Proof. Since L, and [e] are inverses, we see that [L4] = A and that
[Ls] = B. Then, for all j € [1..m], we have A;; = [Lali; = (La(ef))ee
and Bjr = [Lp]jr = (Lp(e]")) « €.

We have (AB)ix = [LpoLalix = ((LpoLa)(ef))eep. Let v := La(el).
Then (Lp o La)(ef) = Lp(La(ef)) = Lp(v). Also, Vj € [1.m], we
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m
have: v; = veel" = (La(ef)) e el = A Since v = Z vie', we get
j=1

as desired. O

Next on the agenda: bilinear maps.

Let U, V and W be sets and let F': U x V — W. Then, Yv e V|
F(e,v) : U — W is defined by (F'(e,v))(u) = F(u,v). Also, Vu € U,
F(u,e):V — W is defined by (F(u,e))(v) = F(u,v).

DEFINITION 48.5. Let U, V and W be vector spaces. Then B(U,V, W)
denotes the set of all F': U x V. — W such that both

(1) YoeV, F(e,v)e L(UW) and

(2) Yue U, F(u,e)e L(V,W).

Condition (1) of Definition 48.5 is expressed by saying that F' is
“linear in its first variable”. Condition (2) is expressed by saying that
F'is “linear in its second variable”. Conditions (1) and (2) together
are expressed by saying that F' is “bilinear”.

Let U, V and W be vector spaces. Then WYV has a standard
vector space structure, and we leave it as an unassigned exercise to
verify that B(U,V, W) is a vector subspace of WY*V. That is: ( a sum
of two bilinear maps is again bilinear ) AND ( a scalar multiple of a
bilinear map is again bilinear ).

Let U, V and W be vector spaces and let = € B(U,V,W). For all
ue U, v eV, it is traditional to use the notation u=v to denote *(u, v).
Similar remarks apply when = is replaced by any special character,
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not in an alphabet. When we get to trilinear maps, there’s no such
convention, and special characters are not typically used to denote
trilinear maps.

For all m e N, there is a standard example of a bilinear function
called dot product: « € B(R™ , R™ R). That is, for any m € N, the dot
product is a bilinear functional on R™ x R™. (The word “functional”
in place of “function” indicates that the target vector space is R.)

To give just one example of a bilinear functional * on R? x R*, recall:

2 30

1
X = 4 e R34
7

56 0
8 9 0
Define = € B(R?, R R) by

Vie [1..3], Vje[l.4], e e; = Xj;.

The reader may expect that, to define a bilinear = : R? x R* — R, we
need, Vp € R3, Vg € R*, to give a formula for p*q. However, if we know
every e «ej, then we can use bilinearity to compute p+q. For example,
say we want to compute (5,2,1) = (4,6,1,2). First, we have

(5,2,1) * (4,6,1,2) = (53 + 23 + €3) « (4e] + 6ej + €3 + 2¢7),

and via bilinearity of %, we cna expand the right hand side into 12
terms, the first of which would be 5 - 4 - (e} = e}), which is equal to
5-4-Xy; =5-4-1 = 20. The others are all easy to compute, and
we leave it as an exercise for the reader to compute them and add
them; the answer is 284. In class, we gave a description of how to
get at this same 12 term computation by writing (5,2,1) vertically
on the right of X, writing (4,6, 1,2) horizontally across the top, and
the multiplying each entry of X by the numbers above it and to its
right. Those 12 products are the same as the terms in the expansion
of (5,2,1) = (4,6,1,2). Generalizing, Vp € R?, Vq € R?, we compute

(Z0e) - (Do)

= > pi-gp- (€ =€)
1,7

- > pig Xy,
i,J

p*q
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and it is understood that in each sum, i ranges over [1..3], while j
ranges over [1..4]. Note that the final sum has 12 terms.

The variable =, defined in the last paragraph, will be bound for the
rest of this class. Note: A person who forgets X (but remembers )
can recover each of the 12 entries of X from the 12 equations:

Vie [1..3], Vje[l.4], X =elwe]

ju
The preceding discussion motivates:
DEFINITION 48.6. Let {,m e R. Then
(1) VAe R>™, By e B(R",R™,R) is defined by Ba(ef,el") = Ay;.
(2) VF € B(R",R™,R), [F] € R™™ is defined by [F];; = F(ef,e").

For the reader who, in (1) of Definition 48.6, would prefer to see a
general formula for p * ¢, we have: For all /,m € N, for all A e R>*™,

WpeR', VgeR™,  Balp,q) = ). pigj A,
,J

and, in the sum, ¢ ranges over [1../] and j over [1..m]; the sum has ¢m
terms. (When ¢ = 3 and m = 4, we get the expected 12 terms.)
In the notation of Definition 48.6, Bx = * and [+] = X.

REMARK 48.7. Let {,m € N. Then the two maps

A — By
RExm PN B(Rf,Rm,R)
[F] i F

are both linear, and they are inverses of one another.
Proof. Unassigned HW. U

By Remark 48.7, for all £,m € N, the two vector spaces R*™ and
B(R’, R™ R) are isomorphic to one another, and, in fact, Remark 48.2
displays isomorphisms in each direction. In this isomorphism, X < .

We’ve been doing bilinear functionals. Now let’s approach vector
valued bilinear functions. First, recall: X,Y € R3*4 are given by

12 30 2009
X = 4 5 6 0 [, Y = 0400
78 90 00 6 8

Also, recall: Z € R3***2 is defined by Ze.; = X and Z,e = Y. Then
Zlgl = X13 =7 and 2132 = }/13 =0. Forall e [13], for all j € [14],
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Zije € R? is defined by (Zije)r = Ziji. So, since Z133 = X33 = 7 and
Zi32 = Y13 = 0, we see that Z13. = (7,0). Note that we can reproduce
Z130 a8 Z130 = 13163 + Zi30€3. In general,

2
Vie[l.3], Vie [LAl,  Zjo= ). Zije;.
k=1

Note: Vi e [].3], VJ € [].4], vk e [12], Zijk = Zijo i 62.

There is a standard VS isomorphism R3*4*% <> B(R3 R* R?), and
we begin by describing the image ® € B(R3 R* R?) of Z. Define
® € B(R?, R*, R?) by

Vie[l.3], Vje[l.4], € ®ej = Zye,

or, equivalently by
2
Vie[l.3], Vie[L.4], e@¢ =) Zipe,
k=1

or, equivalently by
VpeR® YgeR',  p®q= ) pigiZiker,
irjik

and, in the sum, ¢ ranges over [1..3], j over [1..4] and k over [1..2].

The variable ®, defined in the last paragraph, will be bound for the
rest of this class. Note: A person who forgets Z (but remembers ®)
can recover each of the 24 entries of Z from the 24 equations:

Vie[l.3], Vie[l.4], Vke[1.2],  Zj= (] ®¢€))sep

The preceding discussion motivates:

DEFINITION 48.8. Let £,m,n € R. Then
(1) VA e R>m™*n B, e B(RY,R™, R™) is defined by

BA(ef,eg") = Z Ajjrey.
k=1
(2) VF € B(RY, R™,R"), [F] € R&*™*" s defined by
[Flyr = [F(ef,e]")] «ep.

For the reader who, in (1) of Definition 48.8, would prefer to see a
general formula for p+q, we have: For all £, m,n € N, for all A € R&>m*n,

Vpe RY, Vge R™, Ba(p,q) = Z pig;Aijex,

?:7.j7k
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and, in the sum, i ranges over [1..¢], j over [1..m] and k over [1..n]; the
sum has ¢mn terms. (When ¢ =3, m =4, n = 2, we get 24 terms.)
In the notation of Definition 48.8, By = ® and [®] = Z.

REMARK 48.9. Let {,m,n € N. Then the two maps

A — By
Réxmxn PN B(RZ’Rm’Rn)
[F] i F

are both linear, and they are inverses of one another.

Proof. Unassigned HW. O

By Remark 48.9, for all £, m,n € N, the two vector spaces R“*™*™ and
B(R’,R™ R") are isomorphic to one another. Remark 48.9 displays
isomorphisms in each direction. In this isomorphism, Z < .

We’ve been doing bilinear. Now let’s do trilinear.

Let U, V W and X be sets and let F' : U x V x W — X. Then,
YoeV,YweW, Fle,u,w) : U — X is defined by

(F(o,v,w))(u) = F(u,v,w).
Also, Yue U, Yw e W, F(u,e,w) : V — X is defined by
(F(u,o,w))(v) = F(u,v,w).
Also, Vue U, Vv e V, F(u,v,e) : W — X is defined by
(F(u,v,0))(w) = F(u,v,w).
DEFINITION 48.10. Let U, V, W and X be vector spaces. Then
T(U,V,W,X) denotes the set of all F : U x V. x W — X such that
(1) YoeV,YweW, F(ev,w)e L(U,X) and

(2) VueU,YweW, F(u,e,w)e L(V,X).
(3) Vue U, YveV, F(u,v,e)e L(W,X).

Condition (1) of Definition 48.5 is expressed by saying that F' is
“linear in its first variable”. Condition (2) is expressed by saying that F'
is “linear in its second variable”. Condition (3) is expressed by saying
that F' is “linear in its third variable”. Conditions (1), (2) and (3)
together are expressed by saying that F'is “trilinear”.

Let U, V, W and X be vector spaces. Then XU*V>*W has a stan-
dard vector space structure, and we leave it as an unassigned exercise
to verify that T'(U,V, W, X) is a vector subspace of XU*V*W_ That is,
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we have: both ( a sum of two trilinear maps is again trilinear ) AND
(a scalar multiple of a trilinear map is again trilinear ).
DEFINITION 48.11. Let mq, mg,m3 € R. Then
(1) VA e Rmxm2xms = B, e B(R™ ,R™ R™3 R) is defined by
Ba(e', e ei?) = A

(2) VF € B(R™ R™ R™ R), [F] e R™*™2*™s s defined by
[F] F(el, el el?).

J1 072 7 g3

J1Jj2J3 "

J1j2J3

For the reader who, in (1) of Definition 48.11, would prefer to see a
general formula for F(p', p?, p®), we have:

For all mq, mqg, m3 € N, for all A e R™1>m2xms

Vpt e R™, Vp? e R™ Vp3 e R™3,
BA(p17p27p3) = Z p}lp‘?gp‘?3qjj4‘j1j2j37
jl’j27j3

and, in the sum, j; ranges over [l..mq], jo over [l..ms] and jsover
[1..m3]; the sum has m;mgms terms.

REMARK 48.12. Let my, mo,m3 € N. Then the two maps

A — By
le Xmg Xms3 PN B(le , ng’ ng, R)
[F] i F
are both linear, and they are inverses of one another.
Proof. Unassigned HW. O

By Remark 48.7, for all mi,ms,m3 € N, the two vector spaces
Rmixmzxms and B(R™,R™2 R™3 R) are isomorphic to one another,
and, in fact, Remark 48.2 displays isomorphisms in each direction.

We've been doing trilinear functionals. Now let’s approach vector
valued trilinear functions.

DEFINITION 48.13. Let mq, mo, mg,n € N, Then
(1) VA e Rmxmaxmsxn T, e B(R™ R™2 R™s R") is defined by

TA(GZLI’ e;;m’ 6;::3) = Z Aj1j2j3/€€;cl‘
k=1
(2) VF € B(R™ R™2 R™ R"), [F] € Rm*m2xmsxn js defined by

[F]j1j2j3k = [F<€;‘71117 e;’;z’ egg)] ¢ 67]?:'
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For the reader who, in (1) of Definition 48.13, would prefer to see a
general formula for F(p!, p?, p*), we have:
For all my, mo, m3 € N, for all A e R™m1xm2xms

Vpl e R™, Vp? e R™ Vp3 e R™3,
TA(p D’ p Z pjlpjgpqu] Ajijajakers

Ji ]27]37
and, in the sum, j; ranges over [1..mq], jo ranges [1..ms] and js over
[1..m3], k over [1..n]; the sum has mymgomgn terms.

REMARK 48.14. Let my,ma,m3,n € N. Then the two maps

A — Ty
Rmxm2xmaxn PN B(Rm17Rm27Rm37Rn)
[F] - F

are both linear, and they are inverses of one another.
Proof. Unassigned HW. O

By Remark 48.7, for all my, mo, m3,n € N, the two vector spaces
Rrmxmaxmsxn gnd B(R™, R™2 R™3 R™) are isomorphic to one another,
and, in fact, Remark 48.2 displays isomorphisms in each direction.

We’ve been doing trilinear. Next: general multilinear functions.

DEFINITION 48.15. Let d € N. Let Vi,...,Vy be vector spaces.
Let X be a vector space. Then M3(Vy,...,Vy, X) denotes the set of all
F:Vi---Vy; — X such that
(1) Yoge Vo, ..., Yuge Vy, F(e vy, ... ,u4) € L(V}, X) and
............ and
(d) Vore Vi, ..., Yog1€ Va1, Flug,...,v4-1,0)€ L(Vy, X).

In Definition 48.15, Yc € [1..d], Condition (c) is expressed by saying
that F'is “linear in its cth variable”. Conditions (1), ..., (d) together
are expressed by saying that F'is “multilinear” or “d-multilinear”.

Let d € N. Let Vi,...,V; be vector spaces. Let X be a vector
space. Then X"1**V4 has a standard vector space structure, and we
leave it as an unassigned exercise to verify that M4(Vy,...,Vy, X) is a
vector subspace of XV1**Va That is, we have: both ( a sum of two
multilinear maps is again multilinear ) AND ( a scalar multiple of a
multilinear map is again multilinear ).

DEFINITION 48.16. Let d € N. Let mq,...,mg € R. Then
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(1) VA e Rmxxma M e MYR™ ... R™ R) is defined by
M (e ey = A

g1 0 Vg JiJa-

(2) VF € B(R™,... ,R™ R), [F] e R™>*"*"d js defined by

[Fljy5, = F(el, ... el).

g1 Ja
For the reader who, in (1) of Definition 48.16 would prefer to see a

general formula for F(p, ..., p%), we have:
For all d € N, for all mq,...,mg € N, for all A e R™1*xmd,

vpte R™, ..., VpteR™d,
(1 d 1 d
MA@ ) = D DA
and, in the sum, j; ranges over [1..my], ..., jq over [1..my]; the sum

has mq - - - my terms.

REMARK 48.17. Let de N. Let mq,...,mge N. Then

A — Mi
R % xma > B(R™,...,R™ R)
[F] A F

are both linear, and they are inverses of one another.
Proof. Unassigned HW. O

By Remark 48.7, for all d € N, for all mq,...,mgq € N, the two
vector spaces R > *™d and B(R™! ... R™d R) are isomorphic to one
another. Remark 48.7 displays isomorphisms in each direction.

We've been doing multilinear functionals. Finally, let’s approach
vector valued multilinear functions.

DEFINITION 48.18. Let de N, my,....myeN, neN. Then
(1) VA e Rmuxxmaxn - Nfd e BR™ . R™ R") is defined by

n
d( mi md — el
My(eit, ... ef?) = ZAh...Jdkek.
k=1

(2) VF € B(R™ ... ,R™ R™) [F] e Rm™>*xmaxn js defined by

[F]jr"jdk = [F(exl> s ’e;{:d)] * e
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For the reader who, in (1) of Definition 48.18 would prefer to see a
general formula for F(p, ..., p?), we have:
For all d € N, for all mq,...,mg € N, for all A e R™1*xmMd,

vplte R™, ..., Vp?eR™,
M@, . .., pY = Z pgll deAjl akCh s
Jlsees jd?k
and, in the sum, j; ranges over [l..mq], ..., jq over [l..mgy], k over

[1..n]; the sum has my - - - mgn terms.

REMARK 48.19. Let de N. Let my,...,mge N. Let n e N. Then

A — Mj‘l
lex---xmdxn PN B(le,...,Rmd,Rn)
[F] — F

are both linear, and they are inverses of one another.
Proof. Unassigned HW. U

By Remark 48.19, for all d € N, for all mq,...,mg,n € N, the two
vector spaces R"1*xmaxn and B(R™ ... R™ R") are isomorphic

to one another. Remark 48.19 displays isomorphisms in each direction.

49. CLAss 23 ON 17 APRIL 2018, Tu oF WEEK 13
Assigned HW#13-1, HW#13-2 and HW#13-3.

THEOREM 49.1. Let V and W be finite dimensional normed vector
spaces. Let Z be a normed vector space. Let » € B(V,W,Z). Then:
3K > 0 such that, Vo e V, Yw e W, |vxw|z < K -|vly - |w|lw.

Proof. Let m := dim V', n := dimW. Choose B € OB(V), C € OB(W).
Then Lg : R™ — V and L¢ : R® — W are vector space isomorphisms.
Let Vi := (R™,| ®|;n1), Wi := (R",| e |,1). By (1) of Theorem 46.1,
L_1 V — Vi and L_1 W — W are both bounded. We define
S:=(Lg z v, and T = (Lg )y, - Then L' 0V — Vy is S-bounded
and L : W — W; is T-bounded.

Deﬁne ®e B(Vi,W1,Z) by x®y = [Lp(x)]*[Lo(y)]. By HW#13-2,
choose K = 0 such that, Vo € Vi, Vy € Wy, e ®ylz < K1 -|z|v; - [y|w, -
Let K := K1ST. Want: Yo e V Yw e W, jvsw|z < K- |v|y - |w|w. Let
veV and we W be given. We wish to show: |v=w|z < K-|v]y - |w|w.
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Let z := L' (v) and let y := L' (w). Then
@y = [Lp@)] =« [Lely)] = vxw

Since L' : V — Vj is S-bounded, we get |L3'(v)|y, < S|v|y. Since
Lg': W — Wy is T-bounded, we get |L;' (w)|w, < T|w|w. Then

vrwly = |lr®@ylz < Ki-|zv; - |yl

K1 Ly (o)l - | Lgt (w)lw,y

K-Sy T |wlw

K- foly - wlw,

as desired. 0
Assigned HW#13-4.

N

DEFINITION 49.2. Let S,V,W, Z be vector spaces. = € B(V,W, Z).
Let f:S -->V and let g: S --» W. Then f;g 2 S --» Z is defined

by (f = 9)(@) = [f(2)] = [g(=)]
We will sometimes omit the “S” in

that, in Definition 49.2, dom|[f : g] = (dom[f]) ﬂ (dom][g]).

[k
*

7 provided S is clear. Note

THEOREM 49.3. Let S,V, W, Z be finite dimensional vector spaces.

Let « € B(V,W, Z). Then [O(S, V)] «[3(S,W)] < 3(S, Z).

s
Proof. We wish to show: Vo € @(S, V), VB8 € o(S, W), we have:
a;ﬁ €3(8,7). Let a € O(S,V) and B € (S, W) be given. We wish
to show: a;ﬁ €o(S,2).

Choose | o |s € N(S) and | e |y, € N(V) and | e |y € N (V). Choose
| o]l € N(Z). By Theorem 49.1, choose K > 0 such that, Vv € V|
Ywe W, |[vxw| < K|y - |wlw. Let | o]z := | o|]]/[/ + 1]. Then:
Yo eV, Ywe W, we have |v = w|z < |v|v - |w|w.

Since a € O(S, V), choose U € Ng(0g) such that

U < dom|«] and sup |a, (U) |y < 0.
Since dom[a] 2 U € Ns(0s), we conclude that dom[a] € Ng(0g).

Since 8 € 6(S, W), we know

L dom[ﬁ] € NS(Os),
e 5(0s) = Ow and
e 3:5 --» W is continuous at Og.
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Let v := a =5 3. We wish to show: « € o(S, Z). We wish to show:

e dom[v] € Ns(0s),
e 7(0s) =0z and
e v: S5 --» 7 is continuous at Og.

Because

dom|a] € Ns(0s) and dom|f] € N5(0g) and
dom[y] = (dom[a]) ~ (dom[5]),

it follows that dom[vy] € Ng(0g). Also, we have
10s) = [a(0s)]«[8(0s)] = [a(0g)]=[Ow] = Oz

It remains to show: v : S --» Z is continuous at 0g. We wish to show:
Ve > 0, 36 > 0 such that, Yz € dom[~v],

[lzls <d] = [h)lz<e]

Let € > 0 be given. We wish to show: 36 > 0 such that, Vo € dom[7y],

[lzls <d] = [h@)lz<el

Since U € Ns(0g) and since Bg(0g) is a neighborhood base at 0g in S,
choose p > 0 such that Bg(0g,p) < U. Let M := (sup |a(U)|v) + 1.
Then M > 0 and |, (U)|y < M. Since 5 : S --» W is continuous at Og
and since 3(0g) = Ow, choose 7 > 0 such that, for all z € dom[f],

[lzls <71 = [IA)lw <e/M].
Let ¢ := min{p, 7}. We wish to show: Vz € dom[y],

[lzls <d] = [h@)lz<el
Let x € dom[~] be given. We wish to show:

[lzls <d] = [h@)lz<e]

Assume: |z|s < 6. We wish to show: |y(z)|z < e.

Recall: dom[y] = (dom[a]) n (dom[S]). So, since x € dom|y], we
get © € dom[a] and x € dom[/].

Since |z|g < 0 < p, we get x € Bg(0g, p). So, since Bs(0g,p) < U,
we get x € U. So, since x € dom[a], we get a(r) € a,(U). Then
la(x)|yv € |ax(U)]y < M. Since x € dom[S] and |z|s < § < T, by choice
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of 7, we see that |5(z)|w < ¢/M. Let v := a(x) and let w := S(z).
Then |v = w|z < |v]y - |w|w. Then

N(@lz = [{axs B)(@)|z = |la(@)] « [B(0)]]|z

= |vxwlz < |y - |Jwlw

= la(@)lv - [B()|w
< M- |e/M] = ¢,

as desired. 0

COROLLARY 49.4. Let SLV’ W, Z be finite dimensional vector spaces.
Let ®e B(W,V, Z). Then [O(S,W)] (?[5(8, V)] < o(S,2).

Proof. Let V; := W and Wj := V. By Theorem 49.3 (with V' replaced
by Vi, W by W; and = by ®), we have
O V)] © [Bsw)] = 8(S.2).

Then [O(S, W)] ®[5(5,V)] = [O(S, )] ®[5(5.W)] €8(5,2). O

COROLLARY 49.5. Let S, V, W, Z be finite dimensional vector spaces.
Let = € B(V,W, Z). Then [5(S,V)] +[O(S,W)] < 5(S. 2).

Proof. Define ® € B(W,V, Z) by w®v = v+ w. Then

[B(S. V)] = [O(S,W)] = [O(S.W)] ® [o(5, V)]

By Corollary 49.4, we have [O(S,W)] ®[5(5,V)] € 5(5, Z). Then
[5(5.V)] = [O(5.W)] = [O(5,W)] @ ® [0(5. V)] < 8(5, 2). O

COROLLARY 49.6. Let S,V, W, Z be finite dimensional vector spaces.
Let =€ B(V,W,Z). Then [0(S,V)] = [5(5, W) < o(S,Z).
Proof. By HW#12-4, 3(S, W) < O(S, W). By Corollary 49.5,
BV« [O(SW)] = 8(S,2).
Then [3(S, V)] +5 [3(S, W)] < [5(S, V)] 5 [O(S,W)] < &(5,2). O
Assigned HW#13-5.

THEOREM 49.7. Let S,V, W, Z be finite dimensional vector spaces.
Let =€ B(V,W,Z). Let p,q = 0. Then
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(1) [0,(S. V)] % [Og(SW)] S Opi(S,2)
(2) [O(S, V)] % [84(S. V)] S 8yeg(S,2)
(3) [B:(S. V)] 2 [Ou(S.W)] S 8pue(S.2)  and
(4) [Bp(S. V)] % [B(S.W)] S 8peglS, 2)
Proof. Choose | e | e N(S). ~ ~ ~
Proof of (1): By HW#13-5, [O(S, V)] «[O(S,W)] < O(S, Z). Then

[O,(S, V)] = [Oy(8,W)]
= [([+ /)OS V)] 2 [ ]9 (O(S.W))]
=0wmor><[wvn[aawm
S (|- (0(5.2)) = Opy(S.2),
as desired. End of proof of (1). ~
Proof of (2): By Theorem 49.3, [O(S, V)] +[5(S, W)] € 8(S, Z). Then
[O,(S, V)] % [84(S5.W)]
= ([ 1) - (OS] 2 [(]+ ) - (B(S, W))]
= (le)-(® H([@Vﬂ « [5(s.W)])
S (|- (3(5.2)) = Byu(S. 2),

as desired. End of proof of (2).
Proof of (3): By Corollary 49.5, [06(S, V)] ;[O(S, W)l < o(S, Z). Then

[8,(S, V)] * [Oy(S, W)]

= (o) @S V)] 2 [(]7)- (OS5, W))]
= (el (I 19 ([8(5, V)] = [O(S.W)])
Z)

C (JofPT)-(8(S,2)) = &py(S,2),

as desired. End of proof of (3).
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Proof of (4): By Corollary 49.6, [0(S, V)] ;[5(5, W)] < &(S,Z). Then
[0p(S, V)] % [04(S, W)]
= [([[")- (@5, V)] = [([ «]7) - (a(S, W))]
= ([«[")-([e]")-([2(5, V)] = [o(5,W)])
S (o7 (0(5,2)) = OpsqlS, 2),
as desired. End of proof of (4). O
We also recall the main results from Theorem 47.15:

THEOREM 49.8. Let V,W, X be finite dimensional vector spaces.
Let p,q > 0. Then

(5

~ A~

) [0,(W. X)] o [O,(V.W)] <

(6) [O,(W, X)] o [5,(V.W)] <= &

(7) [0g(W, X)] o [O,(V\W)] = 8,(V,X)  and
(8) [0(W, X)] o [8,(V,W)] < ©

Proof. Pf of (5): Follows from (5) of Theorem 47.15. End of pf of (5).
Pf of (6): Follows from (6) of Theorem 47.15. End of pf of (6).
Pf of (7): Follows from (7) of Theorem 47.15. End of pf of (7).
Pf of (8): Follows from (8) of Theorem 47.15. End of pf of (8). O

HW+#13-1 asserts that every linear function has linear order. We
next prove (in Theorem 49.9, below) that a function that is both linear
and sublinear must be identically zero.

Let S be a set and let W be a vector space. We define Ogy := C’gw.
Then Ogy : S — W. For all x € S, we have Ogy (z) = Oy. Recall that
W* has a standard vector space structure. Then Ogy = Oy s. That is,
Ogyy is the zero element of W5,

Let V and W be vector spaces. Then Oyw = Orv,w).

Let V and W be finite dimensional vector spaces. Then, for all p > 0,
we have both Oy = O@,(V,W) and Oyw = O, (v,w)-

THEOREM 49.9. Let V and W be finite dimensional vector spaces.
Then [L(V,W)] n [61(V,W)] = {Ovw}.

Proof. Since [L(V,W)] n [01(V,W)] 2 {Oyw}, it suffices to prove:
[L(V,W)] n [Ol(V W)] < {Oyw}. We wish to show:

VT e [LV, W) n[ou(V,IV)], T e{O0yw}.
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Given VT € [L(V,W)] n [01(V,W)]. Want: T € {Oyw }.

We have: both T e L(V,W) and T € 6,(V,W). We wish to show:
T = Oyy. Assume that T # Oy We aim for a contradiction.

Since T" # Oy, choose x € V s.t. Tx # Oy. Let y := Tx. Then
y # Op. Since Tx # Oy, it follows that x # Oy.

Choose | e |y € N (V) and | e |y € N(W). Since = # Oy, |z|y > 0.
Since y # Ow, |ylw > 0. Let € := [|y|w]/[|z|v]- Then € > 0.

Since T € O1(V,W) = [| e |v] - [0(V, W], choose a € o(V, W) such
that 7= | e |, - . We have

dom|[T] = (dom[|°|v]) N (dom[ )
= N (dom[a]) = dom[a].

Since T'e L(V, W), we get dom[T| = V.
For all s € R, we have both

T(sx) = s-[Tz] = sy and
T(sz) = (|°|v a)(sz)
= [szly - [a(sz)]
= [s] - [zlv - [als2)],
SO
T(sz)lw = [sylw =Is|-|lylw  and
T(sz)lw = Is|-|zlv - [alsz)lw,
so |s| - lylw = |s| - |z|v - |a(sz)|w. Then, Vs € Ry, since |s| # 0, we get

ylw = lzlv - la(sz)|w, so [a(sz)lw = &.
Because a € o(V, W), it follows both that «(0y) = Oy and that
a:V --» W is continuous at Oy. Then choose § > 0 s.t., Yv € dom[«/],

[y <d] = [la()w<e]

Let s :==6/(2- |z|y). Since § > 0 and |z|y > 0, we get s > 0. Then
s # 0, so |a(sz)|w = €. Let v := sz. Then v € V = dom[7T'] = dom|[«]
and |v|y = s |z|y = §/2 < 9, so, by choice of 0, we get |a(v)|w < e.
Then € = |a(sz)|w = |a(v)|w < ¢, so e < e. Contradiction. O

50. CLAss 24 ON 19 ApRIL 2018, TH oF WEEK 13

DEFINITION 50.1. Let V and W be vector spaces. Then we define
(1) B(V,W):= B(V,V. W),
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(2) T(V,W):=T(V,V,V, W) and

(3) Vde N, MYV, W) := MUV, ..., V,W).
DEFINITION 50.2. Let V and W be vector spaces, let d € N and let
Fe MYV,W). Then we define Ap : V — W by Ap(u) = Fl(u,...,u).

In Definition 50.2, the mapping Ar : V' — W is called the diagonal
restriction of F.
We work three examples: First, let

1 4
A = .
5]
Let G := Ba. Then G € B(R?,R* R) = B(R? R), and so we have
G :R? xR? - R. For all p,q,z,y € R, we have

G((p.q), (z,y)) = pz+4py + 3qy.
Let Q := Ag. Then Q : R? — R. For all z,y € R, we have
Qr,y) = G((zy), (z,y)) = 2° + day + 3y°.

Note that ) : R? — R is a homogeneous quadratic polynomial. Second,

L 10
o [P

For all j, k € [1..2], we have A% = Ay;. Let G := Ba:. We leave it as
an exercise to verify, for all p,q,z,y € R, we have

Gi((.9), (zy)) = G((=9), (p.9)

Thus, for all u,v € R?, we have Gy (u,v) = G(v,u). Then, for all u € R?
we have Ag, (u) = Gy (u,u) = G(u,u) = Ag(u). Then Ag, = Ag = Q.
Third, the symmetrization of A is C' := (A + A")/2. We compute

the transpose of A is

1 2
o - [12]
For all j, k € [1..2], Cj = (Ajx + Akj)/2. Then, for all j,k € [1..2],
we get Cy; = Cji. This is expressed by saying that C' is a symmetric

matrix. Let H := Be. Then H = (Ba + Bat)/2 = (G + G1)/2. Then,
for all u,v € R?, we have
(G, v)] + [, u)]

H(u,v) = i




NOTES 1 367

Then, for all u,v € R?, we bet H(v,u) = H(u,v). This is expressed
by saying that H is a symmetric bilinear function. We have Ay =
(Ag+Ag,)/2 = (Q+Q)/2 = Q. Thus the three matrices A, A" and C
give rise to three different bilinear functions G, Gy and H, but those
bilinear functions all give rise to the same quadratic polynomial Q).

Generally, for any quadratic polynomial ) : R? — R, there are many
bilinear functions F' such that () = Bp, but exactly one of them is
symmetric. This generalizes to higher dimensions, and also, to cubics,
quartics and higher degree. We explain those generalizations next. We
start by defining what it means for a function P : V. — W to be a
(homogeneous) polynomial.

DEFINITION 50.3. Let V and W be vector spaces. Then we define
(0) C(V,W) :={CY |z e W},
(07) POV, W) == C(V. W),
(1) PV, W) := L(V,W),

(2) QV. W) :={Ar|F e B(V,IW)},

3) K(V,W):={Ap|FeT(V,W)},

(x) Vd € [2..00), PHV, W) := {Ap|F e M4V, W)},

Let V and W be vector spaces. Then
(0) PY(V,W) = C(V, W),
(1) PLV,W) = L(V, W),
(2) P2(V,W) = Q(V, W),
(3) P2(V,W) = K(V, W)

Also, for all F': V — W,

(0) F is constant means F € C(V, W),

(1) F is (homogeneous) linear means F' € L(V, W),

(2) Fis (homogeneous) quadratic means F € Q(V, W),

(3) F'is (homogeneous) cubic means F € K(V, W),

(*) Vd € Ny, F is (homogeneous) of degree d means F € PY(V,W).

Let V and W be vector spaces, d € [2..c0), F' € PYV,W). Then
there are many F € MYV, W) such that Ar = P, but only one such
Fis symmetric, a term that we define next.

DEFINITION 50.4. Let V and W be vector spaces. Then

(1) SM*Y(V,W) := L(V, W),
(2) SB(V,W) :={Fe B(V,W)|Vz,yeV, F(x,y) = F(y, )},
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(3) ST(V,W) :={F e B(V,W)|Vx,y,z€V,
F(x,y,z (y,z,x2) = F(z,z,y) =
Fly,2,2) = F(z, 2,y) = F(z,,7) }
(x) Vd € [2..00), SMYV, W) :=
{Fe MYV,W)|Vxy,...,2q€V, Vo :[l.d] —> [1..d],
F(xl,...,xd) ZF(ZEU(l),...,J}J(d)) }

)=F
)= F

Let V and W be vector spaces. Then SM?(V, W) = SB(V,W) and
SM3(V,W) = ST(V,W). Also, we define symmetric multilinar
function as follows:

(2) VF € B(V,W), F is symmetric means F' € SB(V, W),
(3) VE e T(V,W), F is symmetric means F' € ST(V, W),
() Vd € [2..00), VF € MYV, W),

F is symmetric means F' € SM4(V, W),

Let V and W be vector spaces and let d € [2..00). The mapping
F— Ap : MY (VW) — PYV,W) is linear and surjective. It is a
theorem that the restriction of that mapping to SM?(V, W) is a vector
space isomorphism. That is, F' +— Ap : SMYV, W) — P4V, W) is a
vector space isomorphism. Let Ty, : P4V, W) — SM(V, W) be the
inverse isomorphism. Then, for all P € P4(V, W), by the polarization
of P we mean I1¢,(P). Therefore, the polarization of

a homogeneous polynomial of degree d from V to W

is a symmetric d-multilinear function on V¢ taking values in W. Po-
larization allows us to convert

questions about homogeneous polynomials

into questions about symmetric multilinear algebra.

Let V' be a vector space and d € [2..00). Then Fvector space Z
(called the dth symmetric power of V') such that, VYvector space W,
Jan isomorphism &%, : SM4(V, W) <> L(Z,W). Since SM is on one
side and L is on the other, this isomorphism allows us to convert

questions about symmetric multilinear algebra

into questions about linear algebra.

THE BIG IDEA: Let V and W be vector spaces, let f : V --» W,
let p € V and let d € N. We attempt to approximate f near p
by a polynomial, as follows. Recall (Definition 25.21): for all h € V,

fr(h) = [f(p + k)] — [f(p)]. Approximating f near p is equivalent
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to approximating pr near Oy. Assume that we are able to find ho-
mogeneous polynomials P, € PL{(V,W),..., Py e PYV,W) such that
Sl =P —--—Pye0y(V,W). As P, € P/(V,IW) = L(V,W), use
linear algebra to study P;. For each j € [2..d], let Fj := II,,(P;).
For each j € [2..d], let Z; be the jth symmetric power of V' and let
L; == &, (F;). As L; € L(Z;,W), use linear algebra to study L;.
Finally, the remainder f — P, —--- — P, is sub-d. Assuming d is very
large, we try to show that, in some sense (to be determined later),
any sub-d function is small, and can be neglected. The upshot of this
discussion: LINEAR ALGEBRA IS THE STUDY OF EVERYTHING!
We now begin to implement this big idea, step by step.

REMARK 50.5. Let V and W be finite dimensional vector spaces
and let € O(V,W). Then dom|a] € Ny (Oy).

Proof. Since v € O(V, W), choose U € Ny (0y) such that U < doml[al].
Since dom[a] 2 U € Ny (0y), it follows that dom[a] € Ny (0y). O

Let V and W be finite dimensional vector spaces and let p > 0. Then
5,(V,W) < O,(V,W) < O(V,W). So, by Remark 50.5, we see
o Vae0,(V,W), dom[a]e Ny(0y) and
e Vae O,(V,W), dom[a] e Ny (0y).
REMARK 50.6. Let V and W be vector spaces, let f -V --+ W and
let pe V. Assume that dom[f] ¢ Ny(p). Then dom[f]] ¢ Ny (0v).

Proof. Unassigned HW. U

DEFINITION 50.7. Let V and W be finite dimensional vector spaces,
let f:V —-» W and let pe V. Then we define

LINSWf = {LeL(V,W)| [l —L e &(V,W)}.

In Definition 50.7, when V' and W are clear, we will omit them from
the notation, and write LINS, f instead of LINSX’W f. The functions L
in LINS, f are called linearizations of f at p. They are those linear
functions that approximate pr at Oy, in the sense that the remainder,
fI — L, is sublinear. We'll show in a moment (Remark 50.12) that, if
a linearization exists, then it’s unique.

There’s a strong connection between differentiation and linearization.
For example, recall that the absolute value function |e | : R — R is
NOT differentiable at 0. Unassigned HW: Let | e | : R — R denote the
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absolute value function. Show that LINS,| e | = (7, i.e. show that | e |
has NO linearization at 0.

For functions f : R — R, if L is a linearization of f at a point
p € R, then there’s a tangent line 7" to the graph of f at (p, f(p)),
and the graph of L is the line passing through the origin (0,0) that is
parallel to T'. We'll eventually see that this always works, provided the
domain of f is a neighborhood of p. However, if the domain is not a
neighborhood, then we may be able to find a tangent line, even though
no linearization exists:

Let Xo :={1,1/2,1/3,...} u {0}, let fo := (idr)|Xo : Xo — R and
let pg := 0. The graph of fy consists of the origin (0,0), together
with countably many points approaching the origin. Then we have
14(po) = 1, and, also, dom[fy] = Xo ¢ Nr(po). So the line y = z is,
in some sense, a tangent line to fy at (0,0), even though the domain
of fo is not a neighborhood of pg. Because dom|[fo] ¢ Nr(po), by the
next remark (Remark 50.9), we see that LINSyfy = ¢, i.e., there is
NO linearization to fy at po.

REMARK 50.8. Let V and W be finite dimensional vector spaces,
f:V-—-—sWandpeV. Then:

[ dom[fleNv(p)] =  [dom[f,]eNy(Ov)].
Proof. Unassigned HW. U

REMARK 50.9. Let V and W be finite dimensional vector spaces,
[:V-->WandpeV. Assume LINS,f # . Then dom[f] € Ny (p).

Proof. Choose L € LINS, f. Then L € L(V,W) and f] — L € &,(V,W).
Since L € L(V,W), we have dom[L] = V. Let R := f — L. Then
dom[R] = (dom[f)) n (dom[L]). So, since dom[f)] < V = dom[L],
we conclude that dom[R] = dom[f;].

We have R = fg — L e 01(V,W), so, by definition of &;, we see that
dom[R] € Ny(0y). Then dom[f]] = dom[R] € Ny (Oy). Then, by <
of Remark 50.8, dom[f] € Ny (p). O

Let X be a topological space, let Y be a set, let o, 5 : X --» Y and
let S € X. Recall that & =  on S means: Yz € S, a(z) = 5(z).

DEFINITION 50.10. Let X be a topological space, let Y be a set,
let a,: X --»Y and let pe X. Then o = 5 near p means: there
exists U € Nx(p) such that o = 3 on U.
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FACT 50.11. Let V and W be finite dimensional vector spaces and let
a,f:V --» W. Assume that o« = 8 near Oy, and that o € o1(V,W).
Then we have: € o1(V,W).

Proof. Unassigned HW. I may assign this next week. 0

Let p = 0. Unassigned HW: Show that Fact 50.11 continues to be
true if 0; is replaced by 0,. Unassigned HW: Show that Fact 50.11
continues to be true if 0, is replaced by O,.

REMARK 50.12. Let V and W be finite dimensional vector spaces,
let f:V -——»W and let pe V. Then #(LINS, f) < 1.

Proof. We wish to show:
VL, M € LINS,f, L=DM.

Let L, M € LINS, f be given. We wish to show: L = M.

By Lemma 50.9, we have dom|[ f] € Ny (p). So, by = of Remark 50.8,
we have dom[f7] € Ny (Oy). Let U := dom[f,']. Then U € Ny (0y).

Let R:= fl' —Land S := f — M. Then, as L, M € LINS, f, we see
that R, S € 01(V,W). So, since &1(V, W) is a vector space of functions,
we get S — R € 01(V,W). By assumption, L, M € L(V,W), So, since
L(V,W) is a vector space of functions, we get L — M € L(V,W). We
have S—R = L—M on U, so, since U € Ny (0y), we get S— R = L—M
near Oy. So, since S — R € 01(V,W), by Lemma 50.11, we see that
L—M € 6,(V,W). By Theorem 49.9, [L(V, W)]|n[01(V,W)] = {Oyw }.
So, since L — M € L(V,W) and since L — M € &;(V, W), we conclude
that L — M = Oyyw. Then L = M. ]

Let A :=[6] € R*!. Then A is a 1 x 1 matrix, and the only entry
of A is 6. That entry of A is A;1, and so we have: A;; = 6. To get at
the unique entry of a 1 x 1 matrix, we make the following definition:

DEFINITION 50.13. For any set S, for any A € SY*1, we define
ENT S := SH

Let A :=[6] € R™! and let

. 75 3 2x3
B.—[2 4 G]ER .

Then ENT A = An = 6, while ENT B = ® and BH =17.

DEFINITION 50.14. Let V' and W be finite dimensional vector
spaces, let f: D --» W and let pe V. Then D,f := ELT(LINS,f).
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In Definition 50.14, we have D,f € L(V,W), and D, f is called the
total derivative of f at p.

Let V and W be finite dimensional vector spaces, let f : D --» W
and let p e V. By Remark 50.12, either f has no linearization at p, or
it has exactly one. If it has none, then D,f = ®. If there is exactly
one linearization L of f at p, then:

[D,f=L] and [LeL(V,W)] and [f —LeO(V,W)].

Let m € N, let p € R™, let W be a finite dimensional vector space
and let f : R™ --» W. Then the partial derivatives of f at p are
the vectors: (01f)(p),. .., (0mf)(p) € W. The matrix of the total de-
rivative is: [D,f] € R™*"™. The rows of this matrix are the vectors:
[Dpflet,---s[Dpflem € W. We will see later that, for all j € [1..m],
we have: [D,f].; = (0;f)(p). In this sense, the total derivative is
assembled from the partial derivatives.

REMARK 50.15. Let V and W be finite dimensional vector spaces,
f:D-->W andpeV. Assume D,f # ®. Then dom[f] € Ny(p).

Proof. Since ELT(LINS,f) = D,f # ®, we see that LINS,f # .
Then, by Remark 50.9, dom|[f] € Ny (p). O

Let X() = {1, 1/2, 1/3, .. }U{O}, let fo = (ldR)|X0 : X() — R and let
po := 0. Then dom|[ fo] ¢ Nv(po), so, by Remark 50.15, D, fo = ®. On
the other hand, we have fi(po) = 1. So, in this case, there’s no clear
connection between D, fo and f{(po). We will eventually show that
this disconnect is exactly caused by the fact that dom|[fo] ¢ Ny (po).

Let’s next look at an example where the domain is a neighborhood
of the point: Define f : R — R by f(z) = 2% Let p := 3. Then
f'(p) = 6. We wish to compute D, f, and to compare it to f'(p). We
begin by computing f!: For all h € R, we have

fp () = [fp+W]=[f)] = (p+h)*—p’

= p*+2ph+h*—p* = 2ph +h*

= 2-3-h+h* = 6h+N°
Next we try to break f; into a sum of two functions, one in L(R,R) and
the other in 0;(R,R). Define L € L(R,R) by L(h) = 6h. Define R :
R — R by R(h) = h* Then f] = L+ R and L € L(R,R). Unassigned
HW: Prove the quadratic analogue of HW#13-2. That is, prove that,
for all finite dimensional vector spaces V and W, Q(V, W) < Oy(V, W).
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In particular, Q(R,R)  Oy(R,R). Recall: B(R,R) = B(R,R,R) is
the set of bilinear maps R x R — R. As R is the diagonal restriction
of the bilinear mapping

(t,y) = 62y € B(R,R),

we get R € Q(R,R). Then R € Q(R,R) € O5(R,R) < 3;(R, R). Since
L e L(R,R) and f] — L = R € 6;(R,R), we get D,f = L. Then
[Dpf] = [L] = [6] e R, so ENT[D, f] = 6 = f'(p).
Let f: R --» R and let p € R. We next pursue two goals:
(1) Show: f'(p) =* ENT[D,f].
(2) Show: {dom[f] € Ne(p)) = (/'(p) = ENT[D,/]).
Let Xo := {1,1/2,1/3,...} u {0}, let fo := (idr)|Xo : Xo — R and
let po := 0. Keep in mind that f{(po) = 1 # ® = ENT[D,, fo]. So, the
requirement, in (2), that dom[f] € Mr(p) cannot be eliminated.
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Unassigned HW: Let V' be a normed vector space, let W be a vector
space, let f:V --» W and let p € V. Show:

[dom[f]e Nv(p)] = [dom[f,]eNy(Ov) ]

Hint: For =, use the fact that dom[f, ] = (dom[f]) — p. For <, use
the fact that dom[f] = (dom[f]]) + p.

Assigned HW#14-1, HW#14-2, HW#14-3 and HW#14-4.

Unassigned HW: Let V', W be finite dimensional vector spaces, let
a,B:V --» W and let p = 0. Assume both that a = § near 0y and
that o € O,(V, W). Show that 5 e O,(V,W).

DEFINITION 51.1. For all VSsV and W, let Ly W = L(V,W).

Let V and W be vector spaces, let G € Ly Ly LyW and let x,y,z € V.
We have LyLyLyW = L(V,L(V, L(V,W))). Since G € Ly Ly LyW
and x € V, we get G(z) € Ly LyW. Since G(x) € Ly LyW and y € V,
we get (G(x))(y) € LyW. Since (G(x))(y) € LyW and z € V, we get
((G(2))(y))(z) € W. Note: In the notation we will set up below, we
will the simpler G(x)(y)(z) to mean ((G(z))(y))(2).

DEFINITION 51.2. Let V and W be vector spaces and let k € N.
Then LYW := Ly -+ LyW, with, on the RHS, Ly repeated k times.
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DEFINITION 51.3. Let V and W be vector spaces and let k € N.
Let Ge LEW and let xy,... 2, € V. Then we define

G(a1) -~ - (k)

(- (G2))(22)) - - ) (k)
Recall that, for any vector spaces V' and W, we defined
M5V, W) e ME(V, .. VW),
with, on the RHS, V repeated k times.

REMARK 51.4. Let V and W be vector spaces, k € N. Define

O MHV,W) - LEW  and U LEW — MRV, W)

(O(F) (1) - (zx) = Fl(oq,...,zx) and
(V(G))(x1,...,x,) = G(xg)--- ().

Then ® and VU are both linear, and they are inverses of one another.

Proof. Unassigned HW. O

By Remark 51.4 Vvector spaces V and W, Yk € N, the two related
vector spaces M*(V, W) and LYW are isomorphic to one another. Re-
mark 51.4 displays isomorphisms in each direction.

DEFINITION 51.5. Let V and W be finite dimensional vector spaces.
Let f:V -——» W. Then Df : V. — Ly W is defined by (Df)(p) = D,f.

DEFINITION 51.6. LetV and W be finite dimensional vector spaces.
Let f:V --» W. Then

(1) Df == f,
(2) DIf:=Df and
(3) Vk e [2..00), D¥f:=D---Df, with D is repeated k times.
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In Definition 51.6, we have

DX = f :V = W,

DIf = Df : V. — LyW,
D*f V. — LyLyW,
D}f : V. — LyLyLyW,
Dif =V - LyW,
DEf =V — LW,

DEFINITION 51.7. LetV and W be finite dimensional vector spaces.
Let f:V --» W. Then

(1) D°f == f,

(2) D'f :=Df and

(3) Vk e [2..c0), D*f:V — M*¥V, W) is defined by
(DEA) )1, a) = (DEF)P) (@) - (zn).

DEFINITION 51.8. Let V and W be finite dimensional vector spaces,
letpeV and let ke Ny. Let f:V -=» W. Then Dk f := (D*f)(p).

Let V and W be fdVSs and let pe V. Let f:V --» W. Note that
Dgf = f(p) € W and that D;f = (Df)(p) = D,f € LyW.

Let V and W be fdVSs, let pe V', let k € Ny and let uq,...,up € V.
Let f:V --» W. Then

(D;I;f)(uh s 7uk) = ((Dkf)(p))(ulv SR 7uk>
= ((DEF) ) () -+ ().
Also, it turns out that
(D’;fxul’ SR 7uk) = (am T aukf)(p)
Also, it turns out that, for any o : [1..k] <> [1..k],
(D];f)(ula s 7uk) = (auo'(l) U a“o'(k)f)(p)'

REMARK 51.9. Let V and W be finite dimensional vector spaces,
let f,g:V ——» W, letpeV and let k € Ng. Then

[D*f=D'g] <« [D:if=Dlyg]
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Proof. Unassigned HW. O
Assigned HW#14-5.

COROLLARY 51.10. Let V and W be finite dimensional vector
spaces. Let f,g 'V --» W. Let U be an open subset of V. Assume
that f =g onU. Then Df = Dg on U.

Proof. We wish to show: Vp e U, (Df)(p) = (Dg)(p). Let p € U be
given. We wish to show: (Df)(p) = (Dg)(p)-

Let S := LINS,f and T" := LINS,g. By HW#14-5, S < T. By
HW#14-5 (with f and g interchanged), T < S. AsS<cT < S, S=T.
Then (Df)(p) = D,f = ELT S = ELTT = D,g = (Dg)(p). O

Openness of U in Corollary 51.10 is needed: Define f,g: R — R by
fle) =lz]  and  g(z) = 2.
Then f = g on [0,20), but (Df)(0) = ® # (Dg)(0).

COROLLARY 51.11. Let V and W be finite dimensional vector
spaces. Let f,g :V --» W. Let U be an open subset of V. Assume
that f = g on U. Then: Vke N, D*f = D¥qg on U.

Proof. For all k € N, define P, := [D¥f = D¥gon U]. We wish
to show: Vk € N, P;. By Corollary 51.10, P;. By the Principle of Math-
ematical Induction, we want: Vk € N, (P, = Py,1). Let k € N be given.
We want to show: P, = P,,1. Assume: P,. We want to show: Pj.
We know: D¥f = D¥g on U. We want: D**!1f = D*1gon U.

Since D*f = D¥Fg on U, by Remark 51.9, D¥f = D¥g on U. Then,
by Corollary 51.10, DD*f = DDFg on U. That is, Dt f = DFflg
on U. Then, by Remark 51.9, D¥*!'f = D¥*lg on U, as desired. = [

REMARK 51.12. Let V and W be finite dimensional vector spaces
and let p = 0. Then

(1) Ya e O,(V,W),  dom[a] € Ny (0y) and
(2) Va e 0,(V, W), dom[a] € Ny (0y).

Proof. Unassigned HW. O

REMARK 51.13. Let V and W be finite dimensional vector spaces.
Let f:V --» W. Then dom|Df] < IntDy f.
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Proof. We wish to show: Vp € dom[Df], p € IntDy f. Let p € dom[Df]
be given. We wish to show: p € IntDy f.

Since p € dom[Df], we get (Df)(p) # ®. Let L := D,f. Then
L= (Df)(p) # ®,so Le L(V,W). Then dom[L] = V.

Let R := f — L. Then f] = L + R and R € &,(V,W). Then, by
Remark 51.12, dom[R] < Ny (0y). We have

dom[L + R] = (dom[L]) n (dom[R]),

so, since dom[R] € V = dom|[L], we get dom[L + R] = dom[R]. Then
dom[f] = dom[L + R] = dom[R] € Ny(0Oy). Then dom[f] € Ny (p).

Let S := dom[f]. Since S € Ny (p), by HW#3-1, we get p € IntyS.
Then p € Inty (dom|[f]) = IntDy f, as desired. O

Let V' be a nonzero finite dimensional vector space. Then V' has no
open points, so, for all S < V| we have IntyS < LPyS. It follows,

for any finite dimensional vector space W, for any f : V --» W, that
IntDy f < LPDy f, so, by Remark 51.13, dom[D f] < LPDy f.

REMARK 51.14. Let V and W be finite dimensional vector spaces,
let f:V -——>»W and letpe V. Then:

[ fis continuous at p| < [ fI is continuous at Oy .

p
Proof. Unassigned HW. U

REMARK 51.15. Let V and W be finite dimensional vector spaces,
let p=0 and let a € 0,(V,W). Then a is continuous at Oy .

Proof. Since a € 0,(V,W) < &6o(V,W) = &(V, W), it follows, by (2) of
Definition 47.1, that « is continuous at Oy . U

REMARK 51.16. Let V and W be finite dimensional vector spaces,
let p>0 and let v € O, (V,W). Then « is continuous at Oy .

Proof. Since a € O,(V, W) < 3o(V, W) = 3(V, W), it follows, by (2) of
Definition 47.1, that « is continuous at Oy . [l

THEOREM 51.17. Let V and W be finite dimensional vector spaces,
let f:V -=» W and let p e dom[Df]. Then f is continuous at p.

Proof. By Remark 51.14, we wish to show: pr is continuous at Oy .
Since p € dom[Df], we get (Df)(p) # ®. Let L := D,f. Then

L = (Df)(p) # ®,so L e L(V,W). By Theorem 46.8, L : V — W

is continuous. In particular, L is continuous at Oy. Let R := fg — L.
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Then R € 6,(V, W), so, by Remark 51.15, that R is continuous at Oy .
As L and R are both continuous at Oy, L + R is continuous at Oy. So,
since pr = L + R, we see that fg is continuous at Oy, as desired. [

Let V and W be finite dimensional vector spaces and f : V --» W.
Then, by Theorem 51.17, we have: dom[D f]| < dct[f].

LEMMA 51.18. Let V and W be finite dimensional vector spaces,
Le L(V,W), p,ueV. Assume: V is nonzero. Then (0,L)(p) = Lu.

Proof. For all h € R, we have
[L(p + hu)] — [Lp]
h
[Lp] + h - [Lu] — [Lp]
h

(SSL)(h) =

h - [ Lu]

PR
Therefore, for all h € R}, we have (SST")(h) = Lu = CL*(h). Then
SSPY = CL* on R, so lim SS7" = lim Cg". Then (0,L)(p) = Lu. O

REMARK 51.19. Let V and W be finite dimensional vector spaces
and let v € O(V,W). Assume: V is nonzero. Then lim a = Oy .

Proof. Since V' is nonzero, it follows that V' has no open points. Then,
for all S < V, we have: IntyS < LPyS. In particular, we have
IntDy o € LPDya. Since a € 6(V, W), we see, by (1) of Definition 47.1,
that dom[a] € My (0y). Then, by HW#3-1, Oy € Inty(dom[a]) i.e.,
Oy € IntDya. So, by Remark 25.19, we want: a — Oy, near Oy.

As a € o(V,W), by (2) and (3) of Definition 47.1, we have both
(o = a(0y) near Oy) and (a(Oy) = Oy). Then av — Oy near Oy. O
LEMMA 51.20. Let V and W be finite dimensional vector spaces,
uweV and R e 0,(V,W). Assume: V is nonzero. Then (0,R)(0y) =
Ow .

Proof. Let ¢ := SSE'". Then (6,R)(0v) = lim . Want: lim v = Oy

We have R € &1(V,W) < 0o(V, W) = 6(V, W), so, by (3) of Defini-
tion 47.1, R(Oy) = Oy . Then, Vh € R,

ROy + hu)| — [R(0
[R(hu)] — [Ow] R(hu)

h h
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Define ¢t : R — V by ¢(h) = hu. Then, Yh € R,
Ru(W)  (Ron(h)  (Ro
py — ) WOV (RO gy
vir) B i (h) iy )
Rou
idy A
We have 1 € L(R,V) € O1(R,V) and R € &;(V,W). Then
Rou e [5i(V,W)]o[Oi(R,V)]
S R W) = [[«]][6(R,W)].
Choose a € 0(R, W) such that Rot = | e |a. Then
_ Rou | o]
VS d, lidR] *
Let 3 := adj5([| o []/[idr]). then ¢ = Ba on RY. Then li(I)nz/J = liénﬂoc.
Since im[f] < {—1,0,1} and since dom[5] = R, we conclude that

B e OR,R). Define + € B(R,W,W) by ¢ +w = cw. That is, let
denote scalar multiplication in W. Then fa = Q. Since

Then ¢ =

~

B ]E a € [O(RvR)] [5(R’ W)]

R
= [Oo(R,R)] = [5o(R, )]
c O(R, W) = O(R,W),
it follows, from Remark 51.19, that lign (B : a) = Ow.
Then lignz/) = lién Ba = li(l)rn (B8 * a) = Ow, as desired. O

52. CLASS 26 ON 26 APRIL 2018, TH oF WEEK 14

Recall: Let V' and W be finite dimensional vector spaces and let
u € V. Assume V is nonzero. Then

(1) VLe L(V,W), (0,L)(0y) = L(u) and
For (1), see Lemma 51.18. For (2), see Lemma 51.20.

REMARK 52.1. Let V and W be finite dimensional vector spaces,
let f:V ——> W and let w e V. Let p e V and let g := pr Then

(@ug)(Ov) = (@uf)(p).
Proof. Unassigned HW. U
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REMARK 52.2. Let V and W be finite dimensional vector spaces,
let ¢,¢ 'V --» W and let w € V. Let p € LPDy(¢ + ¢). Then

(Gu(@ +¥))(p) =" [(0ud)(p)] + [(2ut))(p)]-
Proof. Unassigned HW. O

Recall (Theorem 51.17): Let V and W be fdVSs, let f : V --» W
and let p e dom[Df]. Then f is continuous at p.
Let f:R --» R and let p € R. We have been pursuing two goals:
(1) Show: f'(p) =* ENT[D,f].
(2) Show: (dom[f] € Na(p)) = (f'(p) = ENT[D,f]).
We will omit (2), for lack of time this semester. We will eventually
show that (1) is a corollary of the next theorem.

THEOREM 52.3. Let V and W be fdVSs, let f:V --» W, and let
p,ue V. Assume that V' is nonzero. Then (D,f)(u) *= (0u.f)(p).

Proof. We wish to show:

[(Dpf)w) #©] = [(Dpf)(u) = (2uf)p) ]

Assume: (D f)(u) # ©. Want: (D, f)(u) = (0uf)(p)-
Let L := D,f. Then L(u) = (D,f)(u) # ®, so L # ®. Then

Le L(V,W). Let g := f and let R := g— L. Then R e &;(V,W) and
g = L+ R. By Remark 52.1, (0,9)(0v) = (0uf)(p). We wish to show:
(Dpf)(u) = (0u9)(0y). Equivalently, we want: (d,9)(0v) = L(u).

By Lemma 51.18 and Lemma 51.20, we have:

(1) @uL)Ov) = L(w)  and
(2) (auR)(OV) = Ow.

Since (Df)(p) = D,f # ®, we get p € dom[Df]. By Remark 51.13,
dom[Df] < IntDy f. Since g = f, we get dom[g] = (dom[f]) — p, and
so IntDy g = (IntDy f) —p. Then 0y = p—p € (IntDy f) —p = IntDyg.

Since V' is nonzero, V' has no open points, and so we have: VS < V|
Inty S < LPyS. Then IntDy g < LPDyg. Then

Oy € IntDyg < LPDyg = LPDy(L+R).

So, by Remark 52.2, (0u(L + R))(Ov) = [(0uL)(0v)] + [(uR)(Ov)].
Therefore, since ¢ = L + R, by (1) and (2) above, we conclude that
(Cug)(Oy) =* [L(u)] + [Ow]. So, since [L(u)] + [Ow] = L(u) # ©, it
follows that (0,9)(0y) = L(u), as desired. O
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w_»

In Theorem 52.3, we cannot replace “*=" by , and a counterex-
ample is as follows: Let S := {(z,2?) |2z > 0}. Let f:= x5, : R? > R.
Let p := 05. Then f is not continuous at p, so, by Theorem 51.17,
D,f = ®. Unassigned exercise: Show, Vu € R? that (d,f)(p) = 0.
Then, for all u € R? we have (D,f)(u) = @ # 0 = (0,f)(p).

COROLLARY 52.4. Let m € N, let W be a finite dimensional vec-
tor space, let f : R™ --» W, let p € R™ and let j € [1..m]. Then

(Dpf)(e]) *= (2;/)(p).
Proof. Let u := e}'. By definition of d;, we have: (0;f)(p) = (0uf)(p).
By Theorem 52.3, we have: (D,f)(u) *= (0.,f)(p).

Then (D, f)(€]") = (Dpf)(u) *= (duf)(p) = (0;1)(p). O

For all n € N, for all k € [1..n], define 7}’ : R" — R by 7}!(z) = xy.
Let m,n € N and let L € L(R™, R"). Recall:

Vje[l.m], Vke[l.n], [Lljx = (L(e]))
Equivalently:

Vje[l.m], Vke [l.n], [Llx = =(L(e™)).

J

COROLLARY 52.5. Let m,n € N, let f : R™ --» R", let p € R™.
For all ke [1.n], let fy:=7po f:R™—R. Then:

Vj e [l.m], Vk € [1..n], [Dpflie *= (0;fr)(p).

Proof. Let j € [1.m] and k € [l..n] be given. We wish to show:

[Dpflin "= (05f)(p)-
Let u := e'. By definition of 0;, (0;f)(p) = (0ufr)(p y The-

)-
orem 52.3, (Dpf)(u) *= (0uf)(p), so m(Dpf)(u)) *= Z(( )( ))-
Also, we have [Dpfljx = 7 ((Dpf)(€f")) = Wk(( Dpf)(u)).
For all x € R™, f(x) = (fi(z),..., fa(z)). Unassigned exercise:
Show, for all x € R™, that

@uf)(x) = ((uf)@), .. (Qufi)(@) ),
so i ((Ouf)(2)) = (Qufr)(w). Then m2((0uf)(p)) = (ufi)(p). Then

[Dpflie = m((Dpf)(w) *= mp((0uf)(p))
= (Gufr)p) = (9;f)(p),
as desired. ]
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We have R' = R} # R. Also, 7} : R! — R is a VS isomorphism.

Note: For any L € L(R,R), we have ENT[L]| = L(1). (Proof: Choose
m € R such that, for all z € R, L(z) = mz. Then L(1) = m and
[L] = [m]. Then ENT[L] = ENT[m] = m = L(1). QED)

We now complete our goal:

COROLLARY 52.6. Let f: R --» R and let p e R. Then we have:
f'(p) =" ENT[D,f].

Proof. Let u := 1. Then, by definition of " and 0, f, we have 0, f = f'.

Let L := D,f. Then L(1) = (D, f)(u). We want: f'(p) =* ENT[L].
By Theorem 52.3, (D, f)(u) *= (0uf)(p). We have ENT[L] = L(1).

Then f'(p) = (0uf)(p) =* (Dpf)(u) = L(1) = ENT[L], as desired. O

We now practice differentiation of polynomials, in the multivariable
setting. We start with differentiation of constants.

REMARK 52.7. Let V and W be finite dimensional vector spaces,
let €V and let C € C(V,W). Then D,C = Oy .

Proof. For all h € V', since C' € C(V, W), we get C(x+ h) = C(zx); then
Cg(h) = [C(l’ + h)] — [C(I)] = OW = va(h) Then Cg = va. Let
L :=Oyw, R:=0yw. Then Le L(V,W), Re &,(V,W), CI' = L + R.

Since L € L(V,W) and CI' — L = R € &;(V,W), we conclude that
L e LINS,C, so L = D,C. Then D,C = L = Oy, as desired. ]

Let V and W be finite dimensional vector spaces and let C' € C(V, W).
By Remark 52.7, Vo € V|, D,C = Opy. Let Y := L(V,W) and let
Z :=L(V,)Y). ThenY = LyW and Z = LyY = LyLyW. Also, we
have 0y = C"(}W and 05 = C‘(),Y. For all z e V,

(DC)(]}) = DIC = OVW = Cng = Oy = C‘[)/Y(QJ) = Oz(x>
Then DC = OZ = OLVva.

We move on to differentiation of linear functions.

REMARK 52.8. Let V and W be finite dimensional vector spaces,
let €V andlet L e L(V,W). Then D,L = L.

Proof. For all h € V| we have

Ly(h) = [Lz+h)] — [L(=)]
= [L@)] + [L(A)] = [L(0)] = L(h).



NOTES 1 383

Then LT = L. Let L := L and R := Oyyw. Then L € L(V,W) and
Re & (V,W)and LT = L + R.

Since L € L(V,W) and LT — L = R € &;(V,W), we conclude that
L e LINS,L,so L =D,L. Then D,L = L, as desired. O

Let V and W be finite dimensional vector spaces and let L € L(V, W).
By Remark 52.8, Ve e V, D, L = L. So, for all x € V,
(DL)(z) = D,L = L = Ot

Let Y := L(V,W). Then DL = Cf e C(V,Y).

We move on to differentiation of quadratic functions.

Let V and W be finite dimensional vector spaces and let @ € Q(V, W).
Let » := I1%,;,Q denote the polarization of ). Recall that = € SB(V, W)
and that A, = @. For all x € V| we have Q(z) = A,z = x * .

REMARK 52.9. Let V and W be finite dimensional vector spaces, let
eV and let Q € Q(V,W). Let = := 1} ,,Q, and define L € L(V,W)
by L(h) =2 [|x=h]. Then D,Q = L.

Proof. For all h € V', we have
Q;(h) = [Q+ )] — [Q(x)]
= [(x+h)= ($+h)]—[x*:v]
[z+x] + 2-[z+h] + [h+h] — [zx21]
= 2-[z=h] + [h=h]
[L(h)] + [Q(R)].
Then QT = L+ Q. We have Q € Q(V, W) < Oy (V, W) < &,(V, W).

Since L € L(V,W) and QL — L = Q € &,(V,W), we conclude that
L € LINS,Q, so L = D,Q). Then D,() = L, as desired. O

Let V and W be finite dimensional vector spaces and let Q € Q(V, W).
We seek a formula for D), but it requires some preliminary definitions.

DEFINITION 52.10. Let V and W be vector spaces. Then we define
MO(V,W) :=W and SM°(V,W) =W.

Let V and W be vector spaces. Recall:
MY V,W) = L(V,W), SMYV,W) = L(V,W),

M*(V.W) = B(V,.W), SM*(V,W) = SB(V.W),
M3(V,W)=T(V,W) and SM3V,W)=ST(V,W).
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DEFINITION 52.11. Let V and W be vector spaces, let n € Ny and
let F-e M"(V,W). Then

(1) we define F§ == F € M™(V, M°(V,W)),

(2) we define F* := F € M°(V, M™(V,W)) and

(3) Vj € (0..n), we define F € M™(V, MI(V,IW)) by

(F}*(ml, P ,xn,j))(yl, e 7y]> = F(.Z'l, Ce ,I,En,j,yl, e 7yj)

Let V be a vector space, let x € V and let n € N. Then the notation
“x(” will be used to denote “z,z,...,z", with  repeated n times.
We sometimes omit the parentheses and simply write 2™ for z(™.

Let V and W be vector spaces, let n € [2..00) and let F' € M™(V,W).
Then, for all #,y € V, we have: ((F})(z"V))(y) = F(z™V,y). Also,

for all x € V, we have Ap(x) = F(x(”)) and AF{" () = F{k(x(nfl)).

REMARK 52.12. Let V and W be vector spaces, n € Ny, j € [0..n]
and F e SM™(V,W). Then F} € SM™7(V,SM/(V,IV)).

Proof. Unassigned HW. O
We use the new notation to restate Remark 52.9:

REMARK 52.13. Let V and W be finite dimensional vector spaces,
reV and Qe Q(V,W). Let B := 11},Q. Then D,Q =2 - [B}(z)].

Proof. Define L € L(V,W) by L(h) = 2-[B(z,h)]. By Remark 52.9
(with = replaced by B), we have D, = L. It therefore suffices to show
that 2-[Bf(x)] = L. We wish to show: Vhe V', 2-[(B;(z))(h)] = L(h).
Let h € V be given. We want to prove: 2 - [(Bf(x))(h)] = L(h).

By definition of Bf, 2-[(Bf(x))(h)] = 2-[B(x, h)]. By definition of L,
L(h) =2-[B(z,h)]. Then 2- [(Bf(z))(h)] =2 [B(z,h)] = L(h). O

Let V and W be finite dimensional vector spaces and let Q € Q(V, W).
Let B := II,,QQ. We now have enough notation to develop a formula
for DQ: By Remark 52.13, Vx € V|, D,Q = Bf(x). So,Vz eV,

(DQ)(z) = D.Q = Bi(x).
Let Y := L(V,W). Then our formula reads: DQ = B € L(V,Y).

We move on to differentiation of cubic functions.

Let V and W be finite dimensional vector spaces and let K € K(V, W).
Let T := II} K denote the polarization of K. Recall that T €
ST(V,W) and that Ap = K. For all z € V, we have K(x) = Arx =
T(x®).
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REMARK 52.14. Let V and W be finite dimensional vector spaces,
veVand K e K(V,W). Let T := 13, K. Then DK = 3-[T7(z®)].

Proof. Let L :=3-[T#(2®)], B :=3-
for all h e V, we have L(h) = 3 - [T(2?
)

R(h) = [B(

[T*(x)] and R := Agp+ K. Then,
), h)] and

h)
(

=
>

3-
- 3.

For all h € V', we have
K, (h) [ (= + h)] [K(z)]

3-[T(x,h®)] + [T(h)] - [T(xP)]
= 3-[T(xP,h)] +3-[T(x, )] + [T(h3)]
= [L(W]+[R(M)] = (L+R)(h).
Then QT = L + R. Since B € B(V, W), we get
Ap € QUWV,W) < O (V,W) < &(V,W).
Also,
K e KWV,W) < O3V,W) < 3(V,W).

Then R = Ap + K € &,(V,W).
Since L € L(V,W) and KI — L = R € &;(V,W), we conclude that
LeLINS,K,so L =D,K. Then D,K = L =3 [T}(z®)]. O

In the notation of Remark 52.14, we have K(z) = T(z®), and so
K is a multivariable analogue for 22 in freshman calculus. In freshman
calculus, we have (d/dz)(z*) = 32%, which we prove using

(@dn)@®) = fim B

h—0 h ’

followed by expanding (z + h)3. The analogue in multivariable analysis
is D,K =3 [Ty (x®)], which we prove using

Ky (h) = [T((z+h)?)] = [T(P)],
followed by expanding T'((x 4+ h)®).
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Let V and W be finite dimensional vector spaces and let K € K(V, W).
Let T := II};,, K. We now have enough notation to develop a formula
for DK: By Remark 52.14, Vo € V, D, K = 3 - [T7#(2®)]. So, Vx eV,

(DK)(z) = DK = 3-[IF@P)]= (3 Ag)(2).
Let Y := L(V,W). Then our formula reads: DK = 3-[Agx]. We have
T € B(V,Y), so Apx € Q(V,Y), and so 3 - [Apx] € Q(V,Y). Then
DK = 3-[As] € Q(V, ).

We now differentiate arbitrary homogeneous polynomials:

REMARK 52.15. Let V and W be finite dimensional vector spaces,
rzeV,letneN and P e P"(V,W). Let F' :=1I{,\,,P. Then D, P =
- [F (D)),

Proof. Unassigned HW. U

In the notation of Remark 52.15, we have P(z) = F(z(™), and so
P is a multivariable analogue for x™ in freshman calculus. In freshman
calculus, we have (d/dz)(z") = nz"!, which we prove using

(@ar)@) = i T

Y

followed by expanding (z + h)"™. The analogue in multivariable analysis
is D, P =n - [F¥(2Y)], which we prove using

K;(h) = [F((z+n)"™)] ~ [F(z™)],

followed by expanding F((x + h)™).

Let V and W be fdVSs, n € N, P € P*(V,W). Let F := I}, P.
We now have enough notation to develop a formula for DP: By Re-
mark 52.15, Yo € V, D, P = n - [F}(z"Y)]. So, Yz e V,

(DP)(x) = D,P = n-[IFa" )= (n-Ag)(2).

Let Y := L(V,W). Then our formula reads: DP = n-[Apx]. We have
Ffe M Y(V,Y), 50 Apsx € P"H(V,Y), and so n-[Aps] € PPH(V,Y).
Then DP = n - [Aps] € P=(V,Y).

Next time we will work on second (total) derivatives of homogeneous
polynomials. Let V and W be finite dimensional vector spaces, let
neNandlet Pe P"(V,W). Let F := I}, P. We will prove: Yz € V,
D2P = n(n — 1) - [F5(z"2)]. This is the analogue of the freshman
calculus formula: (d/dz)*(z") = n(n —1) - 2" 2
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53. CLASS 27 OoN 1 MAy 2018, Tu oFr WEEK 15
Recall: Let V and W be fdVSs. Let f:V --» W. Then
Df V —— LyWW and
DDf : V. --s» LyLyW.

There is a vector space isomorphism ¥ : Ly LyW — B(V,W) given
by (V(G))(y, z) = G(y)(z). We defined

D*f = Vo(DDf) : V --» B(V,W).
It is a fact that im[D?f] = SB(V, W), but we omit the proof, for lack

of time. For any L € Ly W, we showed: DL = CL e C(V, LyW).
Let V and W be fdVSs, f: V --» W and x € V. We defined:

D.f = (Df)(z)e LyW and DZ3f := (D*f)(x) e B(V,W).
Let L := D,f € LyW. Then DL = CEt € C(V,LyW). That is,
DD, f = CP*' e C(V, LyW). By contrast, we have

D.Df = (DDf)x) e LyLyW = L(V,LyW).

) =

Let U : Ly LyW — B(V,W) be given by (¥(G))(y, z) = G(y)(2), as
in the preceding paragraph. Since D,Df = (DDf)(z), we conclude
that W(D,Df) = U((DDf)(z)). Then
U(D.Df) = W(DDf)(x)) = (Vo (DDf))(z)
= (D*f)(=) = Dif
Then, Vy,z € V, (D.Df)(y)(z) = (¥ (DD [))(y, 2) = (D7f)(y, 2).
Recall: Let V' and W be vector spaces, let n € [2..c0) and let F' €

SM"™(V,W). Then

(1) Ff=F=F} and

(2) F} e SM™ YV, L(V,W)) is def’d by: Va1,..., 2, 1,y €V,

(Fy(z1,. - xn1)(y) = F(x1,...,%0-1,Y)-
(3) Fy e SM™2(V,SB(V,W)) is def’d by: Vxy,...,2, 2,y,2€ V,
(Ff(x1, .. yxn )y, 2) = F(x1,...,Tp-2,Y,2).
For all j € Ny, for all z, we used z(™ as an abbreviation of =, z, ...z,

with x repeated 7 times. With this notation, we have:
VeyeV,  (FrE")(y) = F@" V),  and
voyzeV,  (FBE")(y,2) = FE"?y,2).
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Recall that Aps : V. — L(V,W) is the diagonal restriction of FY,
defined by Apx(z) = Fi(z(™V). Then

Ve,yeV,  (Ap(2))(y) = F",y).

Recall that Ags : V' — SB(V,W) is the diagonal restriction of Fy,
defined by Aps(z) = F5 (2"?). Then

Ve,y,2 €V, (App())(y,2) = F2"?,y,2).

Recall: Let V and W be finite dimensional vector spaces and let
n € N. By definition,

PrV,W) = {Ap|FeM" (V,IW)}.

Moreover, for any F' € M™(V, W) the diagonal restrictions of F' and of
the symmetrization SEF € SM"™(V, W) are the same, and so

PY(V,W) = {Ap|FeSM"V,W)}.

Moreover, for any P € P*(V,W), 3'F € SM™(V,W) s.t. P = Ap. This
unque F' is called the polarization of P, and is denoted 11, P.

We proved the multivariable analogue of (d/dz)(z™) = nz™ ' It
reads as follows:

THEOREM 53.1. Let V and W be finite dimensional vector spaces
and let ne N. Let Pe P*(V,W). Let F := 11}, P. Then:

(1) VoeeV, D,P = n-[Ff "), and

(2) DP = n-AFI*.

Let V and W be finite dimensional vector spaces and let n € N. Let
Pe PY(V,W). Let F := 1, P. If we want to compute DD P, we'll
need the polarization I}, (DP). Since n - Fyt € SM™ YV, Ly W)
and since A, px = DP, we conclude that Iy, w(DP) = n-Fy. Using
this, we get our next result, which is the multivariable analogue of the
formula (d/dz)?*(z") = n(n — 1) - 22,

THEOREM 53.2. Let V and W be finite dimensional vector spaces,
let n € [2..00) and let P € P*(V,W). Let F := 11}, P. Then

(1) VoeeV, D2P = n(n-1)-[F(x"2))], and

(2) D°P = n(n—1)-Aps.

Proof. Proof of (1): Given x € V. Want: D2P = n(n—1)-[F5(z"2)].
We wish to show: Yy, z € V, (D2P)(y, z) = (n(n—1)-[F5 (2™=2)])(y, 2).
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We compute
(n(n = 1) - [F5 (")) (y,2) = n(n—1
= n(n—-1
We therefore want: (D?P)(y, z) = n(n — 1) - [F(x(2 .y, 2)]. Recall:

(DiP)(y,z) = (D:DP)(y)(2).
We therefore want: (D,DP)(y)(z) = n(n —1) - [F(z™=2 y, 2)].

Let W := LyW and P := DP. Then P € P"Y(V,W). By (2)
of Theorem 53.1, we have P = n - Apx. Let F := I P. Then
Fe SM™(V,W). Since P = n-Apx = A, px, we get F =n-Ff. By
(1) of Theorem 53.1 (with n replaced by n — 1, P by P, F by F), we
have D, P = (n—1) - [F; (™ 2)]. Then

(D:DP)(y) =

Then
(DDPYW)() = (nfn—1)- [FH 2] (2)
= n(n—1)- [(FF"2,y)(2)]
= nn—-1)- [F(iU(TFZ),@/a z)],

as desired. End of proof of (1).
Proof of (2): We wish to show:

Ve eV, (D*P)(z) = (n(n—1) - Aps)(x).

Let x € V be given. We wish to show: (D*P)(x) = (n(n—1)-Ags)(x).
By definition of D2P, we have D?P = (D?P)(x). We therefore wish
to show: D2P = (n(n — 1) - Agg)(z). We have

(n(n=1)-Ap)(z) = nn—=1) [Ap )]
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We therefore wish to show: D2P =n(n —1) - [AF; (95)]
By (1), we know that D?P = n(n — 1) - [F3(2"?)]. We have
Ff e SM"(V,SB(V,W)),
so, by definition of Apx, we have Aps(z) = Fj (2"=). Then
DiP = a1 [FE@")] = nan-1)[Ag)],
as desired. End of proof of (2). O

Recall: Let S, V, W and Z be vector spaces. Let = € B(V,W, 7).
Let f:S --»Vand g: S --» W. Then f;g:S——+Z is defined
by: Vo € 5, (f xg)(x) = [f(x)]  [g(=)].

LEMMA 53.3. Let S, V., W and Z be vector spaces. Let =€ B(V,W,Z).
Let Le L(S,V) and M € L(S,W). Then LM € Q(S, 2).

Proof. We wish to show: 3B € B(S, Z) s.
(

t LM = Ap.
Define B € B(S, Z) by B(z,y) = [L(z)] * |

M(y)] We wish to show:

L;MzAB. We wish to show: Vx € S, (L;M)( x) = Ap(x). Let
x € S be given. We wish to show: (L;M)(x) = Ag(x).
We have (L;M)(x) = [L(x)] = [M(z)] = B(z,z) = Ap(x) O

DEFINITION 53.4. Let S, V, W, Z be VSs, € B(V,W, Z). Then
(1) Vf:S-->V, YweW, f;w:zf;Cfg“, and
(2) VveV,Vg: S --» W, v;gznggg.

[k

In Definition 53.4, as usual, we may sometimes omit the “S” in e

The next result is the multivariable Product Rule.

THEOREM 53.5. Let S, V, W and Z be VSs. Let =€ B(V,W, Z).
Let f:S--+V and g: S --+»W. Letx € S. Then

Dalfrg) =" [(Daf) ole)] + [((2) £(Dag)]

Proof. We want: ( [(Dof) £ (9()] + [(f(@) s (Deg)] 2 @) =
(Dof29) = [Daf) 2(ole)] + [((@)) £(Dag)] ).

Assume: [(D,f) + (9(@))] + [(f(2) (Dag)] # ©. We want:
Dulfrg) = [(Dof) slal@)] + [(F(=)) + (Dag)]
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Let h := f;g, L:=D,f, M := D,g, v:= f(x), w := g(x). Then
h(x) = v *w. We wish to show: D,h = [L : w] + [v
Let A:=C%, B := Cg. Then
fo =lflz+o)]-A and gy =[gz+e)]-B
Also, A;B = Cg*”. Then hl = [h(z + o)] — [A;B]. Also,

L+w=L=B and v M=A=x* M.
S S S S

We want: D,h = [L : Bl + [A * M ]. Tt therefore suffices to show:

L - [LB] - [AxM] € &(5,2)

So, since hl = [h(x + o)] — [A;B], we wish to show:
[h(e+eo)] = [AxB] = [L«B] = [AxM] € &(57%).
Let § := fI' — L and let ¢ := gL — M. Since D,f = L, we see that
d € 01(S,V). Since D,g = M, we see that € € 6;(S,W). We have
5= [T = [flate)]-A-L
e = g, M = [g9(z+e)]-B-M,
so flr+e)=A+L+0¢and g(x+e) =B+ M+e. Then
hizr +e) = (A+L+Y9) ;(B+M+e).

Expanding this out, and bringing three terms to the LHS, we get

[h(z +e)] = [A%B] = [L+B] - [Ax M]
= [A;E]—I—[L;M]—i—[(S;B]
+[L;5] + [5;M] + [5;5].
It therefore suffices to show:
Axe, L=M, §«B, Lxe, =M, 6xc € 01(S, 7).
S s S s S s
We have

Oo(S,V) and  BeC(S,W)

C
c OS5, V) and  MeL(S,W)
§e 3.8, V) and e €31 (S, W).

(S W)7

< @0 )
- 01(5, W),
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(S, 2),

0,(S,2) < &(S, 2),
( )7

Axee[0o(S,V)] 1 [3:(S,W)] < &,
LxM €[OS, V)] £ [0u(8,W)]
0 Be[o1(5,V)] [o( W)l<o
Lrce[0i(S,V)] £ [6:(S.W)] € 8:(S,2) € 81(S, Z) and
02 M e[5:(S,V)] £ [O1(S,W)] < 82(5. 2)  8:(5, 2).
O1(5,
105,

0)* n*x W*

It remains to show: 5;8 € 01(S, 7). We have
5;56[51(8,‘/)] ;[ W) < 02(S,2) < 61(S, Z2),
as desired. 0

COROLLARY 53.6. Let V and W be finite dimensional vector spaces,
zeV,aeR and g:V --» W. Then D,(ag) =* a-[D,g].

Proof. Define » € B(R,W,W) by s *w = sw. Let f := C{,. Then
f(fL') =a, Da:f = OVW7

ag = axg = f; and
a-[Dyg] = a{’;[ng] :f"’;[ng]'

By Theorem 53.5,

Duf2g) =* [(Df) 5 (0@)] + [(f(x)) »(Deg)]
Then
Dy(ag) = Du(fx9)
=" [(Daf) x(9(x))] + [(f(z)) % (D2g)]
= [(Ovw) # (9(z))] + [a ¥ (D:9) ]
= [Ovw] + [a-(Dwg)] = a-(Dag),
as desired. U

LEMMA 53.7. Let V., W be finite dimensional vector spaces, x € V,
f:V-->Wandg:V --»W. Then D.(f +g9) =* [D.f] + [D.g].

Proof. Unassigned HW. O
The next result is the multivariable Chain Rule.

THEOREM 53.8. Let U, V and W be finite dimensional vector
spaces. Let x € V, f:U --» V and g : V --» W. Lety = f(x).
Then Dy(go f) =" (Dyg) o (Dof).
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Proof. We wish to prove:

[ (Dyg) o (Duof) #@] = [Dalgof) = (Dyg) o (Daf) |-
Assume: (D,g) o (D,f) # ®. We want: D,(go f) = (Dyg) o (D.f).

Let h :=go f. Then h: U --» W. Let L := D,f and M := D,g.
Then L € L(U,V) and M € L(V,W). We want: D,h = Mo L. It
therefore suffices to show: hl — (Mo L) € &,(U,W).

Let 0 := fi — L and let € := g} — M. Since D,f = L, we see that
6 € 01(U, V). Since Dyg = M, we see that £ € &,(V, W),

Claim: hl = (g)) o (ff). Proof of Claim: We want: Yu € U,
(hi)(u) = ((gy) © (fF))(u). Let u € U be given. We want to prove
that: (hg)(u) = ((g9,) © (f2))(u).

Let v = (f7)(u). Adding y = £(z) t0 v = [f(z +u)] — [f(2)] gives
y+v = f(z+u). Then g(y +v) = g(f (x+u)) Also, g(y) = g(f(z)).
So, since h = go f, we get g(y +v) = h(x +u) and g(y) = h(x). Then
(9,)(v) = [9(y + v)] = [9()] = [~(z + w)] = [A(z)] = (h7)(u). Then
(W)(w) = (41)(0) = (G)(D)w) = (67) o (7)) (), as desired. Fnd
of proof of Claim.

By definition of § and e, we have fI' = L + § and gyT =M +¢. By
the claim, hl = (g]) o (fI). Then

he = (9)0(f2)
= (M+¢)o(L+Y9)
= (Mo (L+0))+(co(L+0)).
Since M is linear, we get M o (L +0) = (M o L) + (M o§). Then
hi = (MoL) + (Mod) + (g0 (L+14)),
sohl’ —(MoL) = (Mod)+ (eo(L+9)), It therefore suffices to show:
Mod, eo(L+6) € 01(UW).
We have
Le L(U,V)< O\(U,V),  MeL(V,W)< O(V,W),
de o1 (U,V) and e 01 (V,W).
Then M o8 € [Oy(V,W)] o [61(U, V)] < 31(U, W). It remains to show:
eo(L+0)eo(UW).
We have

L+6 e [OUV)] + [6,(U, V)]
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Then € o (L + 8) € [5,(V, W)] o [O1(U, V)] < &,(U, W), as desired. [
Let {,m,neN, f:R s R™ g:R™ -——» R" z e R, y := f(x).
By Theorem 53.8, D,(go f) =* (D,g) o (D,f). Taking matrices,
[Dz(g o f)] =% [Daf]- [Dyg]-
Then, replacing y by f(z) and taking transposes,
[Dago A)I' =" [Dywyal - [Daf]"
This is similar to the one-variable Chain Rule: Let f : R --» R,
g:R-->R, x € LPDg(go f). Then
(go f)(z) =" [d(f@)] [f(@)]
54. CLASS 28 ON 3 MAyY 2018, TH oF WEEK 15
I will continue to hold office hours as usual until the final exam.
DEFINITION 54.1. Let A and B be sets. Then
AlJB, if A(\B =
A H B = UB, AN 4
3, if ANB#J.
DEFINITION 54.2. Let S be a set of sets.

Then S is pairwise-disjoint means:
VA,BeS, ([A=Blor[ANB=02]).

We use “pw-dj” as an abbreviation for “pairwise-disjoint”. A pw-dj]
collection of sets is called a partition.

Let X be a set. Let P be a set of sets. By P is a partition of X,
we mean: both (P is pw-dj ) and ([ JP = X ).

DEFINITION 54.3. Let S be a set of sets. Then
]_IS — {US, if S is pairwise-disjoint

®, if S is not pairwise-disjoint.

Let f and g be two functions. Recall: f < (dom[f]) x (im[f]).
Similarly, g < (dom[g]) x (im[g]). Note that g 2 f is equivalent to:

(dom[g] 2dom[f]) ~ and  (g|(dom[f]) = f)
By g is an extension of f, we mean: g 2 f.
Let f be a sequence of functions. Assume that f; € fo < ---. Let

g:=f1u fou---. Then g is a function and
e dom[g] = (dom[f1]) U (dom[fs]) U --- and
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° VJ € N, g =2 f]

DEFINITION 54.4. A function p is called o set function if:
( dom|[u] is a set of sets ) and ( im[p] < [0,0] ).

Let p be a set function. Intuitively, we think of i as assigning a size
or “measure” to each set in its domain. The sets in the domain of p
are said to be “u-measurable”, and, for any p-measurable set A, the
“u-measure” of A is, by definition, u(A). By the “u-total space”, we
mean: the union of all y-measurable sets, i.e., | Jdom|[y].

For example: Let Z < 2% denote the set of all intervals in R. Define
0:7 —[0,00] by (I) = (sup I)— (inf I). Then ¢ is a set function; the
(-total space is | Jdom[(] = [ JZ = R. We call £ the “length” function.

[The variables Z and ¢ are bound for the remainder of this class.]

Let Z, := {A x B| A, BeZ}. Define {5 : Zy — [0, 0] by

[0(A)] - [6(B)], if €(A) # 0 # £(B)

0, otherwise.

62(14 X B) = {

Then 45 is a set function; the ¢y-total space is | Jdom[ly] = | JZ, = R?.
We call /5 the “area” function.
[The variables Zy, {5 are bound for the remainder of this class.]

DEFINITION 54.5. Let p be a set function. Then p is finitely

additive means:  Vfinite R < dom[u], p (L[ R) F= Z p(A).
AeR

DEFINITION 54.6. Let i be a set function. Then p is countably

additive means: Vcountable R < dom[u], p <L[ R) = Z p(A).
AeR

DEFINITION 54.7. Let j1 be a set function. Assume | ) dom[u] < R.
Then, by i is translation invariant, we mean: VS € R, Va e R,
p(S+a) = u(S).
We generalize Definition 54.7 to Euclidean spaces of any dimension:

DEFINITION 54.8. Let 1 be a set function and let d € N. Assume
that | dom[p] < RY. Then, by p is translation invariant, we mean:
VS € RY, Va e RY, p(S+a) = u(S).

Recall “area” function ¢5. This set function ¢4 is translation invari-
ant. At the dawn of measure theory, a basic question was: Is there a
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“good” way of measuring the area of every subset of R?? More pre-
cisely: Does there exist a countably additive, translation invariant set
function p 2 £, s.t. dom[u] = 2%°? The answer turned out to be no,
but mathematicians eventually found a countably additive, translation
invariant set function Ay 2 5 s.t. dom[\z] is so large, or “broad”, that
it has, as elements, all the subsets of R? that anyone would ever care
about. This extension ), is called “Lebesgue measure on R?”, and we
will spend much of this class describing it, as well as its one-dimensional
cousin, known as “Lebesgue measure on R”.

We first talk about ways in which a collection S of sets can be made
larger (or “broadened”). We already know two:

Let S be a set of sets. Recall that

(S = {UR|RcS} and
(Sn = {R|T##R<S}.
We make several similar definitions (with “pw-dj” = “pairwise-disjoint” ):

DEFINITION 54.9. Let S be a set of sets. Then

(Sn, = {URI(R < S)&(R is finite) },
(S)eny = {LURI(R < S)&(R is finite, pw-dj) },
(Sfin. = {NRI(T#R<S)&(R is finite) },
(S)etbl, = {URI(R < 8)& (R is countable) },
(S)etbly = {LIRI(R <= S8)& (R is countable, pw-dj) },
(S)etpln = {NRI(F #R S S)&(R is countable) }.

LEMMA 54.10. Let S be a set of sets. Then:

i) [(TeS)&(VA,BeS, AuBeS)] « [{(S)f,, ES]
& (ii) [VA,BeS, AnBeS] = [(Spa,.<SS]
Proof. Unassigned HW. Hint: Use Mathematical Induction. 0

Certain collections of sets are, by their nature “broad”. For example,
if a collection of sets is closed under various set-theoretic operations,
then it might be considered a broad collection of sets. The most basic
set-theoretic operations are: union, intersection and set subtraction.
This kind of thinking motivates the next two definitions.

DEFINITION 54.11. Let S be a set of sets.
Then S is a ring of sets means:

(1) {S)fin, €S,
(2) (S)gp. €S and
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(3) VA,Be S, A\BeS.

Let R be a set of sets. Let S be a ring of sets. By R is a subring
of §, we mean: both (R € S ) and ( R is a ring of sets ).

DEFINITION 54.12. Let S be a set of sets.
Then S is a o-ring of sets means:

(1) (S)etpry, < S

(2) <S>Ctb1m cS and

(3) VA,Be S, A\BeS.

Let R be a set of sets. Let S be a o-ring of sets. By R is a o-subring
of §, we mean: both (R €S ) and ( R is a o-ring of sets ).
The next lemma is a quantified equivalence for a ring of sets.

LEMMA 54.13. Let S be a nonempty set of sets.
Then: (S is a ring of sets ) <
(VA,BeS, both (AUB *¢ S ) and (A\B€eS )).

Proof. Proof of =: Unassigned HW. End of proof of =.
Proof of <: Assume
VA,Be S, both (AlIB *¢ S )and (A\BeS).
Want: S is a ring of sets. We know:
(i) VA,Be S, AuUB *€ S and
(ii) VA,Be S, A\ABeS.
By Definition 54.11, we wish to verify:
(1) {(S)fin, =S
(2) (S)gp . €S and
(3) VA,BeS, A\BEeS.
Since § # J, choose Z € §. Then, by (ii), Z\Z € S§. That is, J € S.
For any two sets A and B, Au B = AlI(B\A). Thus, from (i) and (ii),
we see: VA, B € S, we have AU B € S. Then, by (i) of Lemma 54.10,
(1) holds. By (ii), (3) holds. It remains to show that (2) holds.
For any two sets A and B, we have A\(A\B) = A n B. Thus,
from (ii), we see: VA, B € S, we have A n B € §. Then, by (ii) of
Lemma 54.10, we see that (2) holds. End of proof of <. O

Let B := (Z), and By := (Z,),. Elements of B are called Borel sets
in R, and elements of B, are called Borel sets in R2.
[The variables B, By are bound for the remainder of this class.]
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We seek to extend the length function, ¢ : Z — [0, 0], to a collection
of sets so broad that it has, as elements, “all the subsets of R that any-
one would ever care about”. It turns out that B is such a collection, but
the broadness required isn’t described in precise mathematical terms,
so we can’t prove it with mathematical rigor. However, I would issue
the following challenge: Try to find a subset of R that is not an ele-
ment of B. Similarly, see if you can find a subset of R? that is not an
element of B,. It turns out that, if we accept the Axiom of Choice,
then it’s possible to prove that such subsets of R and of R? do exist,
but good luck describing any specific one. In fact, from the perspective
of any conventional applications, if we are able to extend ¢ and /5 to
countably additive, translation invariant functions A : B — [0, c0] and
Ao @ By — [0, 0], then we deserve to celebrate .. .responsibly!

Recall that B := (Z),, i.e., B is obtained by closing Z under count-
able union, countable intersection and set differences. When you close
a collection S of sets under, say, countable union, the definition is
straightforward: Form all possible countable unions of sets in S; this
gives, a new collection 7 := (S).t1,],- However 7 may not be closed
under, say, set differences. Next, we might close 7 under set differences,
yielding U := {A\B| A, B € T}. Unfortunately, this last collection U
may not be closed under countable union. So, we might then look
at U)etp],» Which is closed under countable union, but may not be
closed under set differences or countable intersection. And so on.

If we start with Z and repeat various closure operations repeatedly,
we eventually end up with B, the smallest o-ring containing Z. This
way of thinking of the B is very intuitive, but it turns out that, to imple-
ment it, we would need to perform uncountably many of these closure
operations, and so we would need a version of recursion called “trans-
finite” recursion. To avoid this, we opt for a different approach:

Note: 2% is a o-ring of sets that contains Z. Find every o-subring
of 2% that contains Z, and then form the set B consisting of those
subsets A of R s.t. A is an element of each of those o-subrings. It turns
out that that collection of sets A is the smallest o-ring containing Z.
We now implement that idea, first for rings (see Definition 54.14), then
for o-rings (see Definition 54.15).

DEFINITION 54.14. Let S be a set of sets and let X :=|JS. Then
r(8) = {T<2X|(T=28)& (T is a ring of sets) },
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& = NS
In Definition 54.14, S is a set of sets, so 7(S) is a set of sets of sets.

DEFINITION 54.15. Let S be a set of sets and let X :=|JS. Then
o(S) == {T<2X|(T=28) & (T is ao-ring of sets) },
(&) = Nlo(S)]-
In Definition 54.15, S is a set of sets, so o(S) is a set of sets of sets.
Let S be a set of sets. The process of computing (S), can be difficult:
We might use transfinite recursion, but that’s beyond the scope of this
course, and not easy in any case. The alternative is to try identify o(S),
which is also difficult. Note that, according to Lemma 55.2 below, we
only need FOUR steps to go from S to {(S),. By contrast, going from
S to (S), can take uncountably many steps. So understanding (S), is
much easier, and we discuss that first.
It helps to weaken slightly the definition of “ring of sets” obtaining
what we will call a “pre-ring of sets”:

DEFINITION 54.16. Let S be a set of sets.
Then S is a pre-ring of sets means: VA, BeS, A\B e {(S)q,

Note that any partition is a pre-ring of sets.

Unassigned HW: Show that, while the set Z of intervals is not a ring
of sets, it is a pre-ring of sets. Show: Z, is also a pre-ring of sets.

For a pre-ring S of sets, computing (S), is made relatively easy by:

LEMMA 54.17. Let S be a pre-ring of sets. Then {S), = (S)fn -
Proof. Unassigned HW. Hint: Show, in order, First, show
VAe(S)an,, VBeS, A\Be(S)an,,

Then, by induction, prove:
VneN, [VAe(S)qay,p VB1,...,BneS, A\(Biu---u)B, € (S)ap, -
Then prove

VA€ (S)anm VB e{S)fnw  A\B €{S)fnu
Then, using Lemma 54.13, show that (S)g,,,, is a ring of sets. O

Let A :=(Z),. An example of a set in A\Z is
[1,2] U (3,4) U [5,7) U (20,100].
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Since 7 is a pre-ring of sets, by Lemma 54.17, we have A = (T)g, .-
That is to say: a set is in A iff it is a finite disjoint union of intervals
(like the set above). Think of elements of Z as “Lego blocks” in one
dimension, and think of the elements of A as sets that we can assemble
from these blocks, in finite time. (The phrase “in finite time” is our
colloquial way of indicating that each set in A is a finite union of sets
in Z. Eventually, we’ll look at constructions that can be accomplished
“in countable time”, i.e., by countable unions.) Since we know the
size (i.e., the length) of each block, there’s only one reasonable way
to assign a size to each such assembly. Thus, extending ¢ to a finitely
additive k : A — [0, 0] should be straightforward.

[The variable A is bound for the remainder of this class.]

There are many subsets of R that we might care about that are NOT
in A. For example, let

Z = [L,1+(1/2)] u [2,2+(1/4)] U
3.3+ (1/8)] v [4,4+(1/16)] U -+

Then Z is a countable union of intervals, but is not equal to any finite
union of intervals. Then Z ¢ (Z)g,,,, = A. Nevertheless, whatever we
might mean by measure, the measure of Z should be

12+ @4 + 18 + (116 + -,

which is equal to 1. So, if our goal is to extend ¢ to a broad collection
of sets, we would hope that Z would be an element of that collection.
While A is insufficient, note that Z € (Z).41,1, € Z)s = B.

We can also do “Legos in two dimensions”: Let Ay := (Z,),. Then,
by Lemma 54.17, Ay = {Ty)fy,,,- Our “Lego blocks” are now rectan-
gles, and every element of A, is a finite-time assembly of these two
dimensional blocks. However, if you want to assemble a good approxi-
mation to something round, like a disk, then that finite amount of time
may be very large. (In three dimensions, it gets even worse: my son
worked on his Lego Death Star for weeks.) Since we know the size
(i.e., the area) of each block, there’s only one reasonable way to assign
a size to each such assembly. Thus, extending /5 to a finitely additive,
translation invariant ks : Ay — [0, 00] should be straightforward.

[The variable Ay is bound for the remainder of this class.]

In two dimensions, we have Ay = (Z,)f,,,,- This collection of sets is
even more obviously NOT broad enough to include, as elements, “all
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the subsets of R? that anyone would ever care about”. For example,
a disk is not a finite union of rectangles, and, if we cannot develop
a formula for the area of a disk, then we will not earn the respect of the
ancient Greeks, who are, even now, the Guardians of Mathematics.

By contrast, when we look at o-rings like B and Bs, the problem
goes away: As we mentioned earlier, any subset of R that anyone cares
about is an element of B, and any subset of R? that anyone cares about
is an element of B,. In this sense, B and By are both very broad. If we
are somehow able to extend ¢ and /5 to countably additive, translation
invariant functions A : B — [0, 0] and Ay : By — [0, o0 then we deserve
to celebrate ... responsibly!

DEFINITION 54.18. Let P and Q be partitions. Then P < Q
means: P S {Q)fpny

To indicate that P < O, we say that Q is a finite refinement of P.

Intuitively, if P is a box of Legos, and Q is another box of Legos,
then P < Q means that each Lego in P can be build out of Legos
from Q, in finite time. Consequently, if some assembly can be built
with P-Legos in finite time, then it can also be built with Q-Legos
in a finite (but typically longer) period of time. Therefore:

LEMMA 54.19. Let P and Q be partitions. Assume that P < Q.
Then we have (P), < {(Q),.

Proof. Unassigned HW. Hint: Think Legos. 0

DEFINITION 54.20. Let i1 be a set function and let Q := dom|pu].
Let R :={Q),. Then FAES 11 is the set of allv : R — [0, 0] such that

both (v is finitely additive ) and (v|Q =p ).
In Definition 54.20, “FAES” = “Finitely Additive ExtensionS”.

DEFINITION 54.21. Let p be a set function. By i is a partition
measure, we mean: dom|u] is a partition.

DEFINITION 54.22. Let pu be a set function, X a set. By p is
a partition measure on X, we mean: dom[u] is a partition of X.

Our basic result about FAES is:

THEOREM 54.23. Let u be a partition measure.
Then #(FAES ) = 1.
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Proof. Unassigned HW. Hint: Think Legos. U

DEFINITION 54.24. Let i1 be a partition measure.
We define p* := ELT(FAES p).

DEFINITION 54.25. Let v and v be partition measures. Define
P = dom|u] and Q := dom[v]|. Then u < v means:

[P<Q] and |VPeP, uP)= > v(Q)

QeQ
QcP

To indicate that u < v, we say that v is a finite refinement of .

Intuitively, P is a box of Legos, and u tells us the size of each of the
P-Legos. Intuitively, Q is another box of Legos, and v tells us the size
of each of the Q-Legos. The condition P < Q tells us that each P-Lego
can be built out of Q-Legos, in finite time. The condition

VPeP, uP)= > vQ)

QeQ
QcP

tells us: the size of any P-Lego is the same as the size of the Q-Legos
needed to build it. These two conditions together imply that,

if we build an assembly out of P-Legos,
and measure its total size,

and then rebuild it out of Q-Legos,
and measure its total size once more,

then the two total sizes are the same. That is:

LEMMA 54.26. Let ;o and v be partition measures. Assume p << v.
Then p* < v*.

Proof. Unassigned HW. Hint: Think Legos. 0

The inclusion p* € v* says that the set function v* : Q* — [0, 0] is
an extension of the set function p* : P* — [0, «0].
Let 1 and v be partition measures. Note that

(p<v) = (Udom[u] = Udom[y]>.
That is, if © < v, then the p-total space is equal to the v-total space.

DEFINITION 54.27. Let i be a sequence of set functions. By pie s
a partition measure scheme, we mean:
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(1) Vj e N, u; is a partition measure.
(2) VjeN, pj < pjr.

Let p be a partition measure scheme. Note that

Udom[,ul] = Udom[m] = Udom[,ug] =

That is, Vj € N, pj;-total space is equal to the p-total space.

DEFINITION 54.28. Let i be a sequence of set functions and let X

be a set. By i, is a partition measure scheme on X, we mean:
(1) pe is a partition measure scheme, and

) U domlm] = X.

Let p be a partition measure scheme. Then p; < pgy < g < ---.
Intuitively, we have countably many boxes of Legos. For all j € N,
the jth box contains the sets in dom[y;]. For all j € N, u; tells us the
size of the Legos in the jth box. The condition pf < pui < pj < ---
ensures: for all j, ke N, if 7 <k,
if we build an assembly out of Legos from the jth box,
and measure its total size,
and then rebuild it out of Legos from the kth box,
and measure its total size once more,

then the two total sizes are the same. Or, to put it another way:
By Lemma 54.26, we have pf < p5 < ps < ---.

DEFINITION 54.29. Let p be a partition measure scheme. Then
we define jiz = i U s U pg U -

Intuitively, we take all the Legos from all the boxes, throw them all
into one big box. The function u¥ tells us the size of any finite-time

assembly that can be built from Legos from that big box.
For example: Define a sequence D of partitions of R by

D; = {(q,a+2"7]|ac27'Z}.
Then D; is called the “first dyadic partition” of R, and is equal to
{..., (-4,-3], (-3,-2], (-2,-1], (—1,0],
(0,1], (1,2], (2,3], (3,4], ... }.
Also, D, is called the “second dyadic partition” of R, and is equal to
(0/2,1/2], (1/2,2/2], (2/2,3/2], (3/2,4/2], ... }.
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Also, Dj is called the “third dyadic partition” of R, and is equal to

(..., (~4/4,-3/4], (~3/4,—2/4], (~2/4, —1/4], (~1/4,0/4],
(0/4,1/4], (1/4,2/4], (2/4,3/4], (3/4,4/4], ... }.

Also, Dy is called the “fourth dyadic partition” of R, and is equal to

(..., (~4/8,-3/8], (—3/8,—2/8], (—2/8,—1/8], (—1/8,0/8],
(0/8,1/8], (1/8,2/8], (2/8,3/8], (3/8,4/8], ... }.

Note: D; < Dy < D3 < Dy < ---. Define a sequence m of partition
measures by m; = ¢|D;. Note: my < mg < m3 < my < ---. We
conclude that m, is a partition measure scheme.
[The sequences D, and m, are bound for the remainder of this class.]
For another example: Define a sequence D? of partitions of R? by

D: = {AxB|ABeD;}.
Define a sequence m? of partition measures by m? = f(5|D3. Note:
m? < mi < mi < mj < ---. We conclude that m? is a partition

measure scheme.

[The sequences D? and m? are bound for the remainder of this class.]

Intuitively, for all j € N, DJQ- is a box of two-dimensional Legos, each
one a square (containing part, but not all, of its boundary). Each box
is a refinement of the preceding box, and so can build more assemblies
than the preceding box. We now take all the Legos from all these boxes
and put them into one big box. The function (m?)* tells us the total
size of any assembly that can be built, in finite time, from that big box.

Imagine we want to build the open disk of radius +/2 about (0,0). We
begin by choosing four Legos from D; that cover the inscribed square
(—1,1] x (=1,1]. Then, with smaller Legos, we partially fill in the
part of the disk not already not covered by those first four Legos. We
continue, and get better and better approximations to the disk, but,
unfortunately, in finite time, we can’t exactly cover the disk.

We now switch from finite time to countable time. In countable time,
we can exactly cover our disk, and then compute its area as the sum
of the areas of the countably many Legos used to cover it.

DEFINITION 54.30. Let i be a set function and let Q := dom|pu].
Let § :={Q),. Then CAES p is the set of allv : S — [0, 0] such that

both (v is countably additive ) and (v|Q = ).
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In Definition 54.30, “CAES” = “Countably Additive ExtensionS”.

DEFINITION 54.31. Let v be a set function. Then v is a measure
means: ( dom[v] is a o-ring ) and (v is countably additive ).

Let 1 be a set function. Then, Vv € CAES pu, v is a measure.

DEFINITION 54.32. Let pu be a partition measure. Then u is o-
finite means: both ( dom[u] is countable ) and (YA € dom[u], mu(A) <
w0 ).

You are responsible for knowing the statement of Theorem 54.33
below, but not for knowing its proof, which was not covered.

THEOREM 54.33. Let u be a o-finite partition measure scheme.
Then #(CAES p¥) < 1.

Proof. TO BE ADDED LATER U

DEFINITION 54.34. Let X be a topological space and let p be a
partition measure scheme on X. Then u, is a pre-measure on X
means: 11 1S reqular and o-finite.

Unassigned HW: Show both that m, is a pre-measure on R and that
m?2 is a pre-measure on R

DEFINITION 54.35. Let X be a topological space and let p be a
partition measure scheme on X. Then
(1) pe is inner regular means: Vj € N, VB € dom|p;], Ve > 0,
JA e dom[pf] s.t. [ClxA< B] and [ (pi)(B\A) <e],
(2) pe is outer regular means: Vj € N, VB € dom|y,], Ve > 0,
AC € dom|pk] s.t. [ B<IntxC | and [ (p¥)(C\B) <e |,
&(3) pe is regular means: (p is both inner reqular and outer requ-
lar ) and (YA € dom[u], ClxA is sequentially compact ).

You are responsible for knowing the statement of Theorem 54.36
below, but not for knowing its proof, which was not covered.

THEOREM 54.36. Let X be a topological space. Let p be a pre-
measure on X. Then #(CAES p¥) = 1.

Proof. TO BE ADDED LATER U

DEFINITION 54.37. Let X be a topological space, and let i be a
pre-measure on X. Then fe := ELT(CAES uf).
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Define A := m, and X\, := n/z\f Then A is called Lebesgue measure
on R, and )\, is called Lebesgue measure on R2.

[The variables A and Ay are bound for the remainder of this class.]

You are responsible for knowing the statement of Theorem 54.38
below, but not for knowing its proof, which was not covered.

THEOREM 54.38. We have:
(1) dom[A] = B,

(2) NT -t
(3) dom|[Xz] = Ba and
(2) Xo|Zy = 0s.
Proof. TO BE ADDED LATER O

DEFINITION 54.39. Let f : R --» R. Then
Oy = {(z,yeR"|(zedom[f])&(0<y<f(z))}.
In Definition 54.39, the set Oy is called the ordinate set of f.
DEFINITION 54.40. Let f : R --» R. Then

f fo= 0] = De(0-p)].

DEFINITION 54.41. Define sgn : R — {—1,0,1} by

-1, ifx <0
sgnxr = 0, ifx =0
1, if £ > 0.

DEFINITION 54.42. Let f : R --» R and let a,b e R. Then

Lbf = [Sgn(b—a)]-lj((Xﬁw]).f)]'

The next result is the Fundamental Theorem of Calculus. You
are responsible for knowing its statement, but not for knowing its proof,
which was not covered.

THEOREM 54.43. Let f : R --» R and let a,b € R. Assume
that a < b and that f is continuous on [a,b]. Define g : R --» R

by g(x) = Jm f. Then: (g is c/d on[a,b] ) and (¢ = f on (a,b) ).

Proof. TO BE ADDED LATER U
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55. APPENDIX: GENERATING A RING OF SETS (NOT ON FINAL)
This section will NOT be covered on the final.

LEMMA 55.1. Let C be a set of sets. Assume both
<C>ﬁnm cC and <C>ﬁnu cC.
Let D := {C\Cy |C,Cy € C}. Then D is a pre-ring of sets.

Proof. By Definition 54.16, we want: VD, D" e D, D\D' € {(D)g,,,- Let
D, D’ e D be given. We want: D\D' € (D)g, .-
Since D, D' € D, choose C, Cy, C’, Cj € C such that

both [D=C\Cy] and [ D' =C\C}].
Then Chu C"e ), <Cand CnC'" nCje{C), =C. Let
X = C\(ChuC)  and
Y = (CnC" nCH\Co.

Then X,Y € D. Then X 1Y *e (D)g,, - It therefore suffices to show
that D\D' = X [[Y. We therefore wish to show:
(1) XnY =,
(2) D\D'c X uY, and
(3) D\D'2 X UY.
Proof of (1): Since X < C\C" and Y < C’, we conclude that
X nY =¥, as desired. End of proof of (1).
Proof of (2): We wish to show: Vge D\D', ge X uY. Let
g € D\D' be given. We wish to show: ¢ € X uY. It suffices
to show: (¢¢ X) = (¢€Y). Assume ¢ ¢ X. Want: g€ Y. We
want to prove: g € C' and g € C" and ¢ € C and ¢ ¢ Cj.
Since g € D = C\Cy, we get ¢ € C and ¢q ¢ Cy. Since g € C
and ¢ ¢ X = C\(Cy u '), we see that ¢ € Cy U C’". So, as
q ¢ Cp, we see that ¢ € C' It remains to show: ¢ € CJ).
Since ¢ € D\D', we have ¢ ¢ D’. So, since D' = C"\C{ and
q € ', it follows that ¢ € C{, as desired. End of proof of (2).
Proof of (3): We have X = C\(Cy u C") < C\Cy = D. So,
since X nD' < (C\C")nC" = J, we get X < D\D'. It remains
to show: Y < D\D'.
We have Y = (C' n C" n C)\Cy < C\Cy = D. So, since
Y nD < Cin (C\C)) = &, we get Y < D\D', as desired.
End of proof of (3).
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O

The next lemma shows that, given a set A of sets, we can, in FOUR
steps, generate a ring of sets. This is in contrast to o-rings, where the
generation might take uncountably many steps, and therefore might
require transfinite recursion to implement.

LEMMA 55.2. Let A be a set of sets, B := (A)gy, ., C = B)gy.,
and D := {C\Cy |C,Cy € C} and £ := (D)gy, ;- Then & = (A),.

Proof. Since (A), = ([r(A)], we wish to show: & = [[r(A)].

For any R e r(Ad), A< R,so B< R,s0C S R,s0D < R, so
E S R. Then € < ([r(A)]. Want: & 2 ([r(A)]. Tt suffices to show:
Eer(A).

Let X :=J.A. We have A < 2% so B < 2%, s0C < 2%, 50D c 2%,
so £ € 2%, It remains to show: £ is a ring of sets.

We have B = (A)g,, ., and so (B)g,, . S B. We have C = (B)g,,

and so (C)gy, , € C. Because n distributes over U, we get

<<B>ﬁnu>ﬁnm < <<B>ﬁnm>ﬁnu'
So, since {B)gy, , = C and (B)g,, . = B, this gives (C)g,, . = By -
Then (C)gy, . = (B )gp., = C. So, since (C)n,, , < C, by Lemma 55.1,
we conclude that D is a pre-ring of sets. Then, by Lemma 54.17, we
conclude that (D), = &, and so £ is a ring of sets, as desired. O

NOTE TO SELF: Next year, let’s do several things a little differ-
ently. First, let’s rename “partition measure scheme” to “refinement
sequence”. Second, add construction of Lebesgue measure on any FEu-
clidean space RY. Third, add Lebesgue-Stieltjes measure. Fourth, de-

scribe product measure on {0, 1}, Fifth, add the Kolmogorov Exten-
sion Theorem. END OF NOTE TO SELF.
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Axiom of Choice, 52
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backward image, 47

bad form theorem, 4

ball, 103
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basis, 93

bijective, 45

bilinear, 351

bind, 16

Borel sets, 397

bound, 16

boundary, 182
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bounded function, 173
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bounded linear transformation,
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c/d, 256

c¢/d on a set, 256

c¢/d-diffeomorphism, 287

Cantor diagonalization, 64

Cantor set, 81

Cantor set approximation, 81

Cardinal Binding Rule, 16

Cardinality Theorem, 51

Catch (22), 21
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Cauchy Mean Value Corollary,
299

Cauchy Mean Value Theorem,
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cc, 67

Chain Rule, 247, 392

choice function, 53

clopen, 115

closed, 115

closed unit ball, 101

closure, 182

closure point, 183

co-domain, 42

coarser, 114

commutative, 86

commutativity results, 32

complete, 211

complex vector space, 87

composite function, 46

composition power, 179

connected, 122

constant function, 88
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contingent equal, 69
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continuum cardinality, 67
Continuum Hypothesis, 67
contradiction template, 27
convergent sequence, 178
converges uniformly, 209
countable, 55

countably infinite, 55
crowded, 211

cubic order, 341

denumerable, 55

derivative, 195

diagonal restriction, 366

differentiable, 198

Differential Inverse Function
Theorem, 283

DIFT, 283

DIFT redux, 286

dimension, 95

directional derivative, 322

Discontinuity Removal
Theorem, 162

discrete, 114

discrete topology, 114

distance-metric, 102

distance-nondecreasing, 165

distance-semiincreasing, 165

distinct, 50

distributivity results, 32

domain, 39

domain of continuity, 235

dot product, 334

double translate, 195
double-binding, 22

Einstein Summation
Convention, 334

ELT, 35

empty set, 27

endpoint, 288

equivalent norms, 313

everywhere continuous, 163

Exact Covering Lemma, 85

extended interval, 78

extended metric, 208

extension, 394

Extreme Value Theorem, 193

extremum, 252

Fermat’s Theorem, 255

finer, 114

finite dimensional, 95

finite intersection closure, 105

finite intersections, 31

finite refinement of partition
measures, 402

finite refinement of partitions,
401

finite unions, 31

follows, 300

footpoint, 288

forward image, 47

Fourth Derivative Test for
umin, 316, 317

free, 16

function, 40

functional, 252

functoriality property, 168

Fundamental Theorem of
Calculus, 406



INDEX OF TERMS

Fundamental Theorem of
Dynamics, 53

Generalized Continuum
Hypothesis, 68

Hausdorff, 114
homeomorphic, 169
homeomorphism, 169
horizontal translate, 195

idempotence property, 85, 90

Identities Set, 86

image, 39

indiscrete, 114

indiscrete topology, 114

induced metric, 103

inf, 68

infinite dimensional, 95

injective, 45

inner regular, 405

interior, 182

interior point, 183

Intermediate Value Theorem,
219

intersection closure, 105

interval, 79

Invariance of Domain, 228

isolated, 122

isolated point, 183

isolated set, 182

isomorphic, 97

isomorphism, 96

L’Hospital’s Rule, continuous
version, 303

L’Hospital’s Rule, easy version,

313

L’Hospital’s Rule, limit
version, 305

LB, 68

Lebesgue measure, 406

limit point, 183

limit point set, 182

linear, 96

linear combination, 90

linear isomorphism, 97

linear operations, 88

linear order, 341

linearizations, 369

linearly dependent, 92

linearly independent, 92

Lipschitz, 165

local extremum, 252

local maximum, 252

local minimum, 252

local unique max, 315

local unique min, 315

max, 68

maximum, 252

Mean Value Inclusion, 259
Mean Value Theorem, 258
measure, 405

metric, 102

metric space, 102
metrizable, 113

min, 68

minimum, 252

monotone, 221

monotonic property, 85, 90
multilinear, 357

nbd, 116
neighborhood, 116
neighborhood base, 125
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norm, 100
normed vector space, 100

OB, 96

one-to-one, 45

onto, 45

open mapping, 169, 271
open mapping theorems, 278
open rectangle, 118
open set, 108

orbit, 179

order p, 341

ordered basis, 96
ordered pair, 38
ordinate set, 406

outer regular, 405

pairwise disjiont, 50

pairwise unequal, 50

pairwise-disjoint, 394

parallel vectors, 290

partial derivative, 322

partition, 394

partition measure, 401

partition measure scheme, 402

pnbd, 124

polarization, 368

possibly punctured
neighborhood, 303

power set, 32

pre-measure, 405

pre-ring of sets, 399

Precalculus Chain Rule, 246

precalculus product rule, 243

preimage, 47

Principle of Mathematical
Induction, 70

product change formula, 145

product metric, 213

product norm, 213

Product Rule, 206, 245, 390
product topology, 118

proper metric space, 178
punctured neighborhood, 124

quadratic order, 341
quantified equivalence, 90
quartic order, 341

range, 42

real vector space, 86
Recentering Down Lemma, 104
Recentering Up Lemma, 306
regular, 405

relation, 38

relative metric, 115

relative norm, 115

relative topology, 115
Replacement Rule (20), 20
Replacement Rule (21), 22
Replacement Rule (22), 21
reproducing equation, 336
ring of sets, 396

Rolle’s Theorem, 256

Rule (31), 24

Russel’s Paradox, 27

scalar, 87

scalar multiplication, 88

Schroeder-Bernstein, 52

secant line, 166

secant slope, 166

secant slope function, 195

secant slope function, with
direction, 322

secant tangent slope function,
200
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section of a proof, 24

Semicalculus Chain Rule, 246

semidecreasing, 174

semiincreasing, 174

semimonotone, 181

sequence, 56, 63

sequential closure, 184

sequential closure point, 184

sequentially closed, 271

sequentially compact, 178

set function, 395

set-theoretic subtraction, 34

sigma-finite measure, 405

sigma-ring of sets, 397

sigma-subring, 397

singleton set, 35

slope function, 290

span, 90

spanned by, 92

spanning set, 92

spans, 92

Squeeze Theorem, 155

standard basis, 94

standard norm, 100

standard OB, 96

standard topology on R*, 113

standard topology on a fdVS,
333

standard topology on MS, 112

stereographic projection, 171

Stopping Rules (23,24), 22

strictly decreasing, 174

strictly increasing, 174

strictly monotone, 181

structured the proof, 18

sub-p, 341

subconstant, 341

subconvergent, 178

subcubic, 341

sublinear, 341

subquadratic, 341

subquartic, 341

subring, 397

subsection of a proof, 25

subsequence, 175

subset, 23

summation change formula, 141

sup, 68

superdomain, 42

superimage, 42

superset, property, 85, 90

surjective onto, 45

symmetric multilinar function,
368

symmetric power, 368

T 122

tail of sequence, 165
target, 42

TIFT for compacta, 275
TIFT for intervals, 274
TIFT for open in R, 274
topological space, 108
topology, 107

topology on a set, 108
total derivative, 372
translate of arrow, 288
translation invariant, 395
triangle inequality, 102
trilinear, 355

Truth Tables, 3

UB, 68

uncountable, 55

unfortunate DIFT hyptothesis,
283
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uniform metric, 209 vector space isomorphism, 97

uniformly continuous, 165 vertical line test, 40

union-closure, 84

unique maximum, 284 Want: --- = - template, 18

unique minimum, 284 Want: 3 template, 17

unit ball, 101 Want: V template, 17

unit sphere, 101 Want: ... & ...template, 24
well-ordered, 70

vector, 88 World of Sets, 54

vector addition, 88
vector of an arrow, 288 Zermelo-Fraenkel, 10
vector space, 87 ZFC, 10
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